
XML AGENT ON SMART CARDS

Sayyaparaju Sunil
Kanwal Rekhi School of Information Technology‚
IIT Bombay‚
India.
sunil@it.iitb.ac.in

Dr. Deepak B. Phatak
Kanwal Rekhi School of Information Technology‚
IIT Bombay‚
India.
dbp@it.iitb.ac.in

Abstract With the increase of resources and processing power on the Smart Cards‚ in re-
cent days‚ their applicability has moved from a domain specific application to a
more generic one. Multi-Application Frameworks‚ designed to host multiple ap-
plications on a card‚ also aim at increasing the interoperability between different
vendors and their applications. This paper proposes a new model named XML
Agent‚ which significantly enhances the inter-operability of the smart card ap-
plications. The XML Agent becomes an interface through which the external
world can interact with the on-card applications. The XML Agent passes the
commands and data to the appropriate application as per its requirements. This
model will also facilitate the programmer in developing off-card applications‚
with minimal information about the on-card applications.

1. Introduction
Smart Cards have a hardware specific firmware operating system‚ called

Card Operating System (COS)‚ to manage all the resources on the card. Addi-
tionally‚ there may be a Runtime Environment which adds more functionality
to the Card Operating System. The applications residing on the card are called
On-Card Applications. The external applications‚ called the Off-Card Appli-
cations‚ communicate with the on-card applications by sending Application
Protocol Data Units (APDUs). The Card OS interprets these commands and
performs the corresponding predefined operations.

304 Sayyaparaju Sunil‚ Deepak B. Phatak

Multi-Application Frameworks provides a platform to securely host more than
one application on a card‚ making them multi-purpose. They define how the
on-card applications should communicate and share data between each other.
A firewall is deployed to protect and isolate applications residing on the same
card. All the communication between on-card applications should pass through
this firewall. Widely used on-card Multi-Application Frameworks are: Java
Card and MULTOS.

Interoperability is an important aspect in Smart Card application development.
Ideally‚ the off-card application on any terminal should be able to interact with
an on-card application on any type of card. Even though the standards and
on-card frameworks enforce a uniform interface‚ the problem is only partially
solved. We will discuss this problem in more detail in the next section. Our
proposed model significantly enhances the interoperability of the applications‚
however it doesn’t solve the problem completely. It also eliminates the need to
rebuild the off-card application to support a new type of card.

Abstraction for the developers is one of the most important principles in soft-
ware engineering. Abstraction hides all the unnecessary details from the de-
veloper. It is difficult to define what is necessary and what is not. A vague
definition can be: Whatever the developer is not using is unnecessary to him.
He should not be bothered with the details of what he is not going to use. Then
he can concentrate more on the programming logic.

Our model discussed in this paper provides powerful abstraction to the de-
velopers. In our model‚ the developers need to have very limited information
about the on-card application‚ to develop an off-card application. As a result
of this‚ there can be more number of market players who provide their own
customized services and solutions to the consumers.

2. Motivation
This section highlights some of the problems faced during the develop-

ment of an application. Presently‚ all the problems may not appear to be very
significant. But they will become more prominent once the smart card industry
expands‚ and different players come up with their custom applications‚ termi-
nals and cards.

Generally‚ the on-card and off-card applications are developed by the same
developer. This is because the off-card application is tightly coupled with the
on-card application. It will definitely be advantageous if this dependency is
eliminated or at least reduced. Then all the application developers can easily

XML Agent on Smart Cards 305

develop different off-card applications based on a single on-card application.
For example‚ based on an on-card application which maintains personal infor-
mation of the card holder‚ numerous off-card applications like vehicle license‚
insurance policy‚ bank account etc. can be developed.

Applications on different cards may use different data formats and commu-
nication sequences to communicate with the off-card application on the ter-
minal. By data format‚ we mean the data type and the type of encoding used
to represent data. For example‚ the balance in an E-purse application may be
an integer or a real number. In addition‚ if it is floating-point representation
then some base(radix) is decided upon and a fixed number of bits is used to
represent mantissa and exponent. By communication sequence‚ we mean the
order in which the control commands and data are sent. This is decided upon
during the design and implementation of the on-card application. The off-card
applications cannot interact with the on-card application unless they know the
exact details of the their data formats and communication sequence.

