
A CALCULUS WITH LAZY MODULE OPERATORS

Davide Ancona, Sonia Fagorzi and Elena Zucca
DISI - Università di Genova
Via Dodecaneso, 35, 16146 Genova (Italy)*
{davide,fagorzi,zucca}@disi.unige.it

Abstract Modern programming environments such as those of Java and C# support dy-
namic loading of software fragments. More in general, we can expect that in the
future systems will support more and more forms of interleaving of reconfigura-
tion steps and standard execution steps, where the software fragments composing
a program are dynamically changed and/or combined on demand and in different
ways. However, existing kernel calculi providing formal foundations for mod-
ule systems are based on a static view of module manipulation, in the sense that
open code fragments can be flexibly combined together, but all module operators
must be performed once for all before starting execution of a program, that is,
evaluation of a module component.
The definition of clean and powerful module calculi supporting lazy module
operators, that is, operators which can be performed after the selection of some
module component, is still an open problem. Here, we provide an example in
this direction (the first at our knowledge), defining an extension of the
Calculus of Module Systems [5] where module operators can be performed at
execution time and, in particular, are executed on demand, that is, only when
needed by the executing program. In other words, execution steps, if possible,
take the precedence over reconfiguration steps. The type system of the calculus,
which is proved to be sound, relies on a dependency analysis which ensures that
execution will never try to access module components which cannot become
available by performing reconfiguration steps.

Keywords: module calculi, dynamic linking

1 Introduction
In the last years considerable effort has been invested in studying theoretical founda-
tions and designing advanced forms of module systems [5, 15, 13, 12, 2], inspired
by the unifying principle of two separate linguistic levels, a module language pro-
viding operators for combining software components, with their own typing rules,
constructed on top of a core language for defining module components. In particular,
module calculi such as CMS (Calculus of Module Systems) [5] provide a simple and
powerful model allowing to express a large variety of existing mechanisms for com-

* Partially supported by Dynamic Assembly, Reconfiguration and Type-checking - EC project IST-2001-
33477, and APPSEM II - Thematic network IST-2001-38957.

424

bining software components, hence can be used as a paradigmatic calculus for modular
languages, in the same spirit the lambda calculus is used for functional programming.
Indeed, modules in CMS are constructed from basic modules (of the form
where and model input, output and local components, respectively) by only three
primitive operators: sum (merging two modules), link (called freeze in the original for-
mulation in [5], binding an input to an output component) and reduct (independently
renaming input and output components). As shown in previous papers [5, 4], these
operators allow to express, e.g., parameterized modules similar to ML functors, exten-
sion with overriding as in object-oriented programming, and mixin modules. However,
CMS (as other module calculi as well) is based on a static view of module manipu-
lation, in the sense that open code fragments can be flexibly combined together, but
before starting program execution we must eventually obtain a fully reduced, closed
module.
This is formally reflected in CMS by the fact that selection, denoted M.X, where
M is a module expression and X is the name of a module component, can only be
performed when M has form that is, is a basic module (no module opera-
tors remain) and, moreover, has no input components. In other words, before actually
using a module, all configuration steps (that is, those concerning assembly and ma-
nipulation of code fragments) must have been performed, hence in particular all the
component names must have been resolved (that is, no dependency on other fragments
is allowed),
However, in widely-used programming environments, such as those of Java and C#,
single code fragments are dynamically linked to an already executing program. More
generally, we can expect that in the future systems will support more and more forms
of interleaving of reconfiguration steps and standard execution steps, where the soft-
ware fragments composing a program are dynamically changed and/or combined on
demand and in different ways. To our knowledge, only a little amount of litera-
ture exists on this subject, mainly concerned with the modeling of concrete mecha-
nisms in existing programming environments (see, e.g., the large amount of work of
Drossopoulou and others on phases of dynamic linking and verification in Java-like
languages [9, 10]).
In particular, what is still missing is the definition of clean and powerful module cal-
culi supporting lazy module operators, that is, operators which can be performed after
the evaluation of some module component has started, hence providing formal foun-
dations for systems where reconfiguration and standard execution steps are interleaved
(as CMS or other module calculi do for static module manipulation).
Here, we provide a proposal in this direction (the first to our knowledge), defining

