
CONTRASTING MALIClOUS APPLETS
BY MODIFYING THE JAVA VIRTUAL
MACHINE

Vincenzo Ciaschini 1 and Rob erto Corrieri''

lINFN CNAF
Viale Berti Piehai 6/ 2, 40127 Bologna, Italy

vincenzo.ciaschini@cnaf.infn.it

2 Dipartimento di Scienze dell'InJormazione
Mura A . Zamboni 7, 40127 Bologna, Italy

gorrieri@cs.unibo.it

Abstract J ava is th e most popular lan guage for web programming. However it
suffers from some well-known denial-of-servi ce at tacks (e.g., obscuring
th e screen) du e to th e execut ion of malicious cod e th at uses resources in
an improper way. In thi s pap er we present a new approach to alleviate
th ese problems by patching the Java Virtual Machine, in ord er to force
th e needed checks on resources usag e bounds dir ectly at the level of th e
source cod e.

Keywords: Deni al of Servic e, Mobility

1. INTRODUCTION

The J ava[2] language, developed by Sun Microsystems, is nowadays
an accepted standard in Web programming. Many applications are de­
veloped using it , and there are even more Java applets included in web
pages from millions of sites. This is certainly due to its many desir­
able features like code mobility (supported by machine independancy at
the bytecode level) , simplicity of programming (due to similarities with
C and C++) , efficient execution, use of a virtual machine , and so on .
Last but not least, Java is certainly a language for secure Web program­
ming. As a matter of fact , Sun addressed from the very beginning and
with great care th e problem of stopping all potential system-breaking
attacks due to code mobility, and it did so by adopting the sandbox
[9, 4] approach. It consists of enclosing the applet in an isolated space

Y. Deswarte et al. (eds.), Security and Protection in Information Processing Systems
© IFIP International Federation for Information Processing 2004

48

from which it cannot escape unless the user gave it some special permis­
sions. In t his way, many limi ts are imposed on it and, assuming there is
no bug in the implementation of t he sandbox, most system attacks are
effectively made impossible.

Unfortunately, Java st ill suffers from some secur ity problems. Of
course , not everything can be prohibited if we wan t to have a useful
system, and this leaves the way open for downloaded malicious applets
to start attacks more subtle bu t no less impor tan t , such as denial-of­
service, ant agonism and invasion of pri vacy. It is worth noting that
t hese kinds of at tack are simple to implement, generally ranging from
10 to 30 lines of code, and with no conceptual complexity in them, thus
becoming a tempting instrument for malicious users.

In the next section, we survey the many approaches that have ap­
peared in the recent literature to cont ras t malicious applets. This survey
will end with the motivations for our cur rent proposal , i.e., a monitor,
called Limiter and implemented as a patch [1] for the J ava Virtual Ma­
chine (JVM , for short) [4] , that performs many checks on the Java source
code before actually execut ing it. Section 3 describes Limiter ; in part ic­
ular, the general criteria that have guided its definition and the many
different sour ces of attack that have been cont rasted . Section 4 reports
about the effectiveness of the approach and discusses performance is­
sues . Finally, some remarks on possible improvements for future work
conclude the pap er.

2. ATTACKS AND DEFENSES

It is widely accepted (see, e.g ., [6]) that there are four major categories
of attacks:

1 Attack applets. T hey try to modify the system (e.g., t he local
filesyst em) to allow, or at least facilitate, a successive intrusion.
This kind of applet is t he most dangerous one, as the whole system
can be compromised and possibly destroyed . Sun has focused its
effor ts mainly on this d ass, and so the available defenses are strong.

2 Privacy Inva sion. T here are applets that t ry to gather informa­
t ion from the user or to impersonate hirn (for example by sending
e-mails in his place). Some attacks in this dass are eas ily imple­
mentable. The consequences of these at tacks are usually moderate,
but occasionally they may be very nasty (e.g ., password cracking
attack); the countermeasures Java offers in this respect are usually
sufficient .

Contrasting Malicious Appletsby Modifying the Java VirtualMachine 49

3 Denial of Service. These are applets that try to deny the legitimate
user to access some services or resources that he could normally
obtain from his local machine. For instance, allocating all of a
system's memory, obscuring the screen, locking the keyboard and
mouse, deny access to the internet, and so on. Implementing such
attacks is usually not difficult, but contrasting them is hard and
Java does not offer adequate countermeasures.

