
RBAC POLICY IMPLEMENTATION FOR
SQL DATABASES

Steve Barker
King’s College, U.K.

Paul Douglas
Westminster University, U.K.

Abstract We show how specifications of role-based access control (RBAC) and
temporal role-based access control (TRBAC) policies in a logic lan-
guage may be used in practical implementations of access control poli-
cies for protecting the information in SQL databases from unauthorized
retrieval and update requests. Performance results for an implementa-
tion of a variety of RBAC policies for protecting an SQL databases and
some optimization methods that may be used in implementations are
described.

Keywords: RBAC, SQL, Internet Database.

1. Introduction

The protection of SQL databases from unauthorized access requests
has long been recognized as being important. However, SQL standards
and SQL products have hitherto included only limited options for ex-
pressing the protection requirements for the information contained in
SQL databases.

In the SQL2 standard [11], the security-specific language features are
restricted to simple GRANT and REVOKE statements. The GRANT-
REVOKE model enables a security administrator (SA) to represent only
a small subset of the access control policies that are needed in practice
[4]. For instance, SQL does not enable conditional limitations on the use
of a granted privilege to be specified [4]. Of course, views may also be
used to help to control access to information, but combining views and
GRANT-REVOKE statements complicates the expression of an access
policy.



RBAC Policies in SQL 289

In the proposed SQL: 1999 standard, language features for expressing
RBAC policies are included. However, the proposals are again limited.
For instance, SQL: 1999 does not include features for representing tem-
poral authorization policies. Although implementors of SQL database
systems may offer more sophisticated options than those included in the
SQL:1999 standard, current systems only provide limited options beyond
the standard [23].

To augment the expressive power of access control languages, it is
possible for a SA to use application programs written in some imperative
language (e.g., C). However, the implementation of an access policy in a
low-level, procedural language complicates the maintenance of an access
policy and makes it difficult for SAs to reason about the consequences
and effects of a policy specification.

The need for multipolicy specification using high-level specification
languages with well-defined formal semantics has recently been recog-
nised and a number of candidate proposals have been described in the
literature [1, 7, 6, 15]. However, these proposals are theoretical in nature
and performance measures for implementations of these models are usu-
ally missing (albeit [6] is an exception). The contribution of this paper is
to describe some practical implementations of logic-based specifications
of access requirements to protect SQL databases that are accessed over
the internet. Another of our contributions is to show how practical im-
plementations of our approach preserves the well-defined semantics upon
which the specification of access control policies are based. Evidence for
the practicability of our approach is provided in the form of a number of
performance measures that we discuss in Section 5. A Java program is
used to implement a system that integrates our access control subsystem
with client applications and an SQL database. We choose to use Java
because of its practical importance.

Recent work on protecting SQL databases has included [4], and [5]. In
each of these proposals, SQL is used to implement access control policies
for protecting the information in SQL databases, but without using any
language-specific constructs for access policy formulation. The decision
to use SQL to seamlessly protect SQL databases is a natural one and
satisfies the attraction of requiring that a single language be used for
implementing access control policies for protecting databases. However,
SQL is a relatively low-level language (relative to logic languages), and
SQL is not well-suited for proving properties of a policy specification [20].
As such, choosing SQL to formulate access policies for protecting SQL
databases is not ideal. Moreover, in [4], the availability of an RDBMS
that supports sophisticated request modification facilities [11] is assumed.
Unfortunately, not all RDBMSs support the features that are required



290 DATA AND APPLICATIONS SECURITY XVII

for the suggested approach, and the formal semantics, upon which the
proposal is based, mixes operational and declarative features. In [5],
the use of PL/SQL for implementing an access policy for protecting Or-
acle databases is described. The approach applies only to Oracle SQL
databases. Moreover, the proposal involves transforming a formal policy
specification from [2] into an equivalent PL/SQL form. However, no for-
mal translation procedure is described. What is more, the implemented
code is low-level and hence suffers from the same shortcomings exhibited
if applications programs are used to implement access control policies
(e.g., reasoning about the formal properties of a policy implementation
is complicated).

The rest of the paper is organized thus. In Section 2, some basic no-
tions in access control, RBAC, TRBAC and logic programming are de-
scribed. In Section 3, the representation of RBAC and temporal RBAC
(TRBAC) policies, by using stratified logic programs [22], is discussed.
These policies are based on the model that is informally de-
fined in [26] and formally defined in [3]. Henceforth, we refer to the logic
programs that implement policies as RBAC
(TRBAC) programs. In Section 4, we describe our implementation of
RBAC/TRBAC programs for protecting SQL databases from unautho-
rized access requests. In Section 5, we give some performance results for
our approach. Finally, in Section 6, some conclusions are drawn and
suggestions for further work are made.

