
ENSURING THE INTEGRITY OF
ENCRYPTED DATABASES IN THE
DATABASE-AS-A-SERVICE MODEL*

IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120, USA

hakanh@acm.org

Bala Iyer
IBM Silicon Valley Lab.

San Jose, CA 95141, USA
balaiyer@us.ibm.com

Sharad Mehrotra
Department of Information and Computer Science

University of California, Irvine, CA 92697, USA

sharad@ics.uci.edu

Abstract In the database-as-a-service model, a service provider hosts the clients’
data and allows access to the data through the Internet. Database-as-
a-service model offers considerable benefits to organizations with data
management needs by allowing them to outsource their data manage-
ment infrastructures. Yet, the model introduces many significant chal-
lenges, in particular that of data privacy and security. Ensuring the
integrity of the database, which is hosted by a service provider, is a
critical and challenging problem in this context. We propose an en-
crypted database integrity assurance scheme, which allows the owner
of the data to ensure the integrity of the database hosted at the ser-
vice provider site, in addition to the security of the stored data against
malicious attacks.

*This work was supported in part by NSF grant CCR 0220069 and an IBM Ph.D. Fellowship.

62 DATA AND APPLICATIONS SECURITY

Keywords: database, security, privacy, integrity, authentication, encryption, cryp-
tography, e-services, application service provider model

1. Introduction

Rapid advances in networking and Internet technologies have fueled
the emergence of the “software-as-a-service” model, also referred as the
Application Service Provider (ASP) model, for enterprise computing.
Successful examples of commercially viable software services include
rent-a-spreadsheet, electronic mail services, general storage services, dis-
aster protection services. Database-as-a-Service (DAS) model [11, 8, 9],
inherits all the advantages of the ASP model by allowing organizations to
leverage data management solutions provided by the service providers,
without having to develop them on their own. It alleviates the need for
organizations to purchase expensive hardware and software, deal with
software upgrades, and hire professionals for administrative and mainte-
nance tasks. Instead, the new model allows third party database service
providers the capability to seamlessly host data from diverse organi-
zations and take over these tasks. By outsourcing, organizations can
concentrate on their core competencies instead of sustaining a large in-
vestment in data management infrastructures. Increasingly, large com-
panies are outsourcing their IT departments and sometimes their entire
data centers to specialized service providers [6, 5].

NetDB2 system [11], which is being developed at IBM in cooperation
with University of California, Irvine, is an instantiation of DAS model.
The system has been deployed on the Internet and under constant use
for over two years.

Among the others, data privacy and security are the most significant
challenges in the DAS model. In the DAS model, the user data is stored
at the service provider (ASP) site. The ASP stores the client’s data
and the client poses queries against that database and the ASP (or the
server) responds back to the client with results of the queries. Most
companies and individuals view their data as an asset. The theft of
intellectual property already costs organizations great amount of money
every year [4]. Therefore, first, the owner of the data needs to be assured
that the data is protected against malicious attacks from outside of ASP.
In addition to this, recent studies indicate that 40% of those attacks are
perpetrated by the insiders [4]. Hence, the second and more challenging
problem is the privacy of the data when even the ASP itself is not trusted
by the owner of the data. First problem is examined in [11] and the
second one is studied in [8], which explores how SQL queries can be
executed over encrypted data.

The Integrity of Encrypted Databases 63

In this paper, we look at another important issue that arises in the
context of the second problem stated above. Although the client’s data
is protected against both outsiders and the ASP with data encryption
techniques, how can the client ensure the integrity of the database, which
belongs to the client but is under the control of the ASP? Our prelim-
inary work on this issue appears in [10]. That work does not provide
efficient schemes to ensure the table-level integrity. Here we present
efficient incremental techniques to ensure the table-level integrity and
discuss the applicability of the schemes in real database environments.
The previous work also fails to assess the performance implications of
the integrity assurance schemes. In this paper, we experimentally eval-
uated the performance of the schemes we propose by using the standard
benchmark queries.