4 Antagonism. There are applets that antagonize or annoy the user
in some way. Three examples are: continuously playing asound,
bringing up popup windows at unwanted moments, or even work­
ing in background to do something without the awareness of the
user. At first sight, this last example of antagonism does not seem
hostile at all : such an applet does not disturb the user or critically
consume machine's resources, so that the user does not realize to
be under attack; indeed, it is difficult to detect such applets.

Sun actively researched to stop only the first two classes of attacks,
and with very good results. It is also important to cope with the other
classes, because of the costs due to repair time and time offline. However,
it must be said that the reason why Sun has not coped with the latter is
that those classes of problems are not Java-specific, but on the contrary
are common to all network applications.

While the problems presented by the latter two classes may seem
trivial if they manifest themselves on a normal user workstation (a sys­
tem reboot is gene rally enough to take care of them), they become of
much greater gravity if the machine attacked is a server, because in this
case areboot may cause much greater problems: loss of data, network
downtime, and so on. For more details on hostile applets, see[5-7].

2.1 Defensive Approaches

Many solutions have been proposed to deal with the problem, and
here is a short review of the most representative ones.

1 Disable Java. There is no doubt that disabling Java would solve
all these problems. However, it is a much too drastic decision. As
a matter of fact , this way would also lock yourself out of all the
advantages that the Java language has, such has a high portabil­
ity of compiled code, and it can easily be said to do more harm
than good. However, it should be noted these problems have in
the past even pushed CERT to recommend disabling Java. An
implementation of this solution, namely blocking Java directly at
the firewall, has been tested in [10] .

50

2 Code Signing. This is the solution implemented by the Java devel­
opers from Sun. Signing a piece ofbytecode certifies its author, and
on the base of this knowledge, extra rights and possibilities (like
read or write access to the file system) may be given or denied to
the bytecode itself. The problem with code signing is that it gives
absolutely no guarantees on the behaviour of the signed code. It
only offers a way to trace the code back to its author. Even this
is not certain. In fact, if you need to sign some code, you need
a certificate. There are essentially two ways to obtain one: you
can make one yourself, or you can request one to a certification
authority. In the first case it can be easily falsified, thus removing
all the (limited) usefulness of code signing, while in the second case
you have to pay a hefty sum, thus putting it out of reach for the
non-profit programmers. Also there are certainly ways to fool the
company by impersonating someone else. And there is always the
possibility that the user 's browser will not recognize your signature
anyway.

3 Code Inspecting. This approach consists of examining the byte­
code of every Java dass before it is run, looking for suspicious
contracts, and then deciding whether to allow execution or not.
An example of this approach is Finjan's SurfinGate program [11]'
which attempts to discriminate code when it reaches the machine.
The problem with this technique is that it permits only to screen
for known attacks, and is generally useless against techniques like
code obfuscation. Also, many successful attack techniques are very
difficult to distinguish from normal code. For example, there are
known attacks that consist simply of a sequence of type casting
operations.

4 Language Modification. Many problems stern directly from some of
the capabilities of the language, so it would seem natural to simply
modify Java to remove or modify such capabilities. Examples of
this are given in [6J. However, it is not a simple task. What is
really executed is not the Java language, but its compiled version,
called bytecode. The association between Java and bytecode is not
particularly strong. For example it is possible to compile C code
into bytecode. As a consequence, simply modifying Java would net
you nothing, because the bytecode can be generated in many other
ways. On the other hand, modifying the bytecode (for example by
replacing it with abstract syntax trees, as proposed in [6J can be
a much more rewarding task, but the price would be to remove
compatibility with all the previous versions. Not a good thing

Contrasting Malicious Appletsby Modifying the Java VirtnalMachine 51

for a language that makes compatibility one of his most alluring
features.

5 Codebase filtering. This strategy consists essentially of filtering
out applets basing such adecision on the applet's codebase, and
has been proposed and implemented in Princeton's JavaFilter[14].
The obvious problem is that it is rather easy to fool the controlling
software into believing that the applet has a different origin than
the realone.

6 Sacrificial machine. The basic idea of this approach is to setup a
sacrificial machine with only minimum connections to the rest of
the net, and execute all Java code on it [13] . While this approach
can certainly be used to put a limit on the damage a malicious
applet can wreak, it also foregoes the ability to use the Java lan­
guage for distributed computing, and it feels like a step back. An
implementation of this approach has been presented by Digitivity
(now part of Citrix) [12].