an extension of CMS where module operators can be performed at execution
time and, in particular, are executed on demand, that is, only when needed by the
executing program. In other words, execution steps, if possible, take the precedence
over reconfiguration steps.
The type system of the calculus, which is proved to be sound, relies on a dependency
analysis which ensures that execution never tries to access module components which
cannot become available by performing reconfiguration steps.
The rest of the paper is organized as follows. In Sect.2 we briefly revise the original
CMS and then informally introduce by some examples illustrating the new
possibilities offered in this calculus. In Sect.3 we give the syntax and the reduction
rules, in Sect.4 the type system and in Sect.5 the results (confluence and soundness).
Finally, in the Conclusion we summarize the contribution of the paper, compare the

425

approach here with our previous work on dynamic linking [2, 11] and describe further
work.

2 An informal introduction
In this section we briefly introduce CMS and then illustrate the new possibilities of-
fered by by some examples, written by using some syntactic sugar.
A CMS basic module consists of output and local components, bound to an expres-
sion, and input components, declared but not yet defined. For instance,

is a basic module with one input, one output and one local component, where e1[x,y]
and e2[x,y] denote two arbitrary expressions possibly containing x and y as free
variables. Note that input components are associated with both a name (as X) and a
variable (as x); component names are used for accessing input and output components
from the outside, while variables are used for accessing input and local components
from inside the module. Local components are not visible from outside and can be
mutually recursive.
Two modules can be combined by the sum operation, which performs the union of
the input components (in the sense that components with the same name are shared),
and the disjoint union of the output and local components. However, while the sets of
output names must be disjoint, the disjoint union of local components can always be
performed(using of local variables when needed).
For instance, below module M3 is defined as the sum of M1 above and another basic
module M2.

Module M3 = M1 + M2 simplifies to

Note that the sum operation supports cross-module recursion: in module M3, the defi-
nition of X is needed by M1 and is provided by M2, whereas the definition of Y is needed
by M2 and is provided by M1. However, in the sum above there is no connection yet be-
tween input and output names; this can be accomplished by means of the link operator
described below.
The link operation connects input and output components having the same name inside
a module, so that an input component becomes local. For instance, in

which simplifies to

426

the input name X has been effectively bound to the corresponding output component.
The reduct operator performs a renaming of component names where input and output
names are renamed independently. The input renaming is a mapping whose domain
and codomain are old input names and new input names, respectively , whereas the
output renaming is a mapping whose domain and codomain are new output names and
old output names, respectively. For instance,

simplifies to

Note that the two renamings can be non-injective and non-surjective. A non-injective
input renaming allows to merge two input names (in the example X1 and X2 in X),
whereas a non-surjective is used for adding dummy input names (X’ in the example).
A non-injective output renaming allows duplication of definitions (in the example the
definition of Y is used as definition of both Y1 and Y2), whereas a non-surjective one
is used for deleting output components (Y’ in the example).
In the following examples M\Y denotes the application to the module M of a reduct
operator s.t. the input renaming is the identity and the output renaming is the embed-
ding of all output names of M except Y in themselves. In other words, M\Y denotes the
module where the Y component has been deleted.
Output components can be accessed from the outside by means of the selection opera-
tor. In selection is much more general than in CMS, where it can be performed
only on basic modules with no input components.
Consider, for instance, the following configuration:

This configuration is well-formed in if the defining expression e of Y does not
use the variable x, which is bound to an input component. Moreover, even in the case
e uses the variable x, we can obtain a well-formed configuration by inserting
C in a context where the input component X can become available, as shown below:

The following examples illustrate how allows dynamic reconfiguration of sys-
tems. First we show how lazy sum and link operators allow to model loading
of software on demand. Consider a situation where there is a program Prg to be ex-
ecuted, possibly requiring other software fragments located in different sites, e.g., on
the web. In CMS, this can be modeled by the following module expression, where
each basic module in the sum expression intuitively corresponds to software from a
different site.