The card has to interact with a terminal whose architecture may be completely
different from that of the card. Then the data formats used by the on-card and
off-card applications may be different‚ but still the communication has to take
place. For example‚ one system may be using 2 bytes to represent an integer
while another system may be using 4 bytes. Same is the case with big-endian
and little-endian representations. Similarly‚ for strings‚ different types of en-
coding like ASCII‚ UTF-8‚ UTF-16 can be used. If both the terminal and the
card are following the same data formats‚ then there will not be any problem. If
not‚ the off-card and/or on-card applications have to do proper transformations
to get the exact data. This will incur extra overhead in processing.

There should be some mechanism to hide all these problems from the develop-
ers. These problems should be handled at a lower level without exposing them
to the application developers. Then the developers can concentrate more on
the application process logic rather than on the nitty-gritties of the underlying
system.

3. Related Work
This section introduces some of the earlier work describing efforts made in

the direction of integrating the XML with the Smart Card technology. Their
objective was to increase the interoperability of the Smart Card applications.
They also attempted to eliminate the need to rebuild the whole off-card appli-
cation to support a new type of card.

306 Sayyaparaju Sunil, Deepak B. Phatak

3.1 Dynamic Card Service Factory
Open Card Framework(OCF) provides standardized high-level APIs for

card programming [Ocfgim98]. Its CardService layer implements the logic
of the off-card application for a specific Card Operating System. So there can
be many possible CardService implementations for the same application. All
knowledge about a family of CardServices is encapsulated in a CardService-
Factory. For an application to support multiple cards, corresponding Card-
Service implementations have to be bundled with it. This increases the size
and loading time of the application. A bigger disadvantage is that, an off-card
application cannot support card types which are not present during its devel-
opment.

DynamicCardServiceFactory(DCSF) [DCSF] is a CardServiceFactory imple-
mentation. Initially, it downloads the up to date information about all known
card types along with the location of CardServices for those cards and stores it
in an XML file in the terminal. When a card is inserted into the terminal, using
XML messages, it downloads the appropriate CardService implementation for
the requested application and serves the card. This model allows the off-card
application to support new cards without changing the application logic.

3.2 SmartX
This technology was introduced by Gemplus. It provides a solution for

writing host-to-card protocols in XML. This allows the APDU protocol to be
portable to any language and platform that has a SmartX implementation. It
provides a framework where the application process logic is dissociated from
the application protocol [Xavier99]. So it is required to implement the applica-
tion logic only once. This methodology can support cards that are not present
during the development of the off-card application.

The application protocol details are represented using an XML-based language
called SmartX Markup Language(SML). The SML documents, called Dictio-
nary [SmartX00] contains card profiles which in turn will contain different
card processes. Each card process is implemented for a given card profile us-
ing the card specific commands. The SmartX engine running on the terminal
downloads the appropriate SML document from the dictionary and executes
the application process logic. However, this technology is not in use. The
development and support was withdrawn by its initiators.

XML Agent on Smart Cards 307

4. XML Agent
In the previous section, we saw two models which enhance the interoper-

ability of applications. Both the models run some sort of an engine on the ter-
minals, which can download the up-to-date information about different types
of cards. It will be beneficial if the need to dynamically download information
can be avoided, without compromising the functionality provided by it. It is a
costlier option to keep the terminals connected to internet round the clock. The
above two models have serious limitations in situations where the terminal is
not connected to internet.

With the increase of resources and processing power on the Smart Card, it
is definitely not a bad idea to implement a small engine on the card itself.
So our XML Agent is an engine which runs on the card. It doesn’t demand
any internet connectivity from the terminal. So the terminals can be deployed
anywhere to perform all kinds of off-line transactions with the cards.

