
SECURE NETWORK CARD
Implementation of a Standard Network Stack in a Smart Card

Michael Montgomery, Asad Ali, and Karen Lu
Axalto, 8311 North FM 620 Road, Austin, Texas, 78726, USA

Abstract: This paper covers the philosophy and techniques used for implementation of a
standard networking stack, including the hardware interface, PPP, TCP, IP,
SSL/TLS, HTTP, and applications within the resource constraints of a smart
card. This implementation enables a smart card to establish secure TCP/IP
connections using SSL/TLS protocols to any client or server on the Internet,
using only standard networking protocols, and requiring no host middleware to
be installed. A standard (unmodified) client or server anywhere on the
network can securely communicate directly with this card; as far as the remote
computer can tell, the smart card is just another computer on the Internet. No
smart card specific software is required on the host or any remote computer.

Key words: Internet; smart card; network; SSL; TLS; TCP/IP; PPP;resource constraints.

1. INTRODUCTION

Smart cards have been in use for more than two decades now, but they
have yet to achieve wide acceptance in mainstream computing. Smart card
advantages such as security, portability, wallet compatible form factor, and
tamper resistance make smart cards potentially useful for a wide variety of
applications. However, these applications are hindered because of the
mismatch between smart card communication standards and the
communication standards for mainstream computing and networking.

For years, efforts have been underway to connect smart cards to the
Internet. Early pioneers include the University of Michigan Webcard [1],
Bull iSimplify [2], Guthery’s GSM Web server [3], and the Gemplus
prototype [4]. This paper expands on the years of work in this area, detailing
some of the drawbacks of the approaches to date, and how many of these

194 Michael Montgomery, Asad Ali, and Karen Lu

drawbacks can be overcome by using a standard network stack. Finally,
techniques are presented for implementing a standard network stack within
the resource constraints of a smart card.

2. MOTIVATION

The current network smart cards have some key areas of weakness. By
analyzing these weaknesses, we can better understand how to achieve our
vision of widespread acceptance of smart cards into the network computing
mainstream.

2.1 Security

Security is the most important aspect of most smart card applications.
Much effort has gone into improving overall smart card tamper resistance
and defenses against specific attacks. APDU communication can be
protected by encryption. Challenge/response can verify trusted terminals.

Networking adds an extra security challenge [5]. There are currently two
primary techniques for establishing network security with smart cards.

One technique is to write remote applications that encrypt data within the
remote application as shown in Figure 1. The remote applications do not
depend upon the network layer for security, but use an encryption scheme
that is shared with the card applications. The drawback of this approach is
that smart cards can only interact securely with remote applications that have
been written or modified with smart cards in mind.

Figure 1. End-to-end security using card specific security protocols.

A second technique avoids this drawback, and allows the smart card to
interact with applications that are not smart card aware. With this technique,
the host computer establishes a secure network connection with the remote

Secure Network Card 195

application using standard SSL or TLS protocols, as illustrated in Figure 2.
When the remote application sends data, the network layer automatically
encrypts it before it is transmitted. The host then decrypts the data, packages
it in APDUs, and can encrypt the APDUs before sending to the card if
desired. The problem with this approach is that when the data in the host is
decrypted, it is vulnerable to interception within the host computer. Since
host computers are typically much more vulnerable to attack than smart
cards, this becomes the weak link in the security chain.

Figure 2. Bridging standard security layers in the host.

To avoid the problems associated with these two techniques, a first key
requirement for a secure network card is to implement the TCP/IP network
stack and SSL/TLS security layer inside the card, as shown in Figure 3. This
allows the card to establish end-to-end security with a remote application
that is not smart card aware, so that the communications are protected from
all computers along the communications path, including the host computer.
The security of the host is no longer an issue, allowing even an untrusted
kiosk computer to be potentially used safely as a host.

Figure 3. End-to-end security using SSL/TLS security within smart card.

196 Michael Montgomery, Asad Ali, and Karen Lu

2.2 Middleware

Thus far, all cards have required some middleware [5,6] to be installed on
the host computer to facilitate the connection of the cards to the Internet.
Typically, the middleware resides on the host computer, acting as a proxy
for the card for establishing network communication, handling the network
protocols, and repackaging the data to send APDUs to the smart card and
receive the card responses. Sometimes the middleware handles the security
layer as well, though this can lead to drawbacks as shown earlier. In
addition, remote applications for accessing a smart card were sometimes
built using a proxy/stub approach, requiring middleware on the remote
computer as well.