427

In CMS, in order to select the Prg output component, the module expression must be
first of all reduced to a basic module, regardless of the nature of the defining expression
of Prg. Hence the program can be executed only after loading and combining software
from all sites, thus requiring a not negligible amount of time. In the situation
described above could be modeled instead by the term:

In this case, execution of the program can start immediately, and the sum and link will
be performed only if and when the evaluation of the expression e will need x and y .
The following example shows how lazy reduct operator allows to express ref-
erence to different versions of the same software fragment. Consider a situation where
two versions of a componentY are available.

The old definitione of Y is initially selected and its evaluation starts. However, if dur-
ing evaluation of e the variable x is needed, then reconfiguration steps are performed
and the new definition e’ of Y is used. However, note that only a limited form of dy-
namic reconfiguration is allowed, since all reconfiguration steps are planned statically:
the fact that they will be actually performed depends on the program execution (thus
allowing in particular to use different versions of a component at different stages, as
shown above), but it is not possible to perform different reconfiguration steps depend-
ing on the execution. See the Conclusion for more comments on this point.

Syntax and Semantics3

Notations We denote by the set of the partial functions from A to B with finite
domain, written the image of is written We denote by the union of two
partial functions with disjoint domain, whereas we use the notation for the union of two
compatible partial functions, that is, s.t. for all Finally,
denotes composition of partial functions.

The syntax of the calculus is given in Fig. 1. We assume an infinite set Name of names
X, an infinite set Var of variables and a set Exp of (core) expressions (the expres-
sions of the underlying language used for defining module components). Indeed, as
CMS, is a parametric and stratified calculus, which can be instantiated over
different core calculi satisfying some (standard) assumptions specified in the sequel.
In however, differently from CMS, module components cannot be modules.
Intuitively, names are used to refer to a module from the outside (hence they are used
in reconfiguration steps), while variables are used to refer to a (basic) module from a
program executing in the context of the components offered by this module.

428

This distinction between names and variables is standard in module calculi and, be-
sides the methodological motivation explained above, has technical motivations as
well, such as allowing for variables while preserving external interfaces
(see, e.g., [5] for an extended discussion of this point).
Terms of the calculus are called configurations. Configurations can be either non-
executable configurations (module expressions) M, or executable configurations, which
are constructed from executable basic configurations by the three primitive module op-
erators sum, link and reduct. Moreover, a configuration can be obtained by selecting a
component from a module expression.
An executable basic configuration is a pair consisting of a basic
module and a core expression. Basic modules are as in CMS and consist of three
components. The component is a mapping from variables to names and represents
the input interface of the module; the component is a mapping from names into
expressions and represents the output interface of the module; the component is
a mapping from variables into expressions and represents the local (that is, already
linked) components. Variables in the domain of and are called the deferred and the
local variables of the basic module, respectively.
Basic (both executable and non-executable) configurations are well-formed only if the
sets of deferred and local variables are disjoint.
We will explain module operators in more detail when introducing reduction rules.
Expressions of the core language are not specified; we only assume that they contain
variables. For the examples in the sequel we assume that core expressions contain
integer constants and the usual operations on integers.
In Fig.2 and Fig.3 we give the reduction rules of the calculus. For convenience, we first
give the reduction rules for non-executable configurations (module expressions) and
then those for executable configurations. By definition, the one step reduction relation

is the relation over well-formed terms inductively defined by the rules. For this

429

reason, we have omitted all side conditions ensuring well-formedness of terms, since
those are satisfied by definition.
Reduction rules for sum, link and reduct on non-executable configurations are exactly
those for module expressions in CMS. We give here a brief description, referring to
[5] for more detailed comments.