4.1 Basic Model
The XML Agent is a middleware between the off-card applications and the

on-card applications. The off-card and the on-card applications communicate
only through the XML Agent. In other words, XML Agent becomes an in-
terface for the off-card applications to communicate with the on-card applica-
tions. The off-card applications communicate with the XML Agent in XML
only. We chose XML because of the wide support available for it on different
platforms.

Figure 1. XML Agent

308 Sayyaparaju Sunil‚ Deepak B. Phatak

The XML Agent transforms the XML documents sent by the off-card appli-
cations into a byte stream which is understandable by the on-card applications.
The on-card applications respond to the commands passed to them. This re-
sponse reaches the XML Agent in a byte stream. It will construct an XML
document out of the response and will send it to the calling off-card applica-
tion. So the off-card applications communicate only in XML and the on-card
applications communicate only in bytes. Eventually‚ the XML Agent is trans-
forming the XML document to bytes and vice versa. It is important to note that
the XML document can be sent as data in the standard APDU commands. So
our model can fit in the existing standards and frameworks.

To transform the XML documents in this manner‚ the XML Agent should have
a knowledge about the on-card applications. First‚ it should know which ap-
plications are installed on the card. Then‚ for each on-card application‚ the
XML Agent should know the mapping between the fields in the XML docu-
ment and the corresponding commands and its arguments which should be sent
to the on-card application. It should also know the communication sequence
for each on-card application. So the on-card application has to describe itself
to the XML Agent‚ or the XML Agent has to be notified explicitly by the in-
stalling application. Similarly the information about the mapping rules should
be specified by the on-card application or any external application. With this
information‚ the XML Agent can parse the XML document‚ prepare a byte
stream and pass it to the appropriate application.

4.2 Advantages
Ideally‚ all the data entering and leaving the card should be in XML only. In

recent days‚ XML has become the defacto cross platform data representation
standard. XML is a simple text-based language and is also extensible. There
is wide support for XML parsing on all the platforms. As explained before‚
the off-card application on the terminal will send and receive only XML doc-
uments. It becomes easy for the terminal to communicate in simple characters
and strings. The terminal need not worry about the details of the data formats
and communication sequence of the on-card application. So the interoperabil-
ity of the applications will increase significantly.

Since the XML Agent is a middleware between the on-card and off-card ap-
plications‚ the legacy on-card applications need not be changed at all. But the
off-card applications should be modified to make them communicate in XML.
But there is a workaround to this problem also. That part of the code which
has to parse the XML document from the card and extract different fields can
be written as wrapper functions to the original off-card application. So the mi-

XML Agent on Smart Cards 309

gration from the existing model to our proposed model can be very smooth.

This model also allows the developers to develop an off-card application, with
limited information about the on-card application. Consider a simple example
of an on-card personal identification application. The XML document, which
is sent out in response to a request may be as follows.

If suppose an external application wants to know just the name and social secu-
rity number of a person, it can parse the whole XML document which will be
transmitted by the XML Agent. Then it refers to the DTD specification of this
data, understands the fields, and extracts the required information from it. In
this example the application extracts the information between the tags <Name:
>< /Name: > and <SSN>< /SSN>. The developer need not know about
the data types of the values or the order in which they are arriving. He sim-
ply has to parse the XML document and extract the appropriate fields. This
approach has an additional advantage. If the on-card application is changed
by adding some more fields, or if some fields are removed (which no off-card
application is using) then the already existing off-card applications need not be
modified at all.

4.3 Disadvantages
It is obvious that the model demands more processing power on the card.

It might be very costly to do the XML processing on currently available cards
which have limited resources. So we decided not to validate the data against its
DTD on the card. All the data which comes to the card is assumed to be valid
data. The off-card application has to take care about this. Second disadvantage
is that there is lot of movement of unnecessary data between OS, XML Agent
and the applications. The verbose nature of XML makes this even more worse.
So there should also be more memory on the card. But, we believe that these
shortcomings can be overcomed with the increase in resources and processing
power on the card.

310 Sayyaparaju Sunil, Deepak B. Phatak

5. Implementation Alternatives
The basic model of XML Agent can be implemented in different ways. In

this section we discuss the different approaches and their pros and cons. In the
following discussion we will be using the terms ‘Runtime Environment’ and
‘Card OS’ interchangeably. The same discussion holds true in both the cases
unless explicitly mentioned.