2. Basic Concepts

The RBAC and TRBAC programs that we consider in the sequel are
represented by using a finite set of normal clauses [21]. A normal clause
takes the form:

The head of the clause, H, is an atom and is a conjunc-
tion of literals that constitutes the body of the clause. The conjunction
of literals must be true (proven) in order for H to be true
(proven). A literal is an atomic formula (a positive literal) or its nega-
tion (a negative literal); negation in this context is negation as failure
[10], and the negation of the atom A is denoted by not A. A clause
with an empty body is an assertion or a fact. In the sequel, we will be
principally concerned with stratified programs.

An RBAC program S is defined on a domain of discourse that in-
cludes:



RBAC Policies in SQL 291

1

2

3

4

A set of users.

A set of objects.

A set of access privileges.

A set of roles.

The access privileges of interest to us in this paper are defined by the
set:

The semantics of the access privileges in are defined thus (where D
is an arbitrary SQL database, is an updated state of D, and is a
tuple):

If a user has the privilege select on a set of tuples
and then is permitted to know that is

true in D.

If a user has the privilege insert on a set of tuples
then is permitted to insert into D to generate

If a user has the privilege delete on a set of tuples
then is permitted to delete from D to generate

If a user has the privilege update on a set of tuples
then is permitted to change to and to generate

The and sets, comprise the (disjoint and finite) sets of
user, object, access privilege and role identifiers that form part of the
universe of discourse for an RBAC program. In this framework we have
the following definitions.

Definition 1 An authorization is a triple that denotes that a
user has the a access privilege on the object

Definition 2 If a is an access privilege and is an object then a permission
is a pair that denotes that the a access privilege may be exercised
on

Definition 3 A permission-role assignment is a triple that
denotes that the permission is assigned to the role



292 DATA AND APPLICATIONS SECURITY XVII

Definition 4 A user-role assignment is a pair that denotes that
the user is assigned to the role

For TRBAC programs, in addition to elements from the sets
and we require a set of time points. We view time as a linearly

ordered, discrete set of time points that are isomorphic to the natural
numbers.

Definition 5 A temporal authorization is a 4-tuple that de-
notes that user has the access privilege on object at time

In this paper, we assume that a (T)RBAC program defining a closed
policy [8] is used to protect an SQL database. The implementation of
various open policies or any number of hybrid (i.e., open/closed) policies
for protecting D necessitates that only minor modifications be made to
the approach that we describe (see [6]).

In the sequel, the constants that appear in clauses will be denoted
by symbols that appear in the lower case; variables will be denoted by
using upper case symbols. Moreover, we will use the constants

and to denote a distinct, arbitrary user, object, access privilege, role
and time, respectively. In clauses, we use the variables U, O, A, R and
T to respectively denote a set of users, objects, access privileges, roles
and times.

The result that follows is an immediate consequence of a (T)RBAC
program being a set of stratified clauses.

Proposition 1 An (T)RBAC program S has a unique 2-valued well-
founded model that coincides with the perfect model of S [9].

Corollary 1 (T)RBAC programs define a consistent and unambiguous
set of authorizations.

In our representation of (T)RBAC programs, functions are only used
to express structured terms and do not result in unbounded terms being
generated during computation. Moreover, if a (T)RBAC program is ex-
pressed by using built-in comparison or mathematical operators then we
assume that a SA will express these definitions in a safe form [27] such
that the arguments of a condition involving these operators are bound
to constants prior to the evaluation of the condition.

3. Representing (T)RBAC Programs

The RBAC programs that we describe in this section are based on
the specification of RBAC as a normal clause program from [1]. In [1], a



RBAC Policies in SQL 293

user U is specified as being assigned to a role R by a SA defining a 2-place
ura(U, R) predicate in an RBAC program. For example,
is used to record the assignment of the user Bob to the role To
record that the A access privilege on an object O is assigned to a role
R, clause form definitions of a 3-place pra(A, O, R) predicate are used.
For example, pra(insert, expresses that the role is
assigned the insert privilege on the binary relation provided that the
pairs (X, Y) inserted into are such that

An RBAC role hierarchy is represented by a partial order that
defines a seniority ordering on a set of roles R. Role hierarchies are
used to represent the idea that, unless constraints are imposed, “senior”
roles inherit the permissions assigned to “junior” roles in an RBAC role
hierarchy. Hence, if and then inherits the
permissions assigned to