7 Monitors. Finally, this approach consists of monitoring the applet
behaviour to intcrcept and then to prohibit dangerous actions, ob­
taining the ability to stop even previously unknown attacks simply
based on their effects. They can be implemented at various levels:

user level - At this level the monitor is nothing but another ap­
plet, obviously running outside of the sandbox, that runs all
of the checks. The problem with this approach is that the
applet can be interfered with by another misbehaving applet,
and so you cannot even be sure that it is running. On the
other hand, this approach is simple to implement and can
work everywhere without any modification to existing sys­
tems. An example of this approach is [8] .

browser level - At this level it is the browser itself that runs
all the checks. The problem with this approach is that of
a lack of uniformity, because every browser is independent
of each other, and so this monitor should be reimplemented
from scratch every time.

system level - At this level it is the JVM itself that runs the
checks when the applet is running. An obvious advantage of
this choice is that it is not possible to avoid the checks .

An obvious drawback to all these three approaches is that the
added checks increase the execution time of each and every applet,
whether they are malicious or not.

52

Other problems are shared by all these seven approaches. For exarn­
pIe, it is possible to write applets capable of resurrecting themselves in
case of death, or that simply refuse to die, and none of them can put a
stop to it. We will approach again this issue in the conc1usions.

2.2 Our Approach

The approach proposed in this paper is that of a patch to the JVM
implementing a system-level monitor. The reason that led to this partic­
ular strategy is that by modifying the source code of the virtual machine,
many weaknesses of all other defensive approaches can be circumvented.

For example, all the problems mentioned above can now be simply
prevented by way of a few additional checks in the JVM, and the fact
that they are implemented directly in the JVM itself serves to lessen
their impact on performance.

There are other obvious advantages of this approach:

• It becomes impossible for applets to avoid the new checks the mon­
itor implements, since they are done by the JVM on all running
applets regardless of other factors, and this is a dramatic improve­
ment on systems like [8], where the monitoring is done by an applet
that can be shutdown or interfered with by other applets.

• This approach does not involve itself with an analysis of the code
that it does execute, but instead simply takes step to limit or make
impossible dangerous behaviour, with the result of catching also
attacks that were unknown by the authors of the code.

• Finally, by directly modifying the JVM we sidestep the need to
create patches for all existent browsers, since most of them allow
the user to choose a specific JVM by using a plug-in system, like
for example Mozilla does.

In light of all these factors, in the rest of this paper we describe the
monitor, called Limiter, that we implemented.

3. THE MONITOR IMPLEMENTED IN THE
JVM

3.1 General Criteria

Limiter was programmed with a few basic rules in mind:

1 No changes to the dass library.

This rule (and partly the following one) is a direct consequence
of the license under which the JVM source code is released. In

Contmsting Malicious Appletsby Modifying the Java VirtualMachine 53

fact, this license proh ibits all changes to standard dass library.
Furthermore, t he modified J VM, as configure d out-of-the-box must
be indistinguishable from the standard one .

2 Conseruative extensions

It sho uld be possible to configure the new VM in such a way that
no difference can be found between it and t he standard one. As t he
previous one, this rul e is a consequence of the JVM source license.

3 Changes to the semantic of the language should be limited to the
minimum necessary.

T his rule is a consequence of the need to keep compatibility as
high as possible between t he modified version of t he JVM and t he
origina l one, to keep t he existence of the monitor as t ransparent
as possible to all exist ing (non malicious) applets, and to avoid
breaking t hem unless absolutely necessary.

4 Easily identifiable modifications

Every change to t he or iginal source code should be dearly high­
lighted as such in t he source itself. T his last rule is here as a way
to dist inguish original code from the new one, and is also required
from t he J VM source code license.

T hese rules are evidently straight -fotward and are derived primarily
from t he J VM source license. Of part icular interest are ru les 2 and 3.
They together mean t hat, while it was necessar y to slightly alter t he
semantics of t he language to implement checks on some ope rations, if
t hose checks are disabled t he semantics of the operations rever t to t he
original ones. As a special note, those cha nges cons ist of adding t he
possibility of failure to operations that could not normally do so. T his
means that exist ing applets execute in exactly t he same way in both t he
t he original and modified virtual machines, except for the case in which
the operations they attempt are going against t he limits imposed by the
user of t he modified VM, and are in thi s case stopped . Ex actly what
should happen.