5.1 Along with Runtime Environment
The easiest and probably the most secure way is to integrate the XML Agent

with the Runtime Environment and/or the OS. All the APDUs first come to the
OS to be processed. So the OS (along with XML Agent) can do the job of
translating the XML document to byte stream and send it to the appropriate
on-card application. Since the OS has complete privileges over all the appli-
cations, the XML Agent can access any functions of the on-card application
directly. It can trap the responses from the applications, prepare an XML doc-
ument out of it and send it to the calling application. Since the XML Agent
is integrated with the OS, the semantics of the on-card applications will not
change. They will not be aware of the presence of the XML Agent. So there is
no need to rebuild the existing on-card applications. The problem with this ap-
proach is that the developers are at the mercy of the card manufacturer to have
an XML Agent. It also steals the opportunity from the developers to build their
own Agents. The schematic representation is shown in the figure 2.

Figure 2. XML Agent along with Runtime Environment

5.2 Between OS and Applications

In this method the OS passes the XML document to the XML Agent which
will generate the byte stream and pass it to the appropriate application. There
can be two possible approaches in this scheme. One in which the off-card

XML Agent on Smart Cards 311

applications are aware of the XML agents, but no extra support from OS is
needed to achieve this. Other method in which the off-card applications are
ignorant of the presence of the XML agents, but some extra support is required
from OS. The schematic representation is shown in the figure 3.

The first approach is where the off-card application is aware of the presence of
the XML agent. The XML agent can be assigned a fixed/reserved Application
Identifier (AID). The off-card applications can directly pass the XML docu-
ment to XML agent along with the AID of the application to which the final
data should be dispatched. The XML agent arranges the data accordingly and
dispatches using delegation.

Figure 3. XML Agent Between Runtime Environment and Applications

The second approach, where the off-card application is unaware of the pres-
ence of XML, requires some support from the OS. The OS should handover
the XML document, sent by the off-card application, first to the XML agent.
This should be done without the knowledge of the on-card and off-card appli-
cations. This is diversion from the ordinary flow of the data where the data is
directly sent to the concerned application. The XML agent will then process
the data and finally dispatch it to the destination application.

In both the methods the XML Agent is not privileged to access the on-card
applications directly because it is just a standard application. So all the on-
card application should be made shareable to it. Another alternative is to force
that the XML agent should be given special privilege just to access the on-card
applications directly. This is more sensible because other on-card applications
should not be given a chance to misuse the fact that all applications are acces-
sible by the XML Agent.

312 Sayyaparaju Sunil, Deepak B. Phatak

5.3 As a Standard Application
In this approach, the XML Agent has no special privileges. Here, instead

of XML Agent invoking other applications, they will invoke the XML Agent
and get their job done. The XML Agent behaves more or less like a library of
functions. But the opportunity lies completely in the hands of the developers
to implement their own specific XML Agent.

In this model, the applications will directly get the XML document passed
by the OS. Instead of processing it, the applications should pass the data to the
XML agent. The agent will arrange the data in required format and pass it back
to the application. Then the application can proceed in the normal way of pro-
cessing the commands and/or data. In this approach, there is lot of overhead in
movement of data to and fro between the XML agents and the applications. So
this is not a preferred way of implementing the XML Agent. The schematic
representation is as shown in the figure 4.

Figure 4. XML Agent as a Standard Application

6. Implementation Issues
In this section we will discuss some issues during implementation of XML

Agent on two of the most popular Multi-Application Frameworks: Java Card
[JavaCard] and MULTOS [MULTOS]. We will discuss the features which are
supporting or hindering the implementation of XML Agent on them. We are
not biased towards any of the frameworks. We view both of them just from a
research perspective.

6.1 Java Card
Java Card technology adapts the Java platform for use on smart cards. It

has a Java Card Runtime Environment(JCRE) which consists of Java Virtual

XML Agent on Smart Cards 313

Machine(JVM), Java Card Framework APIs. As Java Card provides support
for Java, we initially assumed that it will be most promising to implement our
XML Agent on them. But later we found that the limited support (currently)
provided by JVM on the card is not adequate to implement the XML Agent.
The following features, which are important for our implementation are not
supported [Chen00] on Java Card.

