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Abstract A Boolean function is called normal if it is constant on flats of certain dimen-
sions. This property is relevant for the construction and analysis of cryptosys-
tems. This paper presents an asymmetric Monte Carlo algorithm to determine
whether a given Boolean function is normal. Our algorithm is far faster than the
best known (deterministic) algorithm of Daum et al. In a first phase, it checks
for flats of low dimension whether the given Boolean function is constant on
them and combines such flats to flats of higher dimension in a second phase.
This way, the algorithm is much faster than exhaustive search. Moreover, the
algorithm benefits from randomising the first phase. In addition, by evaluating
several flats implicitly in parallel, the time-complexity of the algorithm decreases
further.
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1. Introduction

1.1 Motivation
Boolean functions and maps play a central role in cryptology. They are basic build-

ing blocks of bit-oriented block and stream ciphers. In order to construct secure cryp-
tographic ciphers, i.e., ciphers which resist all known attacks, it is important to study
the structure and behaviour of Boolean functions.

Normality of a Boolean function is the property which determines if the function
is constant on a flat of dimension This concept was introduced by Dob94, in
order to construct highly nonlinear balanced Boolean functions. Later, this property
was used to distinguish different classes of bent functions. As the first bent function
which is non-normal occurs for dimension 14 (Can03), we need a highly optimised
algorithm for determining the normality of Boolean functions. This is non-trivial as
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the total number of flats increases exponentially for increasing dimension (MWS91).
Table 1 lists the number of flats of dimension this clearly shows that even for
moderate dimensions establishing normality by exhaustive search is
infeasible.

1.2 Related Work
The first attempt for determining the normality of a Boolean function, better than

exhaustive search, is due to DDL03. The main idea of their algorithm is to search
exhaustively all flats of small dimension on which the function is constant and then to
combine these to flats of higher dimension.

1.3 Achievement
In our algorithm, we replace the exhaustive search through all flats of small dimen-

sion by a random search. This has several advantages over the algorithm of Daum
et al. First, we do not need a unique representation of flats which means less condi-
tions to test and therefore a lower time complexity. Second, the number of repetitions
needed to determine with high probability that a function is non-normal, is far smaller
than an exhaustive search on all flats of small dimension (cf Sect. 4.2). Our algorithm
is of the asymmetric Monte Carlo type and may output “non-normal” with probability

for a normal function and some confidence level The output “normal” is
always correct. This asymmetric Monte Carlo algorithm has a far smaller running time
than the deterministic algorithm of DDL03 — even with a reasonable error-probability

in our case).

1.4 Outline
This paper is organised as follows. In Sect. 2, we introduce the basic definitions

together with a description of the main ideas in our algorithm. Sect. 3 presents more
details and explains several optimisations for our algorithm. In Sect. 4, we give a
detailed complexity analysis of the algorithm and compare the total time complexity
of our algorithm with the time complexity of the previous algorithm from DDL03.
This paper concludes with Sect. 5.

2. Background
In this section we present some definitions and a simplified algorithm to test the

normality of a Boolean function.
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2.1 Definitions
Before we can describe our algorithm, we need to define several objects. We start

with vectors and vector spaces and finish with some definitions concerning Boolean
functions.

Let a vector be represented by the with the coef-
ficients from the field with 2 elements. Let be linearly
independent vectors. Then they form the base of the subspace

Here, the dimension of <U> is For a given vector we represent the coset
of this subspace by Throughout this paper, we call the coset a
flat. The vector of the flat is called the offset of this flat. In addition, two flats are
said to be parallel if they are cosets of the same subspace <U>, i.e., all flats of the
form are parallel flats by this definition. Finally, we denote the set of all
flats of dimension by i.e.,

We now move on to Boolean functions. A Boolean function is a mapping from
into The property of normality for a Boolean function is defined as follows:

DEFINITION 1 A Boolean function is called normal if there exists a
flat of dimension such that is constant on i.e.,

for some fixed We call the flat a witness for the normality of
the function

As we see from Definition 1, the property of normality is related to the question
of the highest dimension of the flats on which the function is constant. As a con-
sequence, it is natural to generalise the previous definition by the introduction of

(Dub01; Car01):

DEFINITION 2 For a natural number a Boolean function
is said to be if there exists a flat such that is constant

on i.e., for some fixed We call the flat a
for the normality of the function

Remark: It is clear that a constant function is
An affine function is because it
is normal on the flats and of dimension

2.2 A Simple Algorithm
The previous section shows that it is important for the definition of normality and

i.e., for a given dimension or (ordinary
normality), to find a witness To ease the understanding of the algorithm
of Sect. 4, we start with a highly non-optimised version of it (cf Fig. 1). Both algo-
rithms are based on the observation made by DDL03, that a Boolean function which
is constant on a flat is also constant on all flats contained in i.e., for
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some implies for all We call the flat a sub-witness
of

Our algorithm starts with a randomly chosen flat of dimension the starting
dimension. If this flat is a sub-witness, the function must be constant on it. So, if
the function is constant on the flat this is a possible candidate for a sub-witness
and we search for a parallel flat on which the function is constant, too. Both flats

can now be combined to a flat of higher dimension, namely
We repeat this process recursively until we reach the “end dimension” e. In this case,
we have found a witness and output 1.

Depending on the “confidence level” we want to achieve, we need to repeat the
above algorithm several times. The value for i.e., the number of repetitions, depends
on We discuss the choice of in Corollary 10 (cf Sect. 2).

3. Optimisations
After given a short outline of our algorithm, we show different ways of optimising

it.

3.1 Complement Vector Space
There are in total parallel flats for a given subspace

<U> of dimension However, some parallel flats are equivalent as they contain the
same points.
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EXAMPLE 3  Consider some parallel flats of the following subspace of dimension 2
which is defined by

As a consequence, the parallel flats can be divided into equivalence classes. Therefore,
we use the complement of a subspace <U>, i.e., the subspace which satisfies

This allows us to determine the representatives of the equivalence classes of the par-
allel flats, namely the flats for Because the dimension of is equal
to there are in total different parallel flats. To compute the complement

of a given subspace <U> efficiently, we make use of the Permuted Gauss
Basis (PGB) of a subspace. To define the PGB, we need to introduce the concept of
left-most-one of a vector first.

DEFINITION 4 For a given vector we define the left-most-one
as the position of the left-most one in its representation:

DEFINITION 5 The vectors form a PGB basis iff

Remark: The name Permuted Gauss Basis is motivated as follows. Thinking about
the base vectors as a matrix, we would perform Gaussian elimination on
it, without swapping rows. The result would not be a triangular structure but a row
permutation.

For a subspace <U>, we denote the set of the different left-most-ones of its ele-
ments

The complement of a subspace <U> where <U> is in PGB can be computed
as follows:

3.2 Random Points instead of Random Bases
Instead of selecting a random flat with a PGB, we choose points at ran-

dom. This is cheaper than selecting a vector space at random which satisfies the PGB-
criterion. In addition, we only need to transfer a set of points into a PGB if
the function is constant on the corresponding flat. As this only happens with prob-
ability we obtain very low costs on average. For points, we can compute
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the PGB by the iterative algorithm from Fig. 2. The point is the offset of the flat
and has to be reduced as outlined in the previous section.

Finally, we have to check whether the points form a flat of dimension
The contrary happens only with very small probability:

Using the following strategy, we can reduce the running time of the algorithm fur-
ther: instead of picking points at random and evaluate explicitly if they form
a flat of dimension on which the function is constant, we do this implicitly in
parallel:

Pick points at random

Evaluate on these points

if exactly points evaluate to 1 (resp. to 0), check if the corresponding
flat yields the constant 1 (resp. 0) on the function

This implicit evaluation strategy exploits different observations. First, we assume that
we can form a total of independent flats of dimension using a set of

points. This way, we can decrease the number of repetitions by this factor.
In addition, we observe that a set of points will yield at most one flat of
dimension on which the function is constant, if points in the set evaluate
to 1 (resp. 0) on the function However, the probability for this event is rather high,

namely Pr(only one flat)
But there is a price to pay for this strategy: we always need to perform

evaluations of the function and also the same number of random calls.
Remark: It is natural to generalise this idea to other values than However,

in this case we do not obtain such a good trade-off between the factor #flats and the
workload to check the corresponding flats. The choice is optimal for the given
problem.