Sum The sum operation simply has the effect of gluing together two modules. The
two explicit side conditions avoid undesired captures of free variables;
denotes the binding variables of that is, whereas
denotes the free variables (the definition of depends on the core calculus) of

that is, Since
the reduction is defined only over well-formed terms, the deferred and local variables
of one module must be disjoint from those of the other (implicit side condition). Both
the explicit and implicit side conditions above can always be satisfied by an appro-
priate For the same reason of well-formedness, the output names of
the two modules must be disjoint (implicit side condition due to the fact that
must be well-defined1); however, in this case the reduction gets stuck since this con-
flict cannot be resolved by an The only way to solve this problem is
to explicitly rename the output names in an appropriate way by means of the reduct
operator (see below), thus changing the term.

Link The link operator is essential for binding input with output in order to accom-
plish inter-connection of modules. A renaming explicitly specifies how resolution
has to be performed, associating output to input names; the domain of can be a
proper subset of all input names of the module so that resolution is partial
The effect of applying the link operator is that all input names that are resolved, repre-
sented by the set disappear and all the deferred variables mapped into them,
represented by the set become local. These variables are associated with the
definition of the output component to which their associated (by) names are bound
by that is, for all The composition is well-defined
if the following implicit side conditions (needed for composition of mappings to be
well-defined) are verified: and Note that this
implies that only variables for which actually exist a corresponding definition become

1Note that, since goes “backwards”, that is, from variables into names, the fact that must be well-
formed does not prevent to share input names, but only to share deferred variables, what can be avoided by

430

local, thus ensuring that we cannot create modules containing undefined (that is, nei-
ther local nor deferred) variables. The explicit side condition just ensures that
actually contains all the input names that have to be resolved as specified by

Reduct The reduct operator performs a renaming of component names and does
not change the local assignment and the variables of a module; its effect is simply a
composition of maps which can be correctly performed only if
and (implicit side condition). Note that input and output names
are renamed independently, and that the two renamings can be non-injective and non-
surjective. A non-injective map allows sharing of input names, whereas a non-
surjective one is used for adding dummy (in the sense that no variable is associated
with them) input names; a non-injective map allows duplication of definitions,
whereas a non-surjective map is used for hiding output components.
We describe now reduction rules for executable configurations,
The first two rules are the usual contextual closures for executable and non-executable
configurations, respectively.
Rule (core) models an execution step which is an evaluation step of the core expression
in the basic executable configuration (we denote by the reduction relation of
the core calculus).

431

Rule (var) models the situation where the evaluation of the core expression needs a
variable which has a corresponding definition in the current basic module (that is, is
local). In this case, the evaluation can proceed by simply replacing the variable by its
defining expression. Here and in the following rules, the side condition

expresses the fact that evaluation at the core level is stuck. Note that this ensures that
there is no overlapping between (core) steps and other steps, but of course does not
prevent non-determinism inherited from the core level. For instance, assuming that the
core expression in a configuration is and both are local variables, variable
will be first considered for application of another rule if can only be seen as
by the core context formation rules, whereas either or will be non-deterministically
consideredif can be seen as both and
The following three rules express the fact that, whenever the evaluation of the core
expression needs a variable which has no corresponding definition in the module (that
is, is deferred), then a reconfiguration step happens: more precisely, the innermost
enclosing module operator is applied.
As combined effect of the above rules, execution proceeds by standard execution steps
((core) and (var) rules) until a deferred variable is encountered; in this case, reconfig-
uration steps are performed (from the innermost to the outermost module operator)
until the variable becomes local and rule (var) can be applied.

