
REFUSAL IN INCOMPLETE DATABASES

Joachim Biskup and Torben Weibert

Abstract Controlled query evaluation preserves confidentiality in information systems at
runtime. A security policy defines a set of potential secrets to be hidden from a
certain user. Each time the user issues a query, a censor checks whether the cor-
rect answer would enable the user to infer any of those potential secrets. Given
an incomplete information system, the following problem arises: Is it safe to
admit that the database cannot provide an answer to a certain query because it
lacks the requested information? We show that the answer needs to be refused
more often than necessary at first glance, as otherwise the user would be able
to make meta level inferences that would lead to a violation of the security pol-
icy. A maximally cooperative censor, which preserves confidentiality but only
refuses the answer when absolutely necessary, is presented and analyzed.

1. INTRODUCTION

An important goal of a secure information system is preservation of con-
fidentiality. According to some security policy, certain information, often re-
ferred to as secrets, is to be hidden from certain users. This is particularly im-
portant when an information system is situated in an open environment where
many different users can access it. Typically, confidentiality is enforced by
static access rights. One major disadvantage of static access rights is that they
are usually assigned at design time. Thus, the administrator needs to prop-
erly survey all imaginable queries to the database. This can easily produce a
security hole, as the administrator might accidently overlook certain harmful
accesses or query sequences.

Unlike static access rights, controlled query evaluation preserves confiden-
tiality at run time. Each time the user issues a query, a censor checks whether
the answer would enable the user to infer one of the secrets defined by the se-
curity policy. If this is the case, the answer is distorted by some modificator.
Two different kinds of distortion are discussed in literature: The information
system can either refuse to answer [8] or it can give a false answer, commonly
referred to as lying [6]. Additionally, there exists a third method combining
refusal and lying [3, 5].

144 DATA AND APPLICATIONS SECURITY XVIII

Previous work on controlled query evaluation is based on logical databases,
using a model theoretic approach: The database instance is considered as a
structure of some logic, and a query is a sentence in that logic, being true if

is a model of or false otherwise, i. e., if is a model of Obviously,
such information systems are complete: Each sentence is either true or false in
the structure, and thus each query can be answered by the system. Controlled
query evaluation for complete databases has been exhaustively studied [2, 4].

Unfortunately, a lot of information systems are incomplete, in the sense that
some information is missing from the database [7]. Querying this information
then results in the database answering “I don’t know”. For example, it can hap-
pen that one or more fields of a dataset contain no data. In relational databases,
this is usually expressed by null values. There are several reasons for these
null values to occur. For example, sometimes a dataset needs to be added to a
table even if some of the attributes are unknown at that time. The missing data
is then expressed by null values. Furthermore, null values can emerge from
view updates. When inserting new datasets through a view, the masked out
attributes are filled with null values.

In this paper, we adapt the existing methods for controlled query evaluation
to incomplete databases. Sticking to logical databases, we use a proof theoretic
approach: We define a database instance as a (consistent) set of sentences
of some logic, called a theory. A query (sentence) is defined to be true if
is implied by false if is implied by and undef if neither nor
is implied by

A security policy is defined as a set pot_sec of sentences, called potential
secrets. A potential secret is a sentence the user is not allowed to infer. Poten-
tial secrets are considered harmful only if the secret is actually true in the given
database instance. A typical example is a sentence like “person X suffers from
aids”. If the person does actually suffer from aids, this is to be kept secret from
an untrustworthy user. On the other hand, if person X does not suffer from aids,
this fact may be disclosed, as the information is considered harmless. The goal
of controlled query evaluation is as follows: Whatever sequence of queries the
user issues, he may not rule out that any potential secret is actually false in
the database instance. Regarding the above mentioned example, this means: It
must always appear possible to the user that person X actually does not suffer
from aids.

When extending controlled query evaluation to incomplete information sys-
tems, the basic question is how to handle the situation when the value of the
query is undef in the current database instance. A first proposal, based on lying
and a specific modal logic framework, is found in [6].