A few general observation are valid for all the cha nges that have been
done to the system:

1 Applets are c1assified respectin g to t heir codebase (i.e. t he location
from which t hey have been downloaded) and not t heir actual code
(or hash function). T his because this second choice is too st rong.
It can eas ily distingu ish ap plets when t here is no real reason to do
so; for example, the presence of an addit ional unused variable is
reason eno ugh to distinguish t hem .

54

2 Also, no distinction is made among applets with the same code­
base. This has been done because there is no use in putting re­
strictions on an applet when those same restrictions can easily be
circumvented by having two or more instances of the same applet
work together. For example, if a limit of 2M is put on memory us­
age per applet, to use 20M it would be sufficient to use 10 different
instances of the same applet and having them work together.

3.2 Which problems does Limiter Contrast?

Here is a list, categorized by type and gravity, of the areas that have
shown troublesome and that were checked in some way.

• Denial of Service, grave. This category includes those denial
of service attacks that can potentially crash the system.

- Thread Explosion It is possible for an applet to create an
enormous number of threads, filling the process table and
crashing the system. This happens because Java threads re­
lies on the system ones in many implementations, most no­
tably the one considered here.

The solution chosen was to put a limit on number of threads
in execution at the same time for each applet. In case an
applet attempts to create more threads than it is allowed to,
the operation fails as if for lack of memory, since this was the
only case in which this operation could originally fail.

- Frame Explosion Also, an applet can create a great number
of frames in a very short time, thus overloading the event
manager and effectively locking the user out of the keyboard
and the mouse.

There is also a limit on the maximum number of frames
opened. In case an applet tries to created a bigger num­
ber of frames than it is allowed to , the operation fails with
a NullPointerException, the only way the function could
normally fail. It is to be noted that this limit applies not to a
single applet (like all the others) , but to all the applets at the
same time, e.g. it is a limit on the total number of frames.
This because:

1 It is very difficult to deduce from a frame which applet
is trying to create it, and

2 The cause of problems is the number of frames opened,
it does not matter what applet opened them.

Contrasting Malicious Appletsby Modifying the Java ViriualMachine 55

- Memory Exhaustion An applet can also make unlimited
use of available memory, possibly filling it and crashing the
system.

There is now a limit on the total amount of memory that a
single applet can use. It is said total memory, because the
limit applies to the whole amount of memory that an applet
uses during its lifetime, whether it has been released it or not.
This is because aside from calling System. gc () (a thing rarely
done by an applet) there is no way for the applet to effectively
release memory, or even to know that some memory has been
released. In case memory is refused, the exception handling
is the same that would occur if the requested memory were
truly unavailable.

• Denial of Service, Weak. This category includes those denial
of service attacks that are not strong enough to crash the whole
system.

Priority J uggling As an applet can modify its own prior­
ity level without any limit, this means that the applet can
be put it to MAX_PRIORITY, with the result that all other ap­
plets, that run at normal priority, are effectively almost never
executed, bringing about an unacceptable degradation of the
system.

The solution chosen was to put a limit, configurable by the
user, on the maximum priority of the threads of an applet,
preventing it from stealing CPU cycles from other applets. In
case an applet attempts to set a higher priority than it is al­
lowed to , then the priority is silently lowered to the maximum
acceptable value.

Frame Resizing An applet can create frames of unlimited
size. This could be abused by creating a frame larger than the
screen, and positioning it in such a way to completely cover
it , making impossible for the user to see what is happening
under it. It should be noted that this fact can also be abused
by moving it in such a way that the borders (and the notice
that it was really an applet who created it) are off-screen, and
this would lead to the possibility of having an applet frame
masquerading itself as a system frame, a typical invasion of
privacy attack.

A limit has been put on the maximum size of a frame. In case
an applet attempts to create a bigger frame than it is allowed

56

to or to resize it beyond acceptable values, the offending di­
mension is silently lowered to maximum acceptable value. It
is to be noted that this limit is in effect only if the applet itself
is trying to break it . The user can enlarge a frame without
any limit.