Note that this precedence of standard execution over reconfiguration only applies to
the module operators which contain the executable configuration, whereas the remain-
ing module operators can be evaluated non deterministically at each time during exe-
cution. However, this non determinism does not affect confluence, as will be proved
in Sect.5 (Prop.3).

EXAMPLE 1 Let us write for the partial function mapping to
for all (where the must be different).

EXAMPLE 2 Set and C as in Example 1. We

have and

where all the reduction steps (included those in Example 1) can be arbitrarily in-
terleaved.

4 Type system
The type system of the calculus is given in Fig.4 and Fig.5.
The typing judgment for module expressions has form mean-
ing that M is a well-formed module expression of type Types for module

expressions are triples where are the input and out-
put signature, respectively, and is a binary relation on Name called the dependency
relation. The first two components are standard for module calculi (see [5]), while

keeps track of the input names an output name depends on, and will be used later
in typing rules for executable configurations. Hence, typing rules for non-executable

432

configurations exactly correspond to typing rules for module expressions in CMS ex-
cept for calculation of dependencies.
The definition of as well as the corresponding operators on it defined in the sequel
has been inspired by the calculus [12]. Note, however, that here we have
preferred to consider the inverse relation and that we do not need to deal with labelled
multi-graphs. Intuitively, if then Y depends on X, that is, Y is an output
component of M associated with a core expression which (either directly or indirectly)
refers to a deferred variable which is mapped to the input component X. If is a

dependency relation, then we will write for
In rule (M-basic), we denote by the typing judgment for core expressions,
meaning that is a well-formed expression of type in where is a mapping from
variables to core types. Moreover, denotes the dependency relation induced
by a basic module defined as follows. For
let us write iff and denote by the transitive and reflexive

closure of Then, for all iff there exist
and

The (M-sum) typing rule allows sharing of input components having the same name
and type, while preventing output components from being shared. Recall that
denotes the union of two compatible partial functions, while denotes the union
of two partial functions with disjoint domain. The dependency relation is the union of
the dependency relations of the arguments.
In the (M-link) typing rule, the side-condition having the form en-
sures that the renaming preserves types; formally, this means that

and The dependency relation is
defined as follows:

where

The intuition behind this definition is the following: any output name Y depending on
an input name X that is going to be linked (that is, will use the definition
of the output component to which X is linked, which in turn may depend on

433

some input name Z; hence, in the linking process the new dependencies obtained by
computing the transitive closure of (denoted by must be added. Then all
the dependencies involving the linked names are removed.
In the (M-reduct) typing rule, the dependency relation is defined as follows:

Note that in the side-condition we again use the notation introduced in (M-link) to
ensure that renamings preserve types.
The typing judgment for executable configurations has the form

meaning that C is a well-formed executable con-
figuration of type The first component has the
same meaning as for module expressions, whereas with set of names and

core type, means that the expression to be executed in the configuration has type
providing that all (input) names in can be eventually linked (with the proper type).
In rule (C-basic), denotes the set of input names the expression de-
pends on, defined as follows:

Since the sum operator just glues modules together without linking any input name, in
rule (C-sum) the second component remains unchanged.
In the (C-link) typing rule, the set of names is defined as follows:

where
Indeed, before removing from all linked input names in all new depen-
dencies reachable from with respect to the relation must be added.
In the (C-reduct) typing rule, denotes the set
Finally, in (C-sel) the set corresponds to all the input names the output component
X depends on, whereas the type of the expression to be executed coincides with the
type of X.

434

5 Results
In this section we collect all the technical results about the calculus. In particular, we
state the Church Rosser property for the reduction relation and the Subject reduction
and Progress properties. Clearly, these results hold providing that the corresponding
properties are verified at the core level as well. Moreover, we also assume the core
language to be such that: if then if then

there exists such that and for all such that we have that

PROPOSITION 3 The reduction relation is confluent.

THEOREM 4 (SUBJECT REDUCTION) and

then If and then

To state the Progress property, we have to define the set VConf of values for the terms
of the calculus:

where with we denote a value at the core level.