In the present paper, we study refusal in a more general formal framework
developed in recent years. More specifically, our work is based on the follow-
ing assumptions: 1. The only distortion method to be used is refusal. 2. The

Biskup & Weibert 145

user knows the security policy and thereby the set of potential secrets to be
protected. 3. The user knows the algorithm of the censor. Thus, he knows on
which conditions the answer is refused.

This leads to the problem of meta inferences drawn from refusals. As the
user knows the algorithm of the censor, he can infer about the reason of a re-
fusal, and thus about the value of the query. The knowledge gained from a
meta inference might be partial (“the query value is either true or false, but not
undef”), but even such partial inferences can be harmful, as demonstrated in
Section 4. To avoid such harmful meta inferences, additional refuse-conditions
are introduced, so that the meta inferences drawn from a refusal are turned into
harmless partial inferences. Regarding cooperativeness, this leads to a draw-
back, as the answer is refused more often than necessary at first glance. The
censor presented in Section 3, which is derived from the censor for complete
databases found in [1], uses a total of three additional refuse-conditions. All of
these are proven to be essential in order to ensure confidentiality, so our cen-
sor is maximally cooperative with regard to the analyzed constraints, namely
refusal, potential secrets and known policies (cf. Section 4).

2. INCOMPLETE DATABASES

First we introduce the concept of logical databases and the model for ordi-
nary (non-controlled) query evaluation. Next, we present the four components
of controlled query evaluation: user logs, security policies, the censor and the
modificator. Finally, a unified framework of controlled query evaluation is in-
troduced which enables us to state a formal definition for the security of an
enforcement method.

2.1 Ordinary Query Evaluation

Given a logic L, we define a database schema DS as set of predicate and
constant symbols, and the instance as (consistent) set of sentences of L,
using only symbols from DS. The set of all instances is denoted by DS*. The
most elementary kind of query is a sentence We say that the query is true
in if implies false if implies and undefined otherwise, i. e., if
neither nor are implied by This is formalized by the function eval:

The operator represents the implication operator in the given logic L. Note
that we assume that implication is decidable in the logic L under consideration,

146 DATA AND APPLICATIONS SECURITY XVIII

which is not generally true for all logics. For example, in first order logic,
implication is only semi-decidable unless we restrict the database instance and
queries to certain kinds of sentences. Nevertheless, we continue to depend on
this assumption. The examples presented in this paper use propositional logic.

Given a database instance and a sequence of queries
the function query_eval returns the resulting sequence of answers:

EXAMPLE 1 Consider the following database:

Given the query sequence the resulting answers are
and

2.2 Controlled Query Evaluation

Figure 1. Controlled query evaluation

As outlined in the previous section, ordinary query evaluation returns the
correct value of the query in the given database instance, thus providing useful
and reliable answers. In presence of a security policy, this might not always
be desired. A security policy defines a set of facts the user is not allowed to
infer. The goal of controlled query evaluation is to ensure the preservation of
the security policy at runtime. Each time the user issues a query, it is checked
whether the answer would lead to a violation of the security policy. If this is
the case, the original query result is modified.

Biskup & Weibert 147

Controlled query evaluation is achieved by adding four components to or-
dinary query evaluation: 1. A user log log, representing the user’s assumed
belief about the current database instance. 2. A properly formalized security
policy pot_sec. 3. A censor function censor that decides whether a certain
answer needs to be modified, 4. A modificator, performing the modification
demanded by the censor. Figure 1 shows how the components of controlled
query evaluation interact.

2.2.1 The User Log. In order to decide whether a certain answer would
lead to a violation of the security policy, the system needs to maintain an image
of the user’s assumed knowledge about the database instance i. e., the facts
that the user assumes to be true in the given database instance.

Formally, the user log log is defined as a set of sentences. The initial user log
contains all semantic constraints the user is assumed to know prior to the

first query. After each query the user log is updated with the answer given
by the system: if the answer is true, is added to the log, if the answer is
false, is added. If the answer is undef or was refused, nothing is added to
the user log, as the censor presented does not need to remember those answers.

2.2.2 The Security Policy. The security policy is formally defined as
a set pot-sec of sentences, called potential secrets. The user is not allowed
to infer any of those potential secrets if the secret is true in the
given database instance, i. e., if holds. On the other hand,
if holds, this information is not considered harmful. The
third case, namely is considered harmless as well.