- Thread Brokering At last, it is possible for a thread to
interfere with the execution of other threads, modifying their
priority, calling suspend 0 or resume 0, etc.. .

As a consequence, now an applet can only execute these op­
erations on its own threads. Trying to call these functions on
threads belonging to another applet has no results.

• Antagonism. This category inc1udes all those attacks that are
meant to simply annoy the user .

- Juke-box The ability to play sounds can be misused. In
fact it is sufficient to continuously play an annoying sound to
create problems to users.

The solution chosen, configurable by the user, was to pro­
hibit an applet from using sounds. This is done by fooling
the system into believing that the sound device is perpetu­
ally occupied. This does have the unfortunate side effect of
forbidding the use of sounds for the whole applet.

• Invasion of Privacy. This category includes those attacks that
are meant to gather information from auser, or to masquerade as
one, or to have hirn working from oneself.

- Mai! Forging. A dangerous characteristic of applets is that
they can make internet connections. It is true that these
connections can only be made to the originating host , but
this is not sufficient to prevent attacks likemail forging, and
is also a necessary part of work-for-me attacks.

As a consequence, it is now possible to prevent alt socket
access for an applet, except for the accesses made by a c1ass­
loader. This makes impossiblemail forging attacks and pre­
vents work-for-me applets from returning the computed re­
sults. In case access is refused, the JVM is fooled into think­
ing that the socket 0 call returned an EACCES error, and the
situation is treated accordingly to the already present code.
The exception to this ban is necessary because an applet must
in any case be allowed to completely load itself.

Contmsting Malicious Appletsby Modifying the Java Virtual/Machine 57

• Miscellaneous. This category include all those problems that,
while not usually attacks by themselves, are commonly used as
tools, aids or building blocks in creating them.

- Class loading While applets cannot normally load external
libraries, this ability is present in the JVM. Since external
libraries cannot obviously be subjected to any check from
the JVM, and the only thing that prevents an applet from
using them is the security manager (that has been notoriously
subject to bugs and attacks) this is an extremely dangerous
features.
The chosen solution chosen was to make it possible to prevent
the loading of external libraries. In theory, this is the default
behaviour and is enforced by the security manager, however in
practice the security manager has often been circumvented,
and this is the reason of the ban. In case the permission
to load a library is refused, it acts as if it was not found .
However , it is necessary for some libraries to be loaded for
Java to work properly, and so libraries from the system paths
can always be loaded regardless of this setting.

- Immortal Applets, Part 1. One of the most consistently
misused features of the Java Virtual Machine is the ability
to catch the ThreadDeath exceptions. Because this is the
exception raised when an applet is about to be terminated,
catching it means preventing the death of the applet itself.
Immortal applets are thus reborn.
To prevent this, it is now possible to prohibit the catching
of ThreadDeath. If the permission to catch this exception
is refused, the system simply does not scan the dass to look
for catch or finally clauses, simply ignoring them. It is to
be noted that system classes sometimes need to catch this
exception, and so this check does not apply if the catching
dass is a system one.

- Immortal Applets, Part 2. A similar problem can be
presented by putting appropriate code in the f inalize 0
method of the dass. Since this method is called by the fi­
nalizer after the thread has been stopped but before memory
is released, it could be used to resurrect a new thread at a
certain moment after its end, when the user has already for­
gotten it.
To solve this problem the finalizer thread, responsible of the
resurrecting applets, has been subjected to the same limits

58

as the applets, and it can so be configured to prevent the
creation of new threads or the use of many resources, just as
for applets, effectively putting an end to resurrecting applets.

It should be noted that we have been as conservative as possible:
whenever an operation exceeds one of the configured limits, it is made
to fail according to one of the already handled possibilities. For instance,
when an applet tries to allocate memory above the configured limit, the
operation fails as if there was an out of memory situation. Hence the
"programmed" failures of Limiter occur in such a way that the class
libraries are already prepared to handle. This has been done to limit
the changes on the semantics of the JVM itself.

3.3 The Structure of the Original JVM

The version of the JVM we have modified is 1.2.2 for Linux. The
source code itself is divided into three subdirectories, sre/, ext/ and
build/. build/ contains the makefiles and all the other files neces­
sary to build the code, ext/ contains the source for extensions like the
support for internationalization; the actual source is inside the sre/ di­
rectory. This directory is also divided into two subdirectories, share/
and linux/. The former includes all machine-independent code , while
the latter has all linux-specific code. In fact, every component of the
JVM is divided into two parts. The portable one into the share/ di­
rectory and its subdirectories, the non portable one into linux/ and its
subdirectories. This also means that the two directories have (roughly)
the same subdirectory structure.