Requiring middleware has several negative consequences. Middleware
must be developed and tested for any platform to enable the use of the card.
Middleware for various platforms such as Windows 98, Windows 2000,
Windows NT, Windows XP, MacOS X, and Linux is expensive to develop
and test, and even more expensive to maintain. Often platforms are
excluded because of the high cost of middleware. Users dislike middleware;
this is often one of the greatest barriers to user acceptance of a product.
Users are now accustomed to plug-and-play operation, and reject products
that do not use standard drivers built into the operating system.

Therefore, a second key requirement for a secure network smart card is to
use standard interfaces and drivers that are built into most operating systems,
so that no middleware is required. This allows a network smart card to
freely move between computers, without having to install middleware every
time a new host computer is used. This potentially enables host computers
such as kiosks or corporate computers, where users may be forbidden to
install middleware.

3. ARCHITECTURE

An architecture was selected based on our two key requirements:
implement the TCP/IP network stack and SSL/TLS security layer inside the
card; and use standard interfaces and drivers that are built into most
operating systems, so that no middleware is required. This architecture is
shown in Figure 4.

Secure Network Card 197

Figure 4. Secure network card architecture.

The secure network card contains a USB or ISO 7816 physical layer, a
complete network stack consisting of PPP, TCP/IP, and SSL/TLS, and
various network applications. If a USB interface is used, then a USB
connector is used to connect to the host computer. If an ISO 7816 interface
is used, a specialized smart card reader is used to convert this to full duplex
serial or USB, and is connected to a serial or USB interface on the host
computer.

The host computer can be any platform that is configured to permit
network access from a serial or USB port. This includes most workstation,
desktop, and laptop platforms including Windows, MacOS X, Linux, and
Unix platforms, as well as some mobile palmtop and handset devices. In the
case of Windows platforms, configuration is a simple task requiring less than
10 seconds using the New Connection Wizard (a standard utility that comes
with all Windows operating systems) to specify a direct connection to
another computer. The host is unaware that the computer being connected is
a smart card; it treats the smart card as any other computer requesting a
connection. Middleware or other smart card specific software is not required
for any platform.

The host computer functions simply as a router to connect the smart card
to the network, where it may be accessed by various remote computers.
These remote computers are also unmodified, with no middleware or added
software. A remote client or server anywhere on the network can securely

198 Michael Montgomery, Asad Ali, and Karen Lu

communicate directly with this card using standard network applications; as
far as the remote computer can tell, the smart card is just another standard
computer on the Internet. No smart card specific applications are required.

4. HOST OPTIONS

The main issue with the host was how to get from a physical layer
compatible with a smart card to the TCP/IP layer. Once the TCP/IP layer
was reached, standard network services were available.

The host could potentially use any physical interface. In practice, a
physical interface using standard serial or USB protocols was needed, since
these are the interfaces currently available on smart cards and readers.

There are several possible ways to get from serial or USB physical
interfaces to the networking stack, while adhering to the requirement of no
middleware or smart card specific software. Here are some options that
were considered:

1.
2.
3.
4.

Serial PPP (Point-to-point protocol) RAS (Remote Access Server)
USB (Universal serial Bus) encapsulated Serial PPP RAS
USB RNDIS (Remote Network Device Interface Specification)
USB Ethernet over USB Ethernet drivers

Option 1 is standard for dial-up networking. Option 2 is the same as
option 1, except that it uses an encapsulation protocol to create a virtual
serial port. There are many drivers that support serial-over-USB
encapsulation1. Option 3 using RNDIS suffers from two major drawbacks:
there are no standard non-Windows implementations, and it has a heavy
device footprint. Option 4 would likely be ideal, but at this time, the
standard is still under development by the USB communications working
group.

Options 1 and 2 were used. This required no software for the host
computer. The computer need only be set up to accept an incoming
connection over the appropriate serial port, a very simple task for Windows,
Macintosh, Linux, and most other computing platforms.

1 The FTDI driver (www.ftdichip.com), which is built into Windows, is one of many drivers
that support serial encapsulation over USB.

Secure Network Card 199

5. PROTOCOL STACK: PPP, TCP/IP

The secure network card implements a TCP/IP protocol [7,8,9,10] stack
in order to be a standalone Internet node. Depending on the I/O
characteristics of the physical connection with the host device, the card may
have various link layer protocols.