We view the integrity problem in two dimensions. First, when the
client receives a record from the sever, how can the client ensure the
integrity of the record? That is, how can the client verify that the
data has not been changed in an unauthorized way? Second, the client
needs to assure the integrity of whole table stored at the server site.
This problem is more pronounced in dynamic environments, where the
update rate of the database is high. In such environments, the client
needs efficient mechanisms, which will require minimal computational
resources that are limited at the client site. While entailing minimal
computational resources, preferred solution is a mechanism that can be
automated requiring minimum human involvement. In this paper, we
present such a solution to ensure the integrity of hosted databases.

Integrity problems may arise both from malicious or non-malicious
circumstances. Malicious threats may originate from misbehaving server
or some other adversary who breaks into the system. Active and replay
(restore) attacks, as described in [12], are the typical examples for those
kinds of threats. Non-malicious threats can also have many sources.
One example for those is system failures. ASP may experience a system
breakdown and may not be able to recover all user data from on-line
and/or archive sources. In those cases, the client does not have any
verification mechanism to detect the integrity of the original data. In
the course of NetDB2 project, we have particularly observed the need for
addressing data integrity problems raised from second group of sources,
namely; non-malicious threats.

To address these issues, we propose two-level encrypted database in-
tegrity scheme, which consists of Record-Level Integrity and Table-Level
Integrity concepts. Those are developed in the context of the DAS model
and described in Section 3.2 and Section 3.3, respectively. We note that,
the techniques we present in this paper are not specific to either the DAS

64 DATA AND APPLICATIONS SECURITY

Figure 1. Database-as-a-Service architecture

model or the encrypted databases but have wider applicability to any
relational data that is subject to integrity issues. Once implementation
of these techniques is in place, the system can automatically detect the
integrity violations and intrusions.

The rest of the paper is organized as follows. Section 2 provides back-
ground on the DAS model and the encrypted database storage model.
Section 3 presents our solution to encrypted database integrity by dis-
cussing the record-level and the table-level integrity techniques. Sec-
tion 4 gives our experimental results on queries from the TPC-H bench-
mark. We conclude the paper in Section 5.

2. Background

2.1. Database-as-a-Service Model
The system we use in this study is based on the architecture proposed

and described in [8] and [9]. The basic architecture and the control flow
of the system are shown in Figure 1. It is comprised of three fundamen-
tal entities. A user poses the query to the client. A server is hosted
by the service provider that stores the encrypted database. The en-
crypted database is augmented with additional information (which we
call the index) that allows certain amount of query processing to oc-
cur at the server without jeopardizing data privacy. A client stores the

The Integrity of Encrypted Databases 65

data at the server. Client1 also maintains metadata for translating user
queries to the appropriate representation on the server, and performs
post-processing on server query results. From the privacy perspective,
the most important feature is, the client’s data is always stored in en-
crypted form at the server site. The server never sees the unencrypted
form of the data, and executes the queries directly over encrypted data
without decrypting it. We fully studied the query processing techniques,
which allow this process, in [8].

2.2. Encrypted Database Storage Model
We briefly summarize how the client’s data stored at the server in an

encrypted fashion.2 Following this we introduce our extensions to the
model to implement data integrity techniques.

For each relation we store, on the server, an en-
crypted relation: where

Here, an etuple stores an encrypted string
that corresponds to a tuple in relation R. Each attribute stores
the partition index for corresponding attribute that will be used for

1Often the client and the user might be the same entity.
2We will not repeat here all of the details of storage model, since they are thoroughly discussed
in [8]. Rather, we only provide necessary notations to explain the constructs we develop in
this work.

66 DATA AND APPLICATIONS SECURITY

query processing at the server. represents the encrypted form of the

a corresponding table, shown in Table 2, at the server:
etuple,

RID represents record identifier, which we will use in Section 3.3.
The second column etuple contains the string corresponding to the en-
crypted tuples in emp. For instance, the first tuple is encrypted to

that is equal to (1,23, Tom, 70K, Maple, 40),
where is a deterministic encryption algorithm with key Any deter-
ministic encryption technique such as AES [1], Blowfish [14], DES [7]
etc., can be used to encrypt the tuples. The third column corresponds
to the index on the employee ids.3 The sixth column represents the
individually encrypted values employee ids.

3. Encrypted Database Integrity

We study the integrity of a database at two different granularity levels,
1) Integrity of the records, 2) Integrity of a table. We call the former as
Record-Level Integrity and the latter as Table-Level Integrity.