EXAMPLE 2 Imagine a database containing information about applicants for
a job vacancy, including information about certain diseases the applicants
might suffer from, say cancer. If a certain applicant suffers from cancer, this
information must be kept secret, as this knowledge might keep him from being
chosen for the job. On the other hand, if an applicant does not suffer from can-
cer, this fact may be disclosed. Controlled query evaluation must ensure that
the user querying the database cannot rule out that a certain person is healthy.

We assume that the user knows the security policy, i. e., the set of sentences
In previous work, both known and unknown poli-

cies have been studied. The essential conclusion was that censors for known
policies have to be more restrictive than those for unknown policies [2].

2.2.3 The Censor. The censor decides whether the answer needs to be
distorted (refused or modified) in order to preserve confidentiality according
to the given security policy. Formally, we have a function censor with the
database the security policy pot_sec, the current user log log and the query

148 DATA AND APPLICATIONS SECURITY XVIII

as parameters1. The censor returns one of the values yes, no, dontknow or
refuse, instructing the modificator what answer to give instead of the original
one.

The algorithm of the censor function depends on the three conditions aware-
ness of the security policy (known or unknown policies), type of the security
policy (potential secrets or secrecies, cf. Section 5) and kind of distortion that
the censor is allowed to use (refusal, lying or both). For complete information
systems, all of the resulting twelve cases have been studied [4]. For incom-
plete information systems, a secure censor is presented in Section 3, thereby
focusing on one of these cases, namely refusal under known potential secrets.

2.2.4 The Modificator. The modificator transforms the original answer
to the query into the answer demanded by the censor. It then passes the (pos-
sibly modified) answer to the user: true if the censor returned yes, false if the
censor returned no, undef if the censor returned dontknow, and the special
value mum if the censor returned refuse.

2.3 Security of an Enforcement Method

In Section 3 a secure censor for refusal under known potential secrets is
presented. In order to prove that a certain mechanism for controlled query
evaluation preserves confidentiality, we need a proper definition of security.

A method for controlled query evaluation can be formalized as a function

where X indicates the name of the method under consideration. In each step,
the answer is generated by the modificator according to the decision of the
censor, and the user log is updated accordingly:

Each method comes with an associated precondition which
defines the “admissible” arguments.

The goal of controlled query evaluation is to hide the fact that a potential
secret is actually true in the given database instance. More precisely, given a

1As indicated by Figure 1, the censor needs to know the database instance only to determine the query
value

Biskup & Weibert 149

potential secret pot_sec, the user must not be able to exclude that is
false or undef in the actual database instance In other words: There must
be another database instance in which is false or undef, and which would
have produced the same answers as did. From the user’s point of view,
and are indistinguishable. This can be formalized as follows:

DEFINITION 3 (CONFIDENTIALITY FOR KNOWN POTENTIAL SECRETS)
Let be a controlled query evaluation with as
associated precondition for admissable arguments. Then is
defined to preserve confidentiality (or, as we say: is safe) iff

3. REFUSAL FOR KNOWN POTENTIAL SECRETS

In this section, we present a censor for refusal under known potential se-
crets for incomplete databases. We start with a discussion on refusal as an
enforcement method for controlled query evaluation and its advantages and
disadvantages. Next, the censor for complete information systems, as found
in literature, is reviewed. Then a censor for incomplete information systems is
presented. Finally, we consider the quality of the presented censor by analyz-
ing its cooperativeness.

3.1 Outline of Refusal
In this paper, we focus on refusal as a means to distort harmful answers,

that means: 1. The censor may refuse the answer in order to hide possibly
dangerous answers. 2. The censor may not give false answers, i.e., it may
return yes only if holds, no only if
holds, and dontknow only if holds.

What’s the advantage of refusal? Even if some answers may be refused, the
information system does only provide reliable information, i.e., facts that are
actually true in the database instance. This can be important when the database
deals with sensitive information, for example in military applications or in a

150 DATA AND APPLICATIONS SECURITY XVIII

hospital, where doctors and nurses need reliable information to choose the right
medication.