As listed in section 4, Option 1, one approach to connect the card to the
Internet is to connect a smart card reader to the serial port of a PC with
Internet connectivity. All Windows platforms define a direct serial cable
connection as one of the modem types. RAS, which is a standard part of
Windows platforms, provides services that enable a dial-up device, in this
case the smart card, to connect to the Internet. RAS uses PPP [11,12] to
communicate with the dial-in device that acts as a client and initiates the PPP
negotiation. RAS can acquire an IP address on behalf of this client via
DHCP. After the PPP connection is established with the client, RAS merely
acts as a router between the Internet and the client. With this approach, the
smart card has its own IP address, and can act as an autonomous node on the
Internet.

With a standard full-duplex serial I/O, a device can connect to the serial
port (COM port) of a PC and establish connection with RAS to gain Internet
access without loading any additional software on the PC. Since RAS
speaks PPP, for a smart card to connect to PC via serial connection, the card
needs to implement PPP in addition to TCP/IP. However, smart card
communication standards (ISO 7816, or ISO 14443) specify half-duplex I/O,
while PPP presumes a full duplex channel. (Current USB smart cards are
also based on ISO 7816 APDUs and use a half-duplex logical protocol.)

To bridge the current gap between available half-duplex smart cards, and
the required full-duplex behavior for supporting PPP, a token passing
protocol was devised. This APDU-based protocol allows peer-to-peer I/O in
a logical full-duplex mode, where either the card or host can initiate I/O.

A smart card reader was developed which implemented this token
passing protocol with both serial and USB host interfaces. Thus, the
encapsulated PPP serial data was recovered from the APDUs and presented
to the host over a standard serial interface (option 1) or encapsulated over a
USB interface (option 2). Ideally, the USB interface should be built into the
card, so that neither the reader nor PPP nor APDUs are required (option 4).
Once the Ethernet over USB standard is established, this would become the
preferred standard to implement in a USB smart card.

200 Michael Montgomery, Asad Ali, and Karen Lu

6. PROTOCOL STACK OPTIMIZATIONS

Smart cards have limited RAM and non-volatile memory compared to
most computers running network stacks. Current cards may have up to 8K
bytes of RAM, and up to 512K bytes of non-volatile memory. To fit the
standard protocol stack of PPP and TCP/IP in the limited resources of a
smart card, the following optimizations were done. These optimizations
affect both the design and implementation of these protocols in a secure
network card.

6.1 Protocol Feature Subset

To conserve memory resources, only those features of PPP and TCP/IP
were implemented that are essential for making a smart card an independent
node on the Internet. These features are listed below:

The PPP layer supports dynamic IP addressing and AHDLC processing.
It has LCP and IPCP finite state machines for link/network layer
negotiation. However, it does not support all PPP options.

The IP layer processes basic IP datagrams, but currently does not support
fragmentation.

The TCP layer provides reliable transmission for multiple connections. It
supports PUSH and delayed ACK for interactive data flow, timeout,
round trip time (RTT) measurement, and retransmission time out (RTO)
computation using Jacobsen’s algorithm.

6.2 Buffer Management

Prudent buffer management is an integral part of the design and
implementation of standard protocol stacks like PPP and TCP/IP. Since I/O
buffers pose heavy RAM requirements, it is even more critical to have an
optimized design for resource-constrained devices like smart cards. Some of
the key techniques used in the secure network card to optimize use of the
limited RAM resources are listed below:

Chained Buffer: To allow flexibility in use of small as well as large
data, a chained-buffer mechanism is used to store and process data. Similar
mechanisms have been used in various BSD-style TCP/IP implementations
and some embedded developments [13,14,15]. The details of chained buffer
data structures vary from one approach to another, but the basic mechanisms

Secure Network Card 201

are similar. The design used in the secure network card is based on the
Packet Buffers (pbufs) defined in lwIP [14]. Figure 5 shows the chaining of
pbufs.

Figure 5. A pbuf chain with two pbufs.

The advantage of a chained buffer approach over fixed length buffer is
conservation of memory. With a fixed buffer, memory is wasted by upfront
allocation of the largest possible buffer. Most of this allocated memory lies
unused during normal processing. With a chained buffer, a new buffer is
allocated from a pool on an as-needed basis and then “chained” to existing
buffer(s) to give a logically contiguous data array.

In a secure network card, all upper layer protocol modules, including
PPP, IP, and TCP, share the pbuf chain allocated by the AHDLC module for
input processing. During PPP negotiation, the PPP module uses pbufs for
input and output. A pbuf is dynamically allocated from a pool of buffers; it
is released after the input packet is processed or the output packet is sent.