3.1. Preliminaries
In this subsection we provide necessary definitions and concepts that

we use in the rest of the section. Our definitions are based on [12, 15].
A hash function is a function which has, as a minimum, the

following properties: 1) Compression, meaning maps an input of
arbitrary finite bitlength to an output of fixed bitlength and 2)
Ease of computation, meaning given and an input is easy to
compute.

A one-way function is a function that for each from the domain of
it is easy to compute but it is computationally infeasible to find

any such that A hashfunction is collision resistant if it
is computationally infeasible to find any two distinct inputs where

The manipulation detection codes (MDCs) are one-way collision re-
sistant hash functions that provide a representative image or hash of a
message.

3 Details of creation of those index values can be found in [8].

attribute value of corresponding attribute
For example, consider a relation emp given in Table 1 that stores

the information about the employees. The emp table is mapped to

The Integrity of Encrypted Databases 67

Figure 2. Record-level integrity with RICs

The data integrity, in general, can be defined as a property, which
guarantees that the data has not been manipulated in an unauthorized
manner since the time it was created by an authorized spurce. MDCs
provide this level data integrity in combination with data encryption.

As we will see, we need to expand this definition to satisfy data in-
tegrity requirements in the DAS model. This definition only provides
data integrity for individual records stored in the database at the server
site. In addition to that, we want to ensure the integrity of tables in an
efficient way.

3.2. Record-Level Integrity

The record-level integrity represents that the content of a record has
not been manipulated in an unauthorized manner. Although it may
not be apparent, data encryption does not provide data integrity auto-
matically. The owner of the decryption key can decrypt the encrypted
messages, which were encrypted with the same key. But this does not
guarantee that the encrypted message has not been manipulated by the
adversary. The discussion of how encrypted messages can be manipu-
lated undetectably can be found in [12]. This motivates the need for
data integrity measures over encrypted data.

To provide record-level integrity we propose a scheme based on Record
Integrity Codes (RICs). RICs are specially computed representative im-
ages for each record with certain security and uniqueness measures. Fig-
ure 2 shows the procedure that provides record-level data integrity. The
client has a record that will be inserted into the database, which is
maintained by the application service provider or simply the server. The
client first computes the hash code of the record by using a

68 DATA AND APPLICATIONS SECURITY

hashing algorithm, which produces Record Integrity Code (RIC). This
can be any algorithm, which satisfies the security requirements given
before. Here we use MDCs for this purpose. After this step, the client
concatenates the hash code H with the original record text and en-
crypts them together by using any deterministic encryption algorithm
with secret key i.e., the client computes ciphertext
where represents concatenation. The client inserts ciphertext C as an
etuple into the database.

Whenever the client requests a record, the server sends back the corre-
sponding etuple in encrypted form. To verify the integrity of the record,
the client first decrypts the etuple recovering and which is the RIC,
parts. Since only the client has the secret key for encryption algorithm
no one else can decrypt. Then the client independently computes
of received record and compares that with the hash code If they
are equivalent, this verifies that the received record is authentic and
has data integrity, i.e., has not been manipulated in an unauthorized
manner.

3.3. Table-Level Integrity

In the previous section we discussed mechanisms that enable the client
to test the integrity of individual the records returned by the server. In
this section, we study schemes, which allow the client to validate the
integrity of the table(s).

The integrity of a table may be compromised by an adversary by mod-
ifying, adding, or deleting some or all of the records. An unauthorized
modification on records can be detected by the record-level integrity
techniques, when they are queried by the client. However, the record-
level integrity is not enough to detect unauthorized addition and/or
deletion of records in any case.

To successfully detect such modifications, we propose a mechanism,
which creates a signature for each table. Those signatures can be thought
of the fingerprints of the corresponding tables. They are created, up-
dated, and stored at the client site in a secure way. Hence, an adversary
cannot re-compute the signature and verification of the signature the
would detect the unauthorized modifications. Considering our focus on
security, the signatures should be resilient against various cryptographic
attacks.

In addition to that, we make note of another important issue regarding
the computation of the signatures. The client should re-compute the
signature when he inserts/deletes a record from a table. This is an extra
overhead for the client and can be significant in terms of system resources

The Integrity of Encrypted Databases 69

at the client site and network traffic. Undoubtedly, a highly preferred
alternative would be a scheme, which allows incremental updates on
the signatures instead of requiring the processing of all of the existent
records.