Following [1], an RBAC role hierarchy is expressed in an RBAC
program by a set of clauses that define a 2-place senior _to predicate
as the reflexive-transitive closure of an irreflexive-intransitive 2-place
predicate that defines the set of pairs of roles such that is
directly senior to role in an RBAC role hierarchy (i.e., is senior to

and there is no role such that is senior to and is senior
to

In clause form logic, senior_to is defined in terms of thus (where
‘_’ is an anonymous variable):

To represent that a user is active in a role at a time an
active fact is appended to a (T)RBAC program whenever re-
quests to be active in and this request is allowed. The set of active
facts in a (T)RBAC program at an instance of time is the set of roles
that users have active at time

The set of authorization triples defined by an RBAC program are
expressed by the following clause:

The permitted(U, A, O) clause expresses that a user U has the A ac-
cess privilege on an object O if U is assigned to, and is active in, a role
R1 that is senior to the role R2 in an RBAC role hierarchy associated



294 DATA AND APPLICATIONS SECURITY XVII

with the RBAC program, and R2 is assigned the A access privilege on
O.

Only minor modifications are required to extend RBAC programs to
TRBAC programs. For a TRBAC program S, the set of authorization
triples defined by S may be expressed by the following clause:

The permitted(U,A,O,T) clause expresses that a user U has the A
access privilege on an object O at time T (extracted from the system
clock using time(T)) if U is assigned to a role R1 at T, U is active in
R1, R1 is senior to the role R2 in an RBAC role hierarchy defined by
the TRBAC program, and R2 is assigned the A access privilege on O
at T.

4. The Practical Implementation of (T)RBAC
Programs

In this section, we describe the practical implementation of RBAC
and TRBAC programs for protecting SQL databases.

We have adopted a modular approach to developing the software that
implements our proposal. There are three principal components in our
implementation:

The Main Program.

The Security Module.

The Database System.

The three components above are used with a client application. We
refer to an implementation that is based on these components as a com-
posite system. It follows that a composite system is defined in terms
of a 4-tuple where: denotes the main program;

denotes the security module; denotes the database system; and
denotes a client application. The key features and issues relating to a
composite system are briefly outlined below.

The Main Program. The main program is written in Java:
Java is a suitable language for this type of application because of its
comprehensive server programming support (using Java Servlets [18])
and its ability to communicate easily with a DBMS using JDBC [19].
In addition, it is easy to access applications written in a variety of other
languages (through the Java Native Interface (JNI) [17] mechanism).



RBAC Policies in SQL 295

Java’s support for distributed processing means that it will also be well-
suited for future developments that we are considering for access control
in a distributed DBMS environment.

The module acts as a server program that receives access requests
from a client application The client application is written in HTML
for display in a browser window. All user data will be entered via the
browser, and all data will be returned to a browser; this is typically
the case with e-commerce applications. The principal function of the
module is to call the and modules to respectively authorize an access
request and to process the request with respect to an SQL database. In
the case of a SELECT request involving a query Q on the output
produced by the module is the set of tuples that satisfies Q from

is the answer that is returned to by Alternatively, if the
request for authorization is denied by an error message indicating the
denial of service is returned to by and no further action is taken;
no request is passed to and no DBMS activity occurs.

We have developed two alternative implementations of a session man-
agement system. We call these methods M1 and M2 where:

M1 involves authorizing every database transaction individually,
so the duration of a user session is precisely one transaction. This
does involve a certain processing overhead, but gives a high level
of security where the RBAC policy includes either temporal or
dynamic separation of duties [26] constraints.

M2 establishes a longer session that remains current until either
the user terminates the session, or the session is terminated by
the system (by, say, a timeout mechanism). The role allocation
the user is given is recorded by an entry in a database table used
purely for this purpose. The M2 method has the additional benefit
of being easy to extend to include temporal constraints (i.e., con-
straints on access that are more sophisticated than a mere inactiv-
ity or length-of-session based timeout mechanism) and a dynamic
separation of roles constraint. The latter option is straightforward
to implement as our module can directly consult the database
table in which current role allocations are stored.

The Security Module. Within the module, we use XSB [24] to
implement the logic program that defines the access control applicable
to an SQL database to be protected. XSB offers excellent performance
that has been demonstrated to be far superior to that of traditional
Prolog-based systems [25]. Calls to XSB from are handled by the
YAJXB [29] package. YAJXB makes use of Java’s JNI mechanism to



296 DATA AND APPLICATIONS SECURITY XVII

invoke methods in the C interface library package supplied by XSB. It
also handles all of the data type conversions that are needed when pass-
ing data between C and Prolog-based applications. YAJXB effectively
provides all the functionality of the C package within a Java environ-
ment.