AHDLC Processing: To optimize AHDLC processing, a technique of
in-place handling of incoming frames is used. Escape characters in each
frame are handled without allocating a separate buffer. Similarly, data can
flow from the smart card hardware interface directly into application buffers
without any additional copy. Figure 6 shows a typical processing of an input
AHDLC frame containing a PPP LCP configuration request with no options.

Initial Input buffer

Input buffer after in-place AHDLC processing

Figure 6. Typical in-place processing of an AHDLC frame data.

202 Michael Montgomery, Asad Ali, and Karen Lu

Socket Interface: A traditional BSD socket interface has copy
semantics. This is because the application and the system usually reside in
different protection domains. Since data must be copied during a call across
such domains, a socket APIs effectively doubles the memory requirement
per packet. Several options have been proposed for zero-copy I/O
mechanism [16,17,18,19]. We follow a similar approach where the data
buffer, instead of the data itself, is transferred between the communication
layer and the application layer. This design has the advantage of reduced
memory usage and increased I/O performance.

7. SSL/TLS LAYER

Secure Sockets Layer (SSL) and its successor Transport Layer Security
(TLS) are the de facto standards for securing Internet web communication.
Implementing SSL in a smart card can improve the card to support end-to-
end network security with any unmodified client on the Internet. However,
current smart cards do not support SSL implementations. This is partly due
to the absence of an underlying reliable bi-directional transport layer, and
partly due to the heavy memory demands imposed by the SSL protocol stack
and the cryptographic computations that are required by the protocol.
Description of the SSL/TLS protocol stack is outside the scope of this paper.
SSL/TLS are open specifications and can be found in various books and
RFCs [20,21,22,23].

The secure network card overcomes these challenges by various
optimization techniques that reduce the RAM utilization of the SSL layer to
less than 1.5 Kbytes. These design optimizations can be broadly divided
into four categories.

7.1 SSL Feature Subset

Due to the limited resources of smart cards, the first challenge was to
select a minimal feature subset from the SSL/TLS protocol specification
without compromising either the specification or compatibility with existing
standard clients, the mainstream web browsers. Three browsers were
considered for gauging this compatibility: IE 6.0, Netscape 7.0, and Mozilla
1.5. A close examination of the SSL/TLS protocol and the selected browsers
[24] led to the following decisions regarding feature subset:

There was little value in mixing multiple protocol versions - SSL 2.0,
SSL 3.0, and TLS 1.0 - in the same implementation. Instead two separate

Secure Network Card 203

implementations were completed: one using TLS 1.0 that can be used for
all future work, and one using SSL 2.0 that can be used for extremely low
end devices without cryptographic accelerators.

Instead of supporting multiple cipher suites, the design focused on a
single one, TLS_RSA_WITH_DES_CBC_SHA that was available on all
mainstream browsers. It uses RSA for authentication and key exchange,
DES for encryption, and SHA-1 for digest. This design allowed a fast
streamlined implementation of a single cipher suite on the smart card
while still providing hooks to add additional cipher suites the in future.

7.2 Stack vs. Heap

To better manage the limited RAM resources, stack size and depth were
kept to a minimum. Instead, all memory required for maintaining TLS
context state and for performing cryptographic operations was allocated on
the heap. This was done by a customized heap management subsystem so
that buffers could be dynamically allocated and de-allocated as needed. The
TLS implementation requested buffers from this heap and then freed them
once the task was complete. The same RAM space could then be used for
other operations. Since the TLS state machine knew exactly when it was
safe to free a buffer, premature and accidental buffer release was not an
issue.

7.3 Buffer Reuse

As an additional optimization of dynamic heap management, an allocated
buffer is used in more than one context within the same allocation-release
cycle. This eliminates the overhead of releasing a buffer and then allocating
another one from the heap. The TLS implementation in the secure network
card carefully uses this technique. Some examples are listed below:

During the full-handshake phase of TLS negotiation [21], the pre-master
secret and master secret values are stored in a single common buffer.
Although both values are critical during the handshake, they are not used
concurrently.

While processing the Client-key-exchange message during the TLS
handshake, the value of the encrypted pre-master secret is not copied to a
separate buffer. Instead, it is kept in the same I/O buffer used for
processing all incoming TLS records.

204 Michael Montgomery, Asad Ali, and Karen Lu

When performing DES encryption and decryption, the same buffer is
used for input as well as output.