The main disadvantage of refusal is that the user immediately notices that
an answer has been distorted. This might not always be desired. Moreover, the
user can (on meta level) infer about the reason of the refusal. We will see that a
secure censor has to refuse the answer more often than necessary at first glance
in order to avoid these meta inferences. This leads to a loss of cooperativeness,
which is analyzed in Section 4.

3.2 Refusal in Complete Databases

Previous work on controlled query evaluation deals with complete
databases, i.e., databases in which every query has a value of true or false.
For such complete databases, the following complete censor preserves confi-
dentiality [1]:

Table 1 shows the functioning of the complete censor. The decision of the
censor depends on two factors: First a security configuration (represented by
a line in the table) is identified by checking which of the possibly resulting
user logs if the answer true is given, or if the answer
false is given, respectively) would enable the user to infer any of the potential
secrets. Then the decision is determined by the actual query result (true or
false, represented by a column in the right part of the table).

Clearly, the answer has to be refused if the resulting user log
if if would imply a
potential secret. These real refuse-conditions are marked black in the table.

Unfortunately this is not sufficient. Imagine the user issues a query for
that only would imply a potential secret but not As the

Biskup & Weibert 151

user knows the user log and (as we suppose) the set of potential secrets‚ he is
able to determine the security configuration‚ i. e.‚ the line of the table the an-
swer must originate from‚ in this case the second line. Furthermore‚ we assume
that the user knows the algorithm of the censor‚ so he knows what answers the
censor gives under this security configuration. If there was only a single (real)
refuse-condition in the second line of the table (for
the user could figure from the answer mum that must
hold‚ because there is no other query value that could have led to this answer.
This problem of meta inferences is solved by adding some additional refuse-
conditions‚ marked gray in the table. Now the censor answers refuse even if

holds. As a result‚ the user cannot infer about the value
of in anymore.

3.3 Refusal in Incomplete Databases

The censor for complete databases presented in the previous section only
handles query values of true and false. In incomplete databases‚ there is a
third possible value for a query‚ namely undef. When developing a censor for
incomplete databases‚ the main problem is how to deal with these undef values.

As stated in Section 2.3‚ it is regarded harmless if the user knows that a
potential secret is undefined in the current database instance. Nevertheless‚ an-
swering undef on an arbitrary query is not necessarily safe. Imagine a situation
where the user can infer that “if the database does not know whether or
holds‚ then the potential secret must hold”. Although the logic exploited for
the user log is not powerful enough to express such sentences‚ such inferences
could be made on meta level. As a result‚ the system must not generally admit
that it does not know the value of a query.

Table 2 shows a censor for refusal under known potential
secrets in incomplete databases. We will prove that the censor is secure in the
sense of Definition 3 if the following precondition holds: The initial user log

does not entail any of the potential secrets‚ and the database and the initial
user log are consistent which each other‚ i. e. the user does not initially believe

152 DATA AND APPLICATIONS SECURITY XVIII

facts that are false in the database2. So an argument must
satisfy the following precondition:

It is obvious that the censor keeps the second condition as an invariant for all
of the following user logs‚ so we have

THEOREM 4 (SECURITY OF REFUSAL CENSOR)
preserves confidentiality in the sense of Definition 3.

We only give a rough sketch of the proof. Given a database instance an
initial user log a security policy pot_sec so that
is satisfied‚ and a query sequence resulting in the answers

we define a second database instance by gathering all sen-
tences that were added to the user log throughout the query sequence:

As only contains sentences that are implied by is consistent‚ so
is satisfied by As is a sub-

set of and by (1)‚ does not imply any of the potential secrets‚ thus
satisfying condition (b) of Definition 3. Finally‚ it can be shown by induction
that the same answers are given under and satisfying condition (a).

EXAMPLE 5 Recall Example 2 and the database containing information
about what diseases a certain person suffers from. Limiting the diseases un-
der consideration to aids‚ cancer and influenza‚ the database schema might
contain the following atoms

where DISEASED indicates that the person suffers from any of the three
explicitly named diseases. We specify a security policy that disallows the user
to infer that the person suffers from aids or cancer‚ so we have the potential
secrets

2The latter condition is not essential for the security of the censor but yet reasonable to presume. Otherwise‚
all queries regarding the conflicting facts would result in a refusal‚ as adding the correct answer would make
the log inconsistent‚ and then all of the potential secrets would be implied by the user log.