Although we have used YAJXB in our implementation of composite
systems, we note that a number of alternative options exist. Amongst
the options that we considered for implementing composite systems were:

Interprolog [14].

One of the Java-based Prolog interpreters currently available (e.g.,
JavaLog [16]).

a Sockets-based, direct communication approach [12].

Each of the above approaches has its own distinct drawbacks when
compared with the approach that we adopted. Interprolog does work
with XSB, so we could still take advantage of the latter’s performance
capabilities. However, Interprolog is primarily a Windows-based appli-
cation. All of our development was done on a Sun Sparc/Solaris sys-
tem; YAJXB, though primarily configured for Linux, compiles easily on
Solaris. JavaLog was discounted because we felt that it did not offer
sufficient performance for the types of implementations and volumes of
data involved in practical applications of our approach. Finally, using
sockets would give us a less flexible application because it would involve
considerably more application-specific coding. Overall, we felt that the
straightforwardness of the YAJXB interface makes it preferable to the
Interprolog approach so far as interfacing with XSB is concerned. More-
over, XSB’s highly developed status and excellent performance make it
more desirable in this context than a Java/Prolog hybrid.

Once XSB has been successfully invoked by XSB loads a program
that contains the Prolog expression of an RBAC program (see above).
This is used to determine whether the access requests made via the client
application are permitted (by or not.

The C library allows the full functionality of XSB to be used. A
variety of methods for passing Prolog-style goal clauses to XSB exists.
However, we generally found that YAJXB’s string method worked well.
This method involves constructing a string in a Java String type vari-
able, and using the function (or similar) to pass

to XSB. This approach allows any string that could be entered as a
command when using XSB interactively to be passed to XSB by YA-
JXB creates an interface object. The precise method of doing this is a



RBAC Policies in SQL 297

call like

where the assignment, as one would expect, handles the returned error
code. More sophisticated methods would allow for the return of data too;
though this is not necessary where authorization is merely confirmed or
denied.

The key technical results for query evaluation on SQL databases pro-
tected by using follow directly from the soundness and com-
pleteness results for SLG-resolution applicable to stratified theories. As

is a function-free stratified program and YAJXB only passes facts
to XSB it follows that every authorized access request is provable by
SLG-resolution and no unauthorized access is provable by (safe) SLG-
resolution. These results extend to TRBAC programs.

Database System. Although in a composite system, may be any
SQL database, we have used Oracle in implementations of our system
(because of its widespread use within industry). A composite system
could easily be adapted to apply to a large number of existing Ora-
cle applications. For the interface between and we have used
JDBC [19]. JDBC is now a well-established technology and has the ad-
ditional advantage that JDBC drivers exist for numerous DBMS pack-
ages. It follows that, with minimal modifications, a composite system
could be used with any DBMS with which JDBC drivers may be used.

5. Performance Measures

In any system where data is accessed over the Internet, by far the
biggest time overhead will be caused by communications costs. As our
model does not introduce any additional traffic (i.e., the data sent by,
and returned to, a remote user is the same as it would be if our authoriza-
tion model were not used), this component of performance cost remains
unchanged, and we do not therefore consider any specific time delay val-
ues. Similarly, the overheads associated with accessing the DBMS are
unchanged, and we again do not consider any specific values.

The performance cost that we have added to a transaction is the one
of calling the subsystem that we use to authorize access requests.
Although the costs of using are minimal when compared with com-
munication costs, we have conducted various performance tests on an
RBAC program that we use to protect SQL databases from unautho-
rized access requests. Our RBAC program includes a definition of a
53 role RBAC role hierarchy that has been represented by using a set
of facts to represent all pairs of roles in the senior_to relation (a to-



298 DATA AND APPLICATIONS SECURITY XVII

tal of 312 senior _to facts). For our SQL tests, we have used the data
from [5]. There is one user, one ura rule, 8 database objects (tables)
containing a total of 432,261 tuples, and 720 pra rules. It is sufficient
for test purposes to use one user to demonstrate a worst-case use of the
access control information in an RBAC program. This worst case test
involves assigning a user to the unique top element in the RBAC role
hierarchy, such that has complete access to all of the tables used in the
test queries. The permissions are assigned to the unique bottom element
in the RBAC role hierarchy. Hence, our testing involves the maximum
amount of multiple upward inheritance of permissions.