While the buffer reuse technique reduces the RAM footprint in most
cases, it is not viable in all scenarios. For example, during the TLS
handshake process a lot more information needs to be kept in memory than
the allocated RAM pool will allow. In these situations, we follow an
approach that is unique to smart card development. The unused data is
swapped to non- volatile memory (NVM), which is much more abundant in
the smart card. The RAM buffer is reassigned to hold some other data and
perform a different computation. Once this computation is complete, the
saved data is reloaded from NVM and the RAM context is restored to its
original state. One example of this approach occurs when performing RSA
decryption during TLS handshake.

7.4 Application Interface

Following the completion of the TLS handshake, the smart card has
established a set of session keys that can be used to encrypt and decrypt
application data. It can now begin to securely exchange data with an
unmodified client on the Internet. For a resource-constrained device, this
secure application data exchange presents a unique challenge. This is due to
the limited size of the receive buffer into which TLS records are written after
being read from an underlying socket layer. Figure 7 explains this
application level call to the TLS layer.

Figure 7. Reading a larger TLS record using a small TLS buffer

In a secure network card, the TLS receive buffer is set to 200 bytes.
However, browsers can send TLS records of much larger sizes. Even the
simplest of HTTP GET requests from a browser can be a single TLS record
of 500 bytes or more. Since symmetric encryption and MAC are applied

Secure Network Card 205

over the complete TLS record, the challenge is to use a 200-byte TLS
receive buffer to process TLS records of much larger sizes. This processing
involves decryption as well as verification of the MAC.

We solve this problem by using two distinct approaches, each with its
own advantages.

The first approach is a performance-critical approach. In this approach,
the TLS record is read in blocks of 200 bytes or less. As each block is read,
incoming data is decrypted, and the corresponding plain text data is passed
to the application layer. In addition, the MAC context and initialization
vector are also updated. When the final block of data in the TLS record is
read, we perform an additional step of verifying the MAC over the complete
TLS record. If this MAC fails, an error is flagged. With this approach, the
application layer gets data as soon as it is read, without having to pay the
penalty of larger RAM buffers. However, since MAC verification is not
possible until the entire TLS record has been processed, any errors in secure
transmission are not flagged until we read the entire record. In several
applications, this slight delay in receiving a MAC error is acceptable,
particularly if this behavior is requested to improve performance.

The second approach is the error-critical approach and is illustrated in
Figure 8. In this approach, an application can mandate that no application
level data be passed to it unless the MAC has been verified. To achieve this
behavior we successively read the TLS record, in chunks of 200 bytes, and
write it to NVM. Once the complete TLS record is read, we use the NVM
buffer to decrypt data and then verify the MAC. If the MAC succeeds, the
requested amount of data is passed to the application. On subsequent read
calls, the remaining data in NVM is passed directly to the application
without any need for decryption or MAC verification.

In this approach, the first application level read call is slow, but
subsequent calls for data in the same TLS record are much faster. Overall,
this provides a more secure application interface.

206 Michael Montgomery, Asad Ali, and Karen Lu

Figure 8. Error-critical design of reading TLS Record with limited I/O buffer.

8. PROTOTYPE AND APPLICATIONS

This project was originally implemented as a Windows simulation and an
ARM smart card simulation. SSL/TLS and several applications were
developed and simulated. For the prototype card, Samsung Jumbo was
chosen to avoid masking. This had the drawback of having no crypto
processor; establishing a TLS connection on the prototype took about 15
seconds. So SSL 2.0 with a shorter key length was implemented, to reduce
the connection time to less than 1 second. With either TLS or SSL, once the
connection was established, the performance was acceptable: pages would
load across the network without significant lag time.

Secure Network Card 207

Performance varied significantly between the various browsers tested:
Internet Explorer, Netscape, and Mozilla. Mozilla offered the best overall
performance. After a production card is completed, detailed performance
benchmarks will be run and published.

Applications loaded in the prototype cards included a web server/agent,
Telnet server, and a mini-shell. Many services were loaded into the card that
were accessible via HTTP, including a secure stock trading service, a secure
email/encryption service, a secure e-commerce service, and a secure ticket
service. Total NVM footprint was 76K Code and 34K Data. This left 412K
available for other applications and services to be loaded. The RAM
footprint was carefully optimized to just under the 6K available. These
applications/services were demonstrated at Cartes 2003 and CT/ST 2004.

The smart card SSL/TLS library provides a simple application level
interface that can be used by on-card applications to establish secure end-to-
end network connections with any remote unmodified clients on the Internet.
New application frameworks such as .NET, SOAP, and RMI can be easily
added to enrich the application versatility.