THEOREM 5 (PROGRESS)
If and then there exists If

and then there exists

Note that progress for executable configurations holds only if the expression to be
executed does not depend on any input name.

6 Conclusion

We have defined an extension of CMS [5] where operators on modules are per-
formed on demand, when needed by the execution of a program, rather than eagerly,
before any access to module components. We have provided a sound type system
for the calculus, relying on a dependency analysis which ensures that execution never
needs to access module components which cannot become available by performing
reconfiguration steps.
The relevance of this work is twofold. On one hand, whereas lazy evaluation has been
extensively studied in the context of variants of lambda-calculus (see, e.g., [6]), there
was to our knowledge no previous attempt at analyzing this feature in the context of
record-based calculi or module calculi. We believe that the combination of laziness
with the computational paradigm based on record selection is a stimulating subject
for research, which could provide new programming patterns and be used in a wide
variety of contexts. In this respect, the contribution of this paper is to provide the first
step in this direction.
On the other hand, a more specific motivation for is the need for foundational
calculi providing an abstract framework for dynamic reconfiguration (that is, interleav-
ing of reconfiguration steps and execution steps). Indeed, though the area of unantici-
pated software evolution continues attracting large interest, with its foundations stud-
ied in, e.g., [14], there is a little amount of work at to our knowledge going toward

435

the development of abstract models for dynamic reconfiguration, analogous to those
which exist for the static case (where the configuration phase always precedes execu-
tion) [8, 15, 5]. Apart from the wide literature concerning concrete dynamic linking
mechanisms in existing programming environments [9, 10], we mention [7], which
presents a simple calculus modeling dynamic software updating, where modules are
just records, many versions of the same module may coexist and update is modeled
by an external transition which can be enforced by an update primitive in code, and
[1], where dynamic linking is studied as the programming language counterpart to the
axiom of choice. Finally, we have proposed in a recent paper [3] a calculus for dy-
namic linking (CDL) partly driven by the same objectives as that is, to define
a kernel calculus able to express some form of dynamic reconfiguration abstracting
from the details of the particular underlying programming language. Here below we
briefly compare the two proposals.
In CDL, we did not attempt at introducing dynamic features in a pure module calculus,
but rather to combine a module calculus with explicit imperative features. Indeed,
terms of CDL are configurations consisting of a linkset (corresponding to a module
expression in the terminology used in this paper) and a command. Configurations can
evolve in two ways: either by simplifying the linkset expression (that is, performing
a reconfiguration step) or by performing a step in the execution of the command. In
particular, classical module operators such as sum and (static) link must be performed
before execution of the command starts; however, a new operator is introduced, called
dynamic link, which is only performed on demand, after execution of the command
has started. More precisely, a dynamic link operator for a component X (in CDL
linking is performed on a per-name basis) is only performed if the execution needs a
deferred variable, say which is associated to X.
Both CDL and proposals give, in our opinion, an important contribution toward
the development of a framework for dynamic reconfiguration, but both have some (dif-
ferent) limitations. In CDL, only a limited form of interleaving between the reconfigu-
ration and the execution phase is allowed, since the classical module operators, notably
sum, must be performed before execution starts. Moreover, run-time reconfiguration
ability is obtained by adding new ingredients (the dynamic link operator). In
on the contrary, no new operator is added to a standard module calculus, and there is
true interleaving of the reconfiguration and execution phase, since no module operator
needs to be performed before evaluating a module component. However, in
this interleaving is handled by a fixed policy, in the sense that standard execution steps
always take the precedence over reconfiguration steps, unless they are needed since
execution would otherwise get stuck. Moreover, all reconfiguration steps are planned
statically.
We believe that both and CDL can be seen as early steps towards more power-
ful calculi able to handle interleaving of reconfiguration and standard execution steps
in a liberal way and to encode all the possibilities mentioned above. An important
issue to be investigated in parallel is the expressive power of such calculi, by show-
ing which kind of real-world reconfiguration mechanisms can be modeled and which
kind cannot by each of them. Though the practical motivations of calculi for dynamic
reconfiguration are certainly founded, a more detailed analysis of this connection is at
a very initial stage, due to the youth of the trend toward such models itself. We have
presented a preliminary attempt in [11], where we have used a particular instantiation

436

of CDL to encode a toy language, called JL, which provides an abstract view of the
mechanism of dynamic class loading with multiple loaders as in Java.