Biskup & Weibert 153

The user knows that if the person is diseased‚ it must suffer from aids‚ cancer
or influenza‚ so we have the following initial user log:

Now imagine the database knows that the mentioned person suffers from can-
cer but not from aids‚ whereas the database does not know whether the person
has influenza. So the database instance is as follows:

Table 3 shows the answers given by the censor for the query sequence

The and values indicate the line and column of Table 2 the answer originates
from.

According to Theorem 4‚ for any of the potential secrets‚ there exists a
database instance that would have produced the same answers‚ and in which
this potential secret is either false or undef. It can easily be verified that

satisfies this condition for each of the two potential secrets.

4. COOPERATIVENESS

In the previous section we have presented a secure censor for refusal under
known potential secrets. In order to ensure the highest possible cooperative-
ness‚ we are interested in finding a censor that only distorts the answer in case
it is absolutely necessary. We have found that sometimes the answer needs
to be refused even if the otherwise resulting user log wouldn’t have implied a
potential secret‚ protecting the real refuse-conditions against possible meta
inferences. Surely‚ these additional refuse-conditions have an impact on the
cooperativeness of the method‚ as the answer is more often refused than it is
originally necessary. This leads to the idea of defining the quality of a cen-
sor by the number of additional refuse-conditions in the decision table. The
censor presented in Section 3.3 imposes a total of three additional refuse-
conditions. In this section we show that this is the least possible amount and
thereby that this censor is maximally cooperative.

Imagine the user issues a query that is refused by the censor. The user can
then make the following inferences on meta level:

154 DATA AND APPLICATIONS SECURITY XVIII

As the user knows the set of potential secrets‚ he can determine the se-
curity configuration of his query and thereby identify the line of the de-
cision table the answer originates from.

As the user knows the algorithm of the censor and the decision table‚ he
can compare the answer to the entries found in the corresponding line of
the decision table. He can then identify the column(s) the answer might
originate from.

If there is exactly one refuse in the line under consideration‚ the column
can be fully identified‚ and so can the query value.

If there are two fields containing a refuse‚ the user can still gain partial
knowledge about the query value‚ i. e. a disjunction “the query value is
either or where and are the values of the corresponding columns.

Biskup & Weibert 155

If there are refuses in all three columns of this line‚ no information
about the query value can be gained.

Obviously‚ the possibility of gaining information on meta level depends on the
number of refuse-conditions in a given line‚ and the columns where these are
located.

The second and the third line of the decision table contain only one real
refuse-condition each. Without the additional refuse-conditions introduced
by our censor‚ these single refuses would enable the user to gain full knowl-
edge of the query value. So additional refuse-conditions are unquestion-
ably necessary in those lines. Now‚ with a refuse in both the first (or
second‚ respectively) and third column‚ the user can only infer that either

or (or false‚ respectively) must
hold‚ but not which of these alternatives. This disjunction is safe according to
Theorem 4.

In the first line of the decision table‚ the situation is slightly different. There
are two real refuse-conditions‚ so even without an additional refuse‚ the
user can only gain partial knowledge about the query value. But the result-
ing disjunction “the query is either true or false” is not necessarily safe‚ as
demonstrated by the following example.

EXAMPLE 6 Imagine a weakened censor that lacks the additional refuse-
condition in the third column:

Consider the following situation:

When the user issues the query sequence the system
answers as follows:

From the first answer‚ the user can infer that the database knows nothing def-
inite about From the second answer‚ the user can infer that the database
knows that holds‚ i. e.‚ or even must be implied by The third

156 DATA AND APPLICATIONS SECURITY XVIII

query leads to a security configuration where both and
would imply a potential secret‚ so the answer must originate from the first line
of the censor table. As the answer is refused‚ the user can infer from the weak-
ened decision table that either or must hold in From the first two
answers he knows that cannot be true. So it must hold that

In order to avoid this meta inference‚ the safe refusal censor from Section 3
introduces the additional refuse-condition in the rightmost column of the first
line. When the user receives a refusal from this line now‚ he cannot infer
anything about the query value anymore‚ as the resulting disjunction “the value
is either true‚ false or undef” contains no information.