The secure web server implemented in the prototype card can serve both
static and dynamic HTML content. Static content is supported by reading
the requested file from the card file system. Dynamic content is supported
by invoking the requested application through a CGI interface and
redirecting the results to the browser. The mini-shell is accessible through
Telnet or HTTP, providing a very powerful way of interacting with the card.

9. CONCLUSIONS

The technology presented in this paper enables smart cards to participate
as first-class citizens on the Internet within the established infrastructure,
with no host or remote application changes required to accommodate smart
cards. With this technology, smart cards are like any other computer on the
Internet, while providing portability, enhanced security, and tamper
resistance. Internet applications or services can be migrated to a smart card,
increasing the security of critical information such as certificates, private
keys, and passwords, while maintaining compatibility with existing clients.
With smart card deployment unshackled from the infrastructure, the barrier
to entry for smart cards in mainstream applications is removed. We foresee
this technology triggering an unprecedented growth in deployment of smart
card applications for the Internet.

208 Michael Montgomery, Asad Ali, and Karen Lu

REFERENCES

1.

2.

3.

4.

5.

6.

7.
8.
9.
10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Rees, J., and Honeyman, P. “Webcard: a Java Card web server,” Proc. IFIP
CARDIS 2000, Bristol, UK, September 2000.
Urien, P. “Internet Card, a smart card as a true Internet node,” Computer
Communication, volume 23, issue 17, October 2000.
Guthery, S., Kehr, R., and Posegga, J. “How to turn a GSM SIM into a web server,”
Proc. IFIP CARDIS 2000, Bristol, UK, September 2000.
Muller, C. and Deschamps, E. “Smart cards as first-class network citizens,” 4th
Gemplus Developer Conference, Singapore, November 2002.
Itoi, N., Fukuzawa, T., and Honeyman, P. “Secure Internet Smartcards,” Proc. Java
on Smart Cards: Programming and Security, Cannes, France, September 2000.
Urien, P. “Internet smartcard benefits for Internet security issues,” Campus-Wide
Information Systems, Volume 20, Number 3, 2003, pp. 105-114.
Postel, J. “Internet Protocol,” RFC 791, September 1981.
Postel, J. “Transmission Control Protocol,” RFC 793, September 1981.
Socolofsky, T. “A TCP/IP Tutorial,” RFC 1180, January 1991.
Almquist, P. “Type of Service in the Internet Protocol Suite,” RFC 1349, July 1992.
Simpson, W. “The Point-to-Point” Protocol (PPP),” RFC 1661, July 1994.
Carlson, J. “PPP Design, Implementation, and Debugging,” second edition,
Addison-Wesley, 2000.
Wright, G.R. and Stevens, W.R. “TCP/IP Illustrated, Volume 2,” Addison-Wesley
professional Computing Series, 1995.
Dunkels, A. “IwIP – A Lightweight TCP/IP Stack.” More details are available at
http://www.sics.se/~adam/lwip/.
Lancaster, G., et al. uC/IP (pronounced as meu-kip) is an open source project to
develop TCP/IP protocol stack for microcontroller. It is based on BSD code. For
details, see http://ucip.sourceforge.net/.
Chihaia, I. “Message Passing for Gigabite/s Networks with Zero-Copy under
Linux,” Diploma Thesis Summer 1999, ETH Zurich.
Pai, V.S. and Druschel, P. and Zwaenepoel, W. “IO-Lite: A Unified I/O Buffering
and Caching System,” Rice University.
Thadani, M. N. and Khalidi, Y.A. “An Efficient Zero-Copy I/O Framework for
Unix,” SMLI TR-95-39.
Abbott, M., and Peterson, L. “Increasing network throughput by integrating
protocol layers,” IEEE/ACM Transactions on Networking, 1(5):600-610, October
1993.
Freier, Alan O., et al. “The SSL Protocol, Version 3.0,” Internet Draft, November
18, 1996. Also see the following Netscape URL: http://wp.netscape.com/eng/ssl3/.
Dierks, T., Allen, C., “The TLS Protocol, Version 1.0,” IETF Network Working
Group. RFC 2246. See http://www.ietf.org/rfc/rfc2246.txt .
Elgamal, et al. August 12, 1997, “Secure socket layer application program apparatus
and method.” United States Patent 5,657,390.
Rescorla, E., SSL and TLS, “Designing and Building Secure Systems,” 2001
Addison-Wesley. ISBN 0-201-61598-3.
Goldberg, I., and Wagner D., “Randomness and the Netscape Browser,” Dr. Dobbs
Journal, January 1996.