Acknowledgments
We warmly thank Eugenio Moggi, Joe Wells, Henning Makholm and Sebastien Carlier
for useful comments on previous drafts of this work.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Martin Abadi, Goerges Gonthier, and Benjamin Werner. Choice in dynamic linking. In
FOSSACS’04 - Foundations of Software Science and Computation Structures 2004, Lec-
ture Notes in Computer Science. Springer, 2004.
D. Ancona, S. Fagorzi, E. Moggi, and E. Zucca. Mixin modules and computational ef-
fects. In Jos C. M. Baeten et al., editors, International Colloquium on Automata, Lan-
guages and Programming 2003, number 2719 in Lecture Notes in Computer Science,
pages 224–238. Springer, 2003.
D. Ancona, S. Fagorzi, and E. Zucca. A calculus for dynamic linking. In C. Blundo and
C. Laneve, editors, Italian Conf. on Theoretical Computer Science 2003, number 2841 in
Lecture Notes in Computer Science, pages 284–301, 2003.
D. Ancona and E. Zucca. A theory of mixin modules: Basic and derived operators. Math-
ematical Structures in Computer Science, 8(4):401–446, August 1998.
D. Ancona and E. Zucca. A calculus of module systems. Journ. of Functional Program-
ming, 12(2):91–132, 2002.
Z. M. Ariola and M.Felleisen. The call-by-need lambda calculus. Journ. of Functional
Programming, 7(3):265-301, 1997.
G. Bierman, M. Hicks, P. Sewell, and G. Stoyle. Formalizing dynamic software updating
(Extended Abstract). In USE’03 - Workshop on Unexpected Software Evolution, 2003.
L. Cardelli. Program fragments, linking, and modularization. In ACM Symp. on Principles
of Programming Languages 1997, pages 266–277. ACM Press, 1997.
S. Drossopoulou. Towards an abstract model of Java dynamic linking and verfication. In
R. Harper, editor, TIC’00 - Third Workshop on Types in Compilation (Selected Papers),
volume 2071 of Lecture Notes in Computer Science, pages 53–84. Springer, 2001.
S. Drossopoulou, G. Lagorio, and S. Eisenbach. Flexible models for dynamic linking.
In Pierpaolo Degano, editor, ESOP 2003 - European Symposium on Programming 2003,
pages 38–53, April 2003.
S. Fagorzi, E. Zucca, and D. Ancona. Modeling multiple class loaders by a calculus for
dynamic linking. In ACM Symp. on Applied Computing (SAC 2004), Special Track on
Object-Oriented Programming Languages and Systems. ACM Press, 2004. To appear.
T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting. In D. Le Mé-
tayer, editor, ESOP 2002 - European Symposium on Programming 2002, number 2305 in
Lecture Notes in Computer Science, pages 6–20. Springer, 2002.
X. Leroy. A modular module system. Journal of Functional Programming, 10(3):269–
303, May 2000.
Tom Mens and Guenther Kniesel. Workshop on foundations of unanticipated software
evolution. ETAPS 2004, http://joint.org/fuse2004/, 2004.
J.B. Wells and R. Vestergaard. Confluent equational reasoning for linking with first-class
primitive modules. In ESOP 2000 - European Symposium on Programming 2000, number
1782 in Lecture Notes in Computer Science, pages 412–428. Springer, 2000.