Characters and Strings

Dynamic Class Loading

Object Serialization

XML is a text-based technology but Java Card currently has no support for
characters and strings. It only support bytes, integer support is optional. So
the characters should be encoded using some encoding scheme like Unicode
or UTF. (UTF-8 has the advantage that it is fully compatible with the 7-bit
ASCII encoding.) Processing the XML document will incur extra overhead of
encoding and decoding. This overhead may be an overkill on the cards with
limited processing power and resources.

Dynamic class loading is not supported in Java Cards. This feature allows the
loading of classes, which share a common interface, even without any knowl-
edge of their existence at the time of development of the main application. This
is absolutely necessary in our model to support post issuance loading of card
applets. There is no way in which the XML Agent can interact with the applets
installed after it. So the XML Agent should be the last applet to be installed.
And also it should hardcode the names of other classes which are already ex-
isting in the card. This is undesirable because there will be different applets on
different cards. The size of the XML Agent will increase if we make it generic
to handle the above situation.

Object Serialization will be helpful if present. In object serialization, rules
can be defined to transform the object into a stream of bits. We can define
our own rules to serialize an object. These serialization rules can be such that
proper XML document is generated when the object is serialized. Then the
on-card application has to send an object containing the response data to the
XML Agent. The XML Agent can serialize the object, producing the XML
document to be sent to the calling off-card application.

6.2 MULTOS
After encountering many limitations in Java Cards discussed in the previ-

ous section, we diverted our exploration towards MULTOS framework. We

314 Sayyaparaju Sunil, Deepak B. Phatak

noticed that MULTOS has a very generic architecture to run programs. After
analyzing the architecture we found that it can add more functionality to the
XML Agent, than we had initially thought about. We have no doubt in say-
ing that, currently MUTLOS does appear more appropriate than Java Card for
implementing our idea. Two of the most promising features of MULTOS that
help in the implementation are:

Shell Application

Delegation Mechanism

The shell application[MShell99] is implicitly selected when a MULTOS
card is powered up. The shell application receives all the commands sent to
the card, except the commands sent to the MULTOS Security Manager(MSM).
The rationale behind this is to support non-ISO interface devices and com-
mands which need to communicate with the cards (which are ISO standard).
We can safely exploit this facility provided by MULTOS cards. We can load
the XML Agent as a shell application. Since the commands first go to the shell
application, we can send actual commands enclosed in XML document to the
shell application directly. The XML Agent which is running as a shell appli-
cation will unwrap the data and invoke the appropriate application and pass it
the commands and data using delegation. It can do the processing in reverse
direction as well. It can encapsulate the data returned by the application in an
XML document and send it back to the off-card application.

The memory architecture and the delegation mechanism [MAPRM97] in MUL-
TOS will be helpful in increasing the efficiency of the XML Agent. In MUL-
TOS, some part of the memory is reserved as “public” area. All the applica-
tions can access this data space. During delegation, the delegator application
creates a command APDU in public area and activates the delegate applica-
tion. The delegate application will process the APDU in public area and then
return the response in the public area itself. The delegator application will then
examine the response set by the delegate application. Since there is no physi-
cal copy or movement of data between the applications, the delegation will be
faster. In case of XML Agent, if there is no movement of XML documents
between XML Agent and the applications, the performance of the system will
definitely be better.

7. Our Implementation
As we do not have the required resources to modify the Runtime Environ-

ment and OS of the card, we couldn’t implement the first model where the
XML Agent is integrated into the OS of the card. So, as a proof-of-concept
we have implemented the second model where the XML Agent sits between

XML Agent on Smart Cards 315

OS and the applications. The implemented model is one where the off-card
application is aware of the presence of XML Agent on the card.