The source of the JVM itself is written in C, C++ and Java. Java
is used primarily in the system class library, while the JVM itself is
divided into many subsystems (audio, graphics, threads, core, etc. ..)
programmed in C and C++. Each one of these subsytems has its own
subdirectory, either in the directory itself or in native/. The core of
the JVM itself is included in the j avavm/ subdirectory. It is further
divided into export/, inelude/ and runtime/. export/ includes the
files available to all the JVM, inelude/ includes files available only
to this particular subsystern, and runtime/ contains the source code
itself. In these three directories we have placed the bulk of the modified
(and all the newly added) files. A few other files have been modified
intothesre/share/native/sun/audio/, sre/share/native/sun/awt,
sre/linux/hpi/green_threads/sre, sre/linux/hpi/native_threads
/sre and a few other subdirectories.

Contrasting Malicious Appletsby Modify ing the Java ViriualMachine 59

3.4 Implementation

Let us see, in short detail , exact ly how Limiter has been implemented.
The first thing needed is a structure eapable of holding the limits for a

specifie applet and t he resourees eur rently in use. This is the duty of the
following structure, taken from src/share/j avavm/ include/limiter. h.
struct Appl etlnfo
{

long int memLim it ;
long int memCurr ;

long int th rL imit ;
long int th r Curr ;

long int p r iLim i t ;

long int frmX , frmY;

long int Fl a gs ;

/ * A s i ng le Appl etln fo s t r uc t u re can be r efer en c ed in more than
* on e plac e . Th is fi eld t a ke s acco u nt of the var io u s
* re fere nces.
*/

volatile int us e s ;

int code;

/* Thread sp e cifi c info s t arts her e . . . */
int * ig nore rne m ;
int - memused ;

} ;

The meaning of it s fields should be easy to understand, with the
possible exeept ion of the fields Flags, and the last three. The first
one is in effeet a flip-fiep set for limits that do not have an associated
par ameter , but are in effeet a simple ori/off decision, while the last three
are used for internal safe-keeping and are not really relevant now.

This st rue ture is normally memorized into an hash table in pairs
(thread , strueture) . The algorithms used are defined into
src/share/javavm/runtime/hash. c, and are pretty standard ones. The
only thing that should be noted for further referenee is that the aeeess
function is called FindHashO and its parameter is the thread of which
we want to find the respective structure.

This structure can be accessed concurrently by many threads, and
so a way is needed to assure its consistency. This is done by defining a
monitor and requiring the code to ente r it before accessing the structure.
This is its implementation.

From src/share/j avavm/include/limiter .h:
extern s y s i m o n c t * _a Ll o ck ;
#<lefine AL LOC K_INIT () monitor R e g is t er (_ a L l oc k , " A p p le t l n fo c lo c k ? } :

60

#defi ne ALLOCK(s elf) sysMonitorEnter (s elf , _a L l o c k)
#define ALLOCKED(s e i f) sysMonitorEnt ered (se I f , _aLlock)
#define ALUNLOCK(s elf) sysMonitorExit(se lf , _aL lock)

andfrom src/share/javavm/runtime/interpreter .c:
/* CV */

_aL lock=(sys _mon_t *) sysMalloc (sys Mon itorSizeo f ()) j

if (_aL loc k = = NULL) return FALSE;
ALLOCK_IN IT () j

/* CV */
T he 1* CV *1 comments are used to delimit t he changes we have

made in the original code.
These two fragments, together, define and initialize a monitor whose

job is to regulate access to the App letI nfo structures, and to do so use
the standard JVM mechani sm.

T hen, a part icular set of files is modified for each check we added
to the JVM. For example, t he checks to prohibit an applet to inter­
fere with the execution of another are implemented by modifying the
JVM_SuspendThread() , JVM_ResumeThread() , JVM_SetThreadPriorit
yO and JVM_StopThreadO functions in src/share/javavm/runtimel
jvm. c by having them call a new limallowthreadO funct ion in the
new file Isrc/share/javavm/runtime/limutil. c. For more details,
look directly in [1].