3.3.1 Incremental Signatures. To achieve the incremental up-
dates on signatures, we make use of specialized schemes, XOR MACs,
introduced by Bellare et al. [3, 2], in the context of incremental cryptog-
raphy [2]. The main idea is; when there is a change in a document D, to
construct mechanisms to reflect “only the changes” on the cryptographic
transformation (in our case the signatures) of the document D without
processing all the document from scratch. Hence, such an incremental
algorithms run time would be proportional to the number of changes
but not proportional to the document length. Formal definition of XOR
scheme we use in this study is given in [3] as follows:

is a pseudorandom function (PRF) with secret key and is a
pseudorandom permutation (PRP) with secret key Rand(·), called
randomizer, is an algorithm, which given a string picks a random
string and returns The message that will be authenticated is

where is a special start symbol and
is a special end symbol. Then the tag of the message is computed

in three steps:

1

2

3

Randomize: Let

Chain: Let

Tag: Let

In our system setup, are defined as the database records of the
table and the tag T corresponds to the signature S of the table. [3]
discusses possible instantiation alternatives for PRF such as using
DES, MD5, or both. The instantiation of can be handled in a similar
way as a block-cipher can be viewed as a PRP. For simplicity, we assume
that size of a database record is equal to block size of the block-cipher.
If record size is larger, then it can be processed as multiple blocks. If it
is smaller than the block size, the standard padding techniques can be
used. Security of the scheme also analyzed thoroughly in [3] against the
various types of attacks.

Insert: We use the record identifiers (RIDs) to keep track of the in-
dex of the records in the algorithm. Note that, although the RIDs are
stored in the clear at the server, they are also included in the etuples
in the encrypted form. (See Section 2.2) Therefore, even the server
manipulates the RIDs, the client can always recover the original ones

70 DATA AND APPLICATIONS SECURITY

by decrypting the etuples. We assume that the RIDs are always non-
decreasing unique numbers. (Most of commercial database systems al-
ready provide table definitions to create this type of ids.)

Assume that the current signature of a table is S and the RID of the
last record is If the client inserts a new record (i.e.,),
then the new signature is computed as follows:

1

2

The client recovers hash value as

The client moves the special end record one position forward by
assigning (Note that here is not the randomized
form of the new record being inserted but the randomized form of
the special end record.)

3 The client computes

4 The client updates the hash value by:

5 The client computes the new signature

Delete: Deletions are reflected on the signature in an incremental way
as follows. Assume that the current signature of a table is S and the
client wants to delete a record (i.e.,), then the new signature

is computed as follows:

1

2

The client recovers hash value as

The client updates by:

3 The client computes the new signature

Incrementing requires five calls to the PRF. This is a significant sav-
ing as compare to computing the signature from scratch, which would
require one call for each record in the table.

3.3.2 Application of the Incremental Signatures. We have
presented the incremental signature computation formally. The scheme
uses the RIDs as record indexes, which are also employed in the com-
putation steps. Now, we will discuss the realization of the scheme in
database applications.

The insertion operation does not pose any difficulty. Since the RIDs
are always incrementing unique numbers, the client inserts a new record

The Integrity of Encrypted Databases 71

with a new RID and updates the signature of the table. On the other
hand, deletion operation requires some more work.

In typical database applications, the users usually don’t query the
records with their RIDs. As an example, if we want to delete a record
of an employee whose employee id is 123 from employee table, a typical
query would be:

To execute this deletion, the client runs two queries to obtain the
RIDs and the etuples required to compute the updated signature.

The first query retrieves the RID of the record being deleted as follows:

Let us assume that the RID of the corresponding record is 345, then
the second query retrieves the RIDs of two records, whose RIDs are
the immediate predecessor and successor of the RID of the record being
deleted.4

After running this query, the client would have enough information
to update the signature of the table.

We used equality predicate in the WHERE clause of the query for this
example. We note that, if the query has inequality predicates then the
approach should be different. In that case, the client could use partition
indexes (See Section 2.2) instead of the field-level encrypted values to
obtain the necessary information.5 What the client needs are RIDs and
corresponding etuples in any case. Therefore, the queries should be re-
formulated accordingly to retrieve that information by utilizing partition
indexes.