As the XML parser of the XML Agent is the heart of the problem, it should
be as efficient as possible. We considered different parsing techniques[XML-
Parsers] before choosing one. Tree model parsers, like DOM parser, are very
expensive in this scenario because they will build a complete tree out of the
whole XML Document. We did not find the Push model parsers, like SAX
parsers, very useful because of the cumbersome callback mechanism. After
exploring other alternatives, we found Pull Model parsers best suited for our
requirements. We adopted the API[PullParser], which is actually developed
for the Java language, for our implementation in C language. We implemented
a simplified parser which can parse basic XML syntax. To decrease the pars-
ing overhead, we are assuming that all strings are ascii encoded. In order to be
able to load on currently available commonly used cards we didn’t include the
support for costly(in terms of processing) features like namespaces, references
etc. Finally the size of the XML agent (ALU file for MULTOS) along with the
parser came around 5KB. The XML parser alone came to a size of around 3KB.

We developed a very simple application which holds a value. It has only
three functions query(), incr() and decr() to query, increment and decrement
the value respectively. The APDU prefixes of these functions are stored in an
array datastructure with the XML Agent. As the XML Agent is aware of this
application, it can send APDUs accordingly. The XML document is sent as
data in the APDU to the XML Agent. The XML command to increment the
stored value by some amount is as follows:

The latest value is sent in response to this command. The XML document
returned by the XML Agent is as follows.

8. Conclusion
The traditional approach of developing on-card and off-card portion of an

application as a single cohesive bundle does not permit them to be made in-
teroperable easily. There is a great need to have an interoperable framework
which would be independent, not only of the differences in cards and terminals,
but also of the data structure details of the on-card and the off-card application
components.

In this paper, we proposed a novel framework to achieve this interoperabil-
ity with the use of and XML Agent on the card. The XML Agent which runs

316 Sayyaparaju Sunil, Deepak B. Phatak

as an engine on the card, transforms the incoming XML document to byte
stream and send it to the on-card applications. Similarly, it will prepare an
XML document encapsulating the response from the on-card application and
send it back to the calling off-card application. This model also provides a
powerful abstraction for the developers. It hides many details about the under-
lying architecture of the card and the terminal. Therefore the developers need
to have only a limited information about the on-card application, to develop an
off-card application.

The downside of the XML Agent is that it requires more processing power
on the card. As the resources and processing power of the cards are increasing
continuously, this may not be limitation for the cards in the future. XML Agent
is a desirable thing because its advantages outweigh the disadvantages.

9. Future Work
In this paper we have not explored security related concerns in depth. There

may be some security compromises as a result of our on-card data sharing
model. This is because the XML Agent is assumed to have the privilege of ac-
cessing any on-card applications directly. We will be exploring these security
concerns in our future work.

References
[Chen00]

[DCSF]

[JavaCard]

[MAPRM97]

[MDev00]

[MShell99]

[MULTOS]

[Ocfgim98]

[PullParser]

[SmartX00]

[Xavier99]

[XMLParsers]

Zhiqun Chen. (2000). Java Card Technology for Smart Cards: Architecture
and Programmer’s Guide. The Java Series. Addison Wesley.

Wangjammers. Dynamic Card Service Factory Website :
http://www.wangjammers.com/smartcards/dcsf.html

Java Card Technology Homepage : http://java.sun.com/products/javacard/

(1997). MULTOS Application Programmers Reference Manual v1.0. MUL-
TOS. MAOSCO Limited.

(1997). MULTOS Developers Guide v1.3. MULTOS. MAOSCO Limited.

(1999). Shell Applications, MULTOS Technical Bulletin MULTOS. MAOSCO
Limited.

MULTOS Homepage: http://www.multos.com

(1998). General Information Web Document. OpenCard Framework. Open-
Card Consortium.

Common API for XML Pull Parsing :
http://www.xmlpull.org/v1/doc/api/org/xmlpull/v1/package-summary.html

(2000). SmartX User Guide v1.2. Think Pulse.

Xavier Lorphelin. (1999). Internet and Smart Card Application Deployment.
JSource, USA.

A Survey of APIs and Techniques for Processing XML :
http://www.xml.com/pub/a/2003/07/09/xmlapis.html