Let us now see t he JVM_SuspendThread () funct ion, t he one called to
cause a thread to be suspended.
JNIEXPORT void J NICALL
JVM _SuspendThread(JNIEnv - e nv , jobject t his)
{

Hj a v a i.la n g , T hre ad * p = (Hj a v a c la n g , Thread *) DeRef (e nv , t h is) ;

/* cv */
struct C tassj av a cl a n g , Thread * tid ;
Ex ecEnv * ee ;

t i d = TIffiEAD(p) ;

ee = (ExecEnv *) 112ptr(t id-> eetop) ;
i f (lima llowthread (NULL , ee)) {

/* CV */
if (I L nez(THREAD(p)->eetop)) {

(v o id) t hreadS uspend(p) ;
}

/* cv */
}

/* cv */
}

As you can see, the modified function determines the thread that we
want to interfere wit h , and then calls t he limallowthread 0 funct ion
(detailed below) to see if t he cur rent thread (NULL) has permission to
interfere with the ee thread. In case the permission is not granted,
execut ion cont inues as if it had been granted, but nothing really occurs .

Contrasting Malicious Appletsby Modify ing the Java VirtualMachine 61

This is done in resp ect to the principles st ated in subsection 3.1 to limit
incom patibilit ies.

Similar changes are done to the three functions JVM_ResumeThread 0 ,
JVM_SetThreadPriority() , JVM_StopThread().

Now, from src/share/javavm/runtime/limutil . c, a file which con­
tains all functions directly regarding the new security checks, here is
limallowthread() .
/ *
* This f'u n c t i o n i s ca l le d to v er ify th at th r ead ' t h i s ' is
* a l lo we d t o mess with th r e ad ' th r e ad '. If ' this ' is NULL ,
* i t i s i n te n de d to re p resent t he c u r r e n t t h read .

** r etu rn v al lies are a s us u a l .
*/

int l im allow thr e a d (ExecE nv * th i s , Exec Env * t h read)
{

struct Appl etlnfo * ai t his , * a it hread ;
int res = 0 ;

if (! t h is) thi s = Sy sThread 2EE(sys T h read Se lf ();

if (t h is == thread) return 1 ;

AI-LOC K (sysT h read Se l f (» ;
ai t his = Fi nd Hash (t h is) ;
ait hread = Fi nd Has h (t hread);

if « ai t his == a it hread) 11 (aithi s = = NULL) 11
(a ith is-> Fl a gs & F..ALWW_11IREAD»

r e s = 1 ;
ALUNLOCK(sysT h readSe lf (» ;

r eturn r e s ;
}

As can be seen, this function first det ermines which thread is calling
it . This is done by looking at the this parameter , and in the case it is
NULL, it is t aken to mean the cur rent thread.

Then , if the two threads (the one determined above and the one on
which to work) are the same, permission is always granted.

Otherwise, inside a block of code protected by the monitor, the al­
gorithm discovers th e applets to which the threads belong , and if it
discovers that the two belong to the same applet or that one belongs to
a system thread, then permission is granted, otherwise the calling applet
is first checked for th e permission to interfere with other applets.

3.5 Configuration

A JVM can be configured to apply the changes shown above to applet
with the use oftwo configuration files: /etc/applist and $HOME/applis
t . The first one, /etc/applist , contains set t ings that are system-wide

62

and apply to all users, whether they wish to makc usc of the new features
or not , while $HOME/applist is a user speci fic one and can be used to
modify the system-wide sett ings . Please do note, however , that the user
set t ings cannot relax the system-wide ones, but can only made them
even more st ringent.

A useful feature of this files is that it is not nccessary to speci fy the
complete codebase of an applet, but it is possible to specify just part
of the path or even of the hostnam e, thus permit ting to specify settings
that could be applied to whole sites and not just single pages.

4. EFFECTIVENESS AND PERFORMANCE

The proposed approach has shown that, if prop erly configured, our
approach can stop many of the applets from [7J. In the cases of pri­
vacy invasion or werk-for-me applets, Limiter does not sto p them, but
prevents them from sending back their resul ts to the originatar of the
malicious applet .

The same is valid for the applets desc ribed in chapter 4 of [6], wit h
the exception of the ones based on the Ackerman functi ons or analogues,
against which this patch offers no protection.