3.3 Combining
In the original algorithm, we searched for all parallel flats and started a recursion on

each of them. This is obviously superfluous as we will find the same witness several
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times this way. As we know from the previous section, we will obtain at least
parallel flats on which the function is constant. Here, denotes the end-dimension
and the start-dimension.

To avoid this costly computation, we use a different strategy, based on DDL03:
instead of recursively searching for all parallel flats of higher dimension, we com-
bine flats of low dimension to obtain flats of higher dimension. This is based on the
following observation:

Hence, we only need to consider pairs which lead to the
same sum and then combine them recursively until we obtain a flat of dimension To
do this efficiently, we introduce lists (depending on a vector which hold
an offset for each possible sum, i.e., In the following section, we
develop a branching condition for the combine method, which allows to decrease its
running time even further.

3.4 Branching
Let the function take a constant value on the flat of dimension

Denote with the set of all flats parallel to on which the function yields the
same constant. The following branching condition defined by the cardinality of the set

has been observed by DDL03. We are able to improve their result by giving a
shorter proof.

THEOREM 6 If we can terminate the current branch of the combine-
method in <U> without violating its correctness.

Proof: Let be a witness and its subwitness. Now, there exist exactly
linearly independent vectors with

and consequently These vectors exist due to dimension
reasons as and Therefore, for any subwitness exist

parallel subwitnesses. This implies that As a consequence, we
can stop at any step in the algorithm if this condition is violated because we will not
be able to extend the flat to a witness of dimension

4. The Improved Algorithm
Using the ideas from the previous section, we obtain the algorithm of Fig. 3. The

method SearchForParallelFlats can be found in Fig. 4 and the optimised version of
the combine-method is presented in Fig. 5. In the following sections, we analyse this
optimised algorithm.

4.1 Complexity Analysis
We start the analysis of the algorithm with determining the number of repetitions.

Then we analyse the complexity of the main loop from Fig. 3, the complexity of the
SearchForParallelFlats from Fig. 4 and the complexity of the Combine-procedure from
Fig. 5 in different steps.
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Number of Repetitions.
For determining the number of repetitions, we need the following lemma from MWS91,
concerning the number of subspaces and flats of a certain dimension in a vector space.

LEMMA 7 The number of subspaces of dimension in a vector space of dimension
is given by

The number of flats of dimension in a vector space of dimension is given by

Before determining a bound on we first introduce the term complaisant flat.
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DEFINITION 8 flat is called complaisant if the function is constant on the flat,
the flat is parallel to a sub-witness, but the flat is not contained in any witness.

THEOREM 9 When choosing points at random, the prob-
ability that the flat formed by these points pass the first step in
the algorithm is equal to

where

In the above formula, is the dimension of the witness. The formulas for NS( · , ·) and
NF ( · , · ) are given in Lemma 7.
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Proof: We first determine the probability that the flat is a sub-witness. This
probability is justified with an inductive argument on the dimension of the sub-witness:
for one point (i.e., a flat of dimension 0), the probability of being a sub-witness is
Here, the witness has points. This probability is also true for extending the sub-
witness from dimension to dimension (we have In addition, we
have to consider the case i.e., the new point lies in the
sub-witness of dimension generated by the points

The probability that is a complaisant flat is equal to the probability that the
function is constant on times the number of flats which are parallel with a witness
but not part of a witness. This is exactly expressed in the formula.