As we have pointed out in this section‚ additional refuse-conditions pre-
vent the user from making such inferences on meta level by either turning lines
that formerly contained harmful single refuses into lines with harmless dis-
junctions (as in the second and third line)‚ or by turning lines that formerly
contained possibly harmful disjunctions into lines that contain a harmless total
of three refuse-conditions (as in the first line).

As we have shown‚ under known potential secrets for incomplete databases‚
a minimum of three additional refuse-conditions is required in order to pre-
serve confidentiality. Thus‚ with regard to cooperativeness‚ the censor pre-
sented in Section 3.3 can be considered ideal.

5. CONCLUSION

We have developed a censor for refusal under known potential secrets for
incomplete databases. As we have shown‚ the resulting enforcement method
for controlled query evaluation preserves confidentiality according to the secu-
rity definition in Section 2.3. There are two kinds of cases where the censor
refuses the answer: Four real refuse-conditions prevent the user from in-
ferring potential secrets on logical level. Three additional refuse-conditions
avoid inferences possibly made on meta level. We have shown that the censor
needs a minimum of three additional refuse-conditions in order to preserve
confidentiality. Thus‚ we have found an ideal censor for the given constraints
(potential secrets‚ known policy‚ refusal).

As pointed out in Section 4‚ the most challenging part of designing a safe
censor is the identification and treatment of harmful meta inferences. Success-
ful efforts have been made to use a modal logic representation for the user log‚
which enables us to formalize sentences like “the database knows that holds”
or “the database does not know whether or holds”. Inferences on meta
level can then be expressed in formal logical sentences and can be handled
much easier. This will be covered by future work.

In the present paper‚ we only consider security policies based on potential
secrets. There is a second kind of security policies called secrecies [1]‚ where

Biskup & Weibert 157

pairs of complementary sentences are protected so that the user cannot decide
which of the alternatives holds. For complete databases‚ secrecies can easily
be transformed into a set of potential secrets and then handled by a censor
designed for potential secrets‚ if certain requirements are met [2]. It is still an
open question if this reduction can also be made for incomplete databases.

Finally‚ we have only studied known policies so far. Given an unknown
policy‚ the user cannot determine the line of the table an answer originates
from. It is still to be analyzed how the censor can take advantage of this.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Joachim Biskup and Piero A. Bonatti. Lying versus refusal for known potential secrets.
Data & Knowledge Engineering‚ 38:199–222‚ 2001.

Joachim Biskup and Piero A. Bonatti. Confidentiality policies and their enforcement for
controlled query evaluation. In Proc. of ESORICS 02‚ Zürich, Switzerland‚ October 14-16,
2002‚ volume 2502 of Lecture Notes in Computer Science‚ pages 39–54. Springer‚ 2002.

Joachim Biskup and Piero A. Bonatti. Controlled query evaluation for known policies by
combining lying and refusal. In Proc. of FoIKS 02‚ Schloss Salzau‚ Germany‚ February
20-23‚ 2002‚ volume 2284 of Lecture Notes in Computer Science‚ pages 49–66. Springer‚
2002.

Joachim Biskup and Piero A. Bonatti. Controlled query evaluation for enforcing confiden-
tiality in complete information systems. To appear in International Journal of Information
Security‚ 2004.

Joachim Biskup and Piero A. Bonatti. Controlled query evaluation for known policies by
combining lying and refusal. Annals of Math. and Artificial Intelligence‚ 40:37–62‚ 2004.

P. A. Bonatti‚ S. Kraus‚ and V.S. Subrahmanian. Foundations of secure deductive
databases. IEEE Transactions on Knowledge and Data Engineering‚ 7(3):406–422‚ 1995.

J. Chomicki and G. Saake‚ editors. Logics for Databases and Information Systems‚ chap-
ter 10. Kluwer Academic Publishers‚ 1998.

George L. Sicherman‚ Wiebren de Jonge‚ and Reind P. van de Riet. Answering queries
without revealing secrets. ACM Transactions on Database Systems‚ 8(1):41–59‚ 1983.