In fact t here are two features conspicuous by their absence. T he first
one is that Limiter has no reason able way to limit the CPU usage of an
applet, and this because we are at too low a level to obtain a meaningful
value of CP U t ime. Indeed, at t his level CPU usage can be measured
with respect either to the whole system or to the JVM. In the lat ter case
we are bound to obtain high values regardless of real usage, while in the
former almost always the oppos ite holds t rue .

The second feature is that no attempt has been made to prevent the
redefinition of the stopO method in an applet. T his because there seem
to be only two ways to do this: either by substit uting the definition the
user may have provided with a new one or by hiding t he stop 0 method
from the JVM. Both are unsatisfactory, because they will resul t in broken
compat ibility and changing code behind the programmer 's back.

On a different matter it should be noted that th e indusion of this
new tests has caused an inevitable hit on performance. However the
approach of induding them directly in the JVM has paid off again, and
as it will be shown these losses are perfectly acceptable.

We executed some tests on a computer with 32MB of ram, and an
AMD K6 200 processor and running the app lets found in the demo di­
rectory of the JVM source .

The applets were run using the standalone applet runner distributed
with JVM SDK. Execution times were measured by having the applet

Contrasting Malicious Appletsby ModiJying the Java ViTtualMachine 63

itself print the time when it started and when it ended and repeating the
process several times in order to reduce measure errors. The functions of
the applets tested ranged from sound execution, to drawing, to numer
crunching. We measured the execution times of the applets on two
different virtual machines: on a standard JVM, and on the patched
.JVM with all the checks turned on . We found that there was a mean
degrade of 0.1%, which we judged inconsequential for normal use.

5. CONCLUSIONS
Our approach has proven to be rather effective in practice, stopping

most mischievious applets right before they are allowed to cause dam­
ages, and doing so in such a way as to maintain maximum compatibility
with all pre-existing code .

As it has been said in the previous section, however, there are two
problems our approach does not solve. As a future work, it would be
interesting to find a way to integrate these two functionalities in the
monitor in a sensible way or , as an alternative, to use it in conjunction
with another, external, monitor which could at least provide CPU usage
monitoring. An example of such a monitor could be the Applet Watch­
Dog, described in [8J.

Another interesting idea, given the effectiveness of the approach, would
be to try to implement it also on other architectures, like for example
.NET [15J or similar.

References

[1] Vincenzo Ciaschini. The patch itself, http:/ /www.cnaf.infn.it/"-'marotta/
patch.html.

[2] J . Goslin , K. Arnold , The Java Programming Language, Addison-Wesley, Read­
ing, MA 1996

[3] Mary Campione, Kathy Walrath , The Java tutorial,
ftp :/ /ftp.javasoft.com/docs/tutorial.tar .gz, May 2001

[4] T . Lindholm, F . Yellyn, The Java Virtual Machine Specification,
ftp ://ftp.javasoft.com /docs/specs/vmspec.html.tar.gz

[5] G. McGraw, E.W. FeIten, Java Security. Hostile Applets, Holes and Antidotes,
Wiley, 1997.

[6] G. McGraw, E.W. Feiten, Seeuring Java, Wiley, 1999.

[7] M. LaDue, Hostile Applets Horne Page, http://www.cigital.com/hostile­
applets/index.html.

[8] M.F . Florio, R. Gorrieri, G. Marchetti, Coping with denial of service due to
malicious Java applets, Computer Communications 23 (2000) 1645-1654.

[9] Li Gong, Inside Java 2 Platform Security, Addison-Wesley, Reading, MA, 1999.

64

[10] D. Martin, S. Rajagopalan, A.D. Rubin, Blocking Java Applets at the Fire­
wall , Procs. Internet Society Syrnp. on Network and Distributed System Security
(1997) 123-133.

[11] Finjan Software, www.finjan.com

[12] Citrix, www.citrix.com

[13] D. Malki, M. K. Reiter, A. D. Rubin, Secure Execution of Java Applets Using
a Remote Playground, procs. IEEE Computer Society, Symposium on Security
and Privacy, pages 40-51, 1998

[14] The Princeton Java Filter, http://www.cs.princeton.edu/sip/JavaFilter/

[15] David S. Platt, Introducing the Microsoft .NET Platform, Microsoft Press In­
ternational, 2001