>From the previous theorem and the implicit evaluation strategy as described in
Sect. 3.2, we can deduce the following corollary.

COROLLARY 10 For a given start dimension and an end dimension we need at
most

repetitions to achieve a confidence of that the function is not

Table 2 shows some numerical values of in In this and all following tables,
we concentrate on even choices for and fix as these cases are particularly
relevant in cryptography.

Complexity of the main loop.
Obviously, picking random points and checking if the function is constant for
a given flat, will be the most expensive operations. Therefore, we start with a lemma
on the average complexity for checking that a function is constant on a given set of
points.

LEMMA 11 For a given random function and a given set of points
the algorithm from Fig. 6 needs on average 3 evaluations of to check if this

function is constant when restricted to vectors in the set P.

Proof: The average number of evaluations depends on the number of points
of this algorithm; it is given by
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To justify this formula, we observe that we need to evaluate at least once to obtain
the constant As the function is a random function by definition, we have a proba-
bility of to obtain a different constant for every further evaluation, i.e., to terminate
this algorithm. After checking a total of points, the algorithm terminates. For this
last check, we still have a probability of to output 0. However, the workload of
outputting 0 or 1 is exactly the same, namely evaluations.

As a consequence, the complexity of the main loop so far depends on the costs of
picking the random points, evaluating the function on the corresponding
flat with probability Pr(Only one flat) and some other negligible operations whose
complexity we set to one, i.e., where represents
the number of repetitions. We obtain the following values if we evaluate the
above formula numerically (cf Table 3).

Complexity of the SearchForParallelFlats-method.
From a computational point of view, the for-loop is very expensive, as we have to
check parallel flats every time. However, each flat costs only 3 operations on
average (cf Lemma 11). In addition, we only need this for-loop in of all cases
as this is the probability that the function is constant on the corresponding flat. The
other steps in the method are negligible in comparison to the for-loop. We therefore
identify their average workload as 1. Consequently, the complexity can be approxi-
mated by for the Search For Parallel Flats-
method, where denotes the number of repetitions. Numerical values for the time-
complexity (in of the SearchForParallelFlats-method are presented in Table 4.
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Complexity of the Combine-procedure.
The complexity analysis of the combine-procedure is a little more tricky. In particular,
we have to deal with the problem that its complexity depends quadratically on the
number of parallel flats we find, i.e., the number for a given flat  Therefore,
we cannot simply take the average number of flats for this analysis as the result does
not reflect the real time complexity of this algorithm. In addition, we have to deal with
the branching condition (cf Sect. 3.4).

As we did not expect to find a closed formula for the time complexity of the
combine-procedure, we used MAG to compute it numerically. As all computations
are done with rational numbers, there are no rounding errors in MAGMA. In particu-
lar, we computed the probability for the different numbers of parallel flats we obtain
in the searchForParallelFlats-method. We only took numbers into account
(cf Thm. 6) and neglected levels of recursion which appear with too small probability

due to the branching condition. In addition, we truncated the sum at points
which did not contribute to the overall workload anymore (expected workload smaller
than 1). We present the corresponding values for different choices of and in
Table 5.

These computations were matched by our empirical results. In particular, the
branching condition proved to be very powerful for and (note dif-
ference between and for In these cases, we never needed
a recursive call of the combine-method for non-normal functions. In addition, the
probability for a function to be constant on a given flat decreases exponentially with
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increasing dimension of the flat. Therefore, we expect to find less than flats for
and which means that the combine-method is never invoked in these

cases (fields with 0 in the above table).
All in all, it is necessary to chose the starting dimension correctly, i.e., high

enough such that the combine-method is still efficient and low enough such that Search-
ForParallelFlats and the main loop do not need too much time. For dimension
the choice turns out to be optimal (cf  Fig. 7 for the case