We also note that SQL update operations can be implemented as the
combination of delete and insert.

4SQL queries given below have been executed on IBM DB2 v8.1.
5Query processing with partition indexes is fully discussed in [8].

72 DATA AND APPLICATIONS SECURITY

Figure 3. Server response time Figure 4. Server I/O performance

Figure 5. Client response time Figure 6. Total query response time

4. Experimental Evaluation

We have conducted experiments to evaluate the overhead introduced
by the record-level integrity schemes that we have presented. Our re-
sults showed that the overheads are not significant. We used the stan-
dard TPC-H benchmark [16] queries, specifically Q#3, Q#6, Q#12 from
TPC-H suite. The TPC-H database was created in scale factor 1, which
corresponds to 1GB in size. To implement the integrity schemes, we
used the AES block cipher [1] as the encryption algorithm, and the MD5
message digest [13] as the one-way hash function. The experiments were
executed on a server, which had a Pentium III-750MHz CPU, 256MB
RAM, Windows 2000 OS, and IBM DB2 UDB v8.1.

To provide the detailed analysis, we report the results for the server
side queries, the client side queries, and the total query elapsed times.
In all figures, we compare two cases, namely; the case, where there is

The Integrity of Encrypted Databases 73

no integrity scheme is deployed and the case, where the record-level
integrity schemes we have presented are implemented.

Figure 3 shows the overhead in server side query response times. On
the average the increase is 17%. Figure 4 presents the increase in the
number of I/Os executed at the server site. The increase, 12% on the
average, is mainly due to the increase in the tuple sizes. The tuple sizes
increase as a result of inclusion of the RICs into the records and it is
reflected to server side query response time.

Figure 5 shows the measurements for client side query CPU time. It
increased, constantly for all queries, by 70%. The overhead is due to
the increased number of bytes that are decrypted and the validation of
the integrity of the tuples by the client. The total query response time,
which is presented in Figure 6, showed 18% increase on the average,
which did not constitute significant overhead.

5. Conclusions
We have studied the crucial problem of encrypted database integrity

in the context of database-as-a-service model. We have proposed two-
level encrypted database integrity scheme, which consists of Record-Level
Integrity and Table-Level Integrity concepts, as a solution to this prob-
lem. Our scheme is combined with encrypted database storage model.
Consequently, the resultant system provides the security of the stored
data against the malicious attacks as well as the database integrity fea-
tures, which ensure the authenticity and the validity of the data stored
at the service provider site.

References

AES. Advanced Encryption Standard. National Institute of Science and Tech-
nology, FIPS 197, 2001.

Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography:
The case of hashing and signing. Lecture Notes in Computer Science, 839:216–233,
1994.

Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography
and application to virus protection. In STOC, pages 45–56, 1995.

Computer Security Institute. CSI/FBI Computer Crime and Security Survey.
http://www.gocsi.com, 2002.

ComputerWorld. J.P, Morgan signs outsourcing deal with IBM. Dec. 30, 2002.

ComputerWorld. Business Process Outsourcing. Jan. 01, 2001.

DES. Data Encryption Standard. FIPS PUB 46, Federal Information Processing
Standards Pub., 1977.

B. Iyer, C. Li, and S. Mehrotra. Executing SQL over Encrypted
Data in Database Service Provider Model. In Proc. of ACM SIGMOD, 2002.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

74 DATA AND APPLICATIONS SECURITY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Privacy in Database-as-a-Service Model. Ph.D. Thesis, Depart-
ment of Information and Computer Science, University of California, Irvine,
2003.

B. Iyer, and S. Mehrotra. Encrypted Database Integrity in
Database Service Provider Model. In Proc. of Certification and Security in E-

Services (CSES’02), IFIP World Computer Congress, 2002.

B. Iyer, and S. Mehrotra. Providing Database as a Service. In
Proc. of ICDE, 2002.

D. R. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, 1992.

Bruce Schneier. Description of a new variable-length key, block cipher (blowfish),
fast software encryption. In Cambridge Security Workshop Proceedings, 1994.

D. R. Stinson. Cryptography: Theory and Practice. CRC Press, 1995.

TPC-H. Benchmark Specification, http://www.tpc.org/tpch.