Asymptotic Analysis.
Here we sketch the asymptotical analysis of the above algorithm: we begin with the
observation that for large and subsequently large the running time will only de-
pend on the number of repetitions necessary. We justify this reasoning as follows: as
we saw for the combine-method, we have a very powerful branching condition, i.e.,
asymptotically, this part will not contribute to the overall complexity. The same is true
for the search of parallel flats: we have a complexity of here, i.e.,
negligible for In addition, we cannot use the implicit evaluation strategy
anymore in the asymptotic case, as we obtain a rather small probability for having
exactly one flat Therefore, we drop the corresponding term in our asymptotic
analysis. For our analysis, we chose and and obtain the following
asymptotically upper bound on the number of repetitions and thus the running time of
the algorithm:

where is the target confidence level. To obtain this upper bound, we observe that
the probability to have a complaisant flat is asymptotically very small. In addition,
we notice that for large the factor is a tight lower bound on the
probability Using Theorem 9 and Corollary 10 yields the result.
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4.2 Comparison with the Algorithm from Daum et al.
In Fig. 8 and Table 6 we compare the time complexities of our algorithm with that

of DDL03, for computing the normality of a function in dimension We are not
aware of an asymptotical analysis of the algorithm from DDL03.

The time complexity of algorithm of DDL03, is computed using the formulas given
there. According to these results, we expect that it is outperformed by our algorithm
for increasing dimension

4.3 Empirical Results
We have implemented our algorithm in a programme with 14,000 lines of C++

code. Checking random functions on an AMD Athlon XP 2000+, we obtained the
following results for (normality) and

As we see in this table, the running time gets quickly out of hand. According
to DDL03, their programme needs approximately 50 h on a Pentium IV 1.5 GHz
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for the case Our algorithm needs approximately 43 min for and
approximately 2 d for Using the complexity analysis of DDL03, we expect a
running time of more than a year for their algorithm to handle functions of dimension

We also estimated (empirically) the running time for the cases
and obtain 2.5 years and 130 years, respectively.

For our C++ implementation, we have included several improvements:

Combinatorial Gray codes. In order to compute vectors more efficiently for a
given basis, we used combinatorial Gray codes (Sav97) and computed all intermediate
values in a Gray code like fashion. This way, we only needed one computation on
average rather than when computing elements of the vector space

Optimised Pseudo-Random Number Generator. As the programme spends
approx. 60% of its time computing random numbers, we concluded that it could
benefit from a fast way of generating pseudo-random numbers. However, due to the
high number of repetitions, we still need a long period for the pseudo-random number
generator. To meet both aims, we used a pseudo-random number generator from Rho
which combines a multiply with carry generator and a simple multiplicative generator.
It achieves a period of more than has good statistical properties, and is also very
fast according to our measurements. For the future, tests with the cryptographically
secure pseudo-random number generator using Shamir’s T-functions class (KS04) are
planned.

Function storage. For the Boolean function to be checked, we can use several
ways of storing it: bit-wise, byte-wise or in processor-words (32 bit). To make the
best use of the internal cache of the processor, a bit-wise storage turned out to have
the best performance for dimensions For dimensions an word-wise
storage was clearly better as we do not have the overhead of retrieving single bits from
a word.

5. Conclusions
In this paper, we present a fast asymmetric Monte Carlo algorithm to determine the

normality of Boolean functions. It uses the fact that a function which is constant on a
flat of a certain dimension is also constant on all sub-flats of lower dimension. In ad-
dition, we evaluate “parallel” flats using the implicit evaluation strategy (cf Sect. 3.2).
Starting with flats of dimension and combining them until a flat of dimension is
obtained, we achieve a far lower time-complexity than with exhaustive search on flats
of dimension

In particular, this algorithm is far faster than the previously known algorithm (43
min in comparison to 50 h) for dimension 14 (cf 4.2). Moreover, it is the first time that
the important case can be computed on non-specialised hardware in 2 days
(previously: more than a year). Using the fact that our algorithm can be parallelised
easily, this figure can even be improved and we can even handle the case (16
computers in 8 weeks). For scientific purposes and at present, seems to be out
of reach as it would take 128 computers about 1 year.
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