The experiments were performed using XSB Version 2.5 on a Sun
Ultra 60 server (2 450MHz CPUs and 1GB RAM) running Solaris. Typ-
ically, the time taken to evaluate an authorization request is less than a
hundredth of a second. Furthermore, where a user’s request for data is
not authorized, no database access takes place at all and no processing
costs are incurred. A summary of our results for “fixed” costs is given
in Table 1. By “fixed” we mean the fixed overheads of invoking XSB.

The figures in Table 1 are averages: each operation was performed
five times. On first load of the Prolog program (which in this case
represents our RBAC policy), XSB compiles the code and stores the
compiled version. Subsequently, if the program has not changed since
the last compilation, XSB loads the compiled version, with a significant
reduction in the load time.

The performance times that we give have been obtained using XSB’s
statistics package. XSB gives times for CPU usage in seconds, accurate
to two decimal places.

Table 2 shows the results we obtained for a number of tests of access
requests (averaged over ten runs). We performed worst case tests (see
above) and, for comparison, best case tests (where there is no upward
inheritance of permissions). For each, we tested with data that would
give both possible outcomes for the requested database operation.



RBAC Policies in SQL 299

Given the magnitude of these figures, it is possible that measuring
inaccuracies render the small differences between them difficult to eval-
uate. We confine ourselves to noting that the query execution time is
minimal when compared with the time taken to start XSB and load the
program. The total time required to authorize a database access request,
if the RBAC program has not been updated since the last time it was
compiled, is about a tenth of a second. This compares favourably with
the results we obtained in [5], where a PL/SQL-based implementation
of our RBAC model took 1.08 seconds.

In contrast to user queries on it should be noted that a SA may
evaluate administrative review queries with respect to an
program directly. For example, to generate the set of users assigned
to the role in the process of performing a user-role review [26], a
SA simply needs to use SLG-resolution to evaluate the goal clause ? –

with respect to
For completeness, we performed a number of such queries; the results

are given in Table 3. We believe that the apparently identical times
taken for almost all of the queries shows that the computation time was
too small for XSB to accurately record.

6. Conclusions and Further Work

We have shown how the information in SQL databases may be pro-
tected from unauthorized access requests by using RBAC and TRBAC
programs. The high-level formulation of an access policy as a logic pro-
gram makes it relatively easy for a SA to express an access policy, to
reason about its effects and to maintain it. Moreover, it is possible to



300 DATA AND APPLICATIONS SECURITY XVII

use this specification of policy in an implementation of composite sys-
tems. We have demonstrated that the access policies that we use for
protecting SQL databases may be efficiently implemented.

In future work, we intend to investigate how constraint checking on
may be incorporated into the approach that we have described here.

References

Barker, S., Data Protection by Logic Programming, 1st International Conference
on Computational Logic, LNAI 1861, 1300-1313, Springer, 2000.

Barker, S., Temporal Authorization Model, Proc. MMMANCS In-
ternational Workshop on Network Security, in V. Gorodetski, V. Skormin, and
L. Popyak (Eds.), Lecture Notes in Computer Science 2052, Springer, 178-188,
2001.

Barker, S., Protecting Deductive Databases from Unauthorized Retrieval and
Update Requests, Journal of Data and Knowledge Engineering, Elsevier, 293-
315, 2002.

Barker, S., and Rosenthal, A., Flexible Security Policies in SQL, DBSec 2001,
187-199, 2001.

Barker, S., Douglas, P. and Fanning, T., Implementing RBAC Policies in
PL/SQL, DBSec 2002.

Barker, S., and Stuckey, P., Flexible Access Control Policy Specification with
Constraint Logic Programming, ACM Trans. on Information and System Security,
6, 4, 501-548, 2003.

Bertino, E., Catania, B., Ferrari, E., and Perlasca, P., A System to Specify and
Manage Multipolicy Access Control Models, Proc. IEEE 3rd International Work-
shop on Policies for Distributed Systems and Networks (POLICY 2002), 116-127,
2002.

Castano, S., Fugini, M., Martella, G., and Samarati, P., Database Security,
Addison-Wesley, 1995.

Chen, W., and Warren, D., A Goal-Oriented Approach to Computing the Well-
Founded Semantics, J. Logic Programming, 17, 279-300, 1993.

Clark, K., Negation as Failure, in H.Gallaire and J. Minker(Eds), Logic and
Databases, Plenum, NY, 293-322, 1978.

Date, C., An Introduction to Database Systems (7th Edition), Addison-Wesley,
2000.

Donahoo, M. and Calvert, K, The Pocket Guide to TCP/IP Sockets, Morgan
Kaufmann, 2001.

Ferraiolo, D., Gilbert, D., and Lynch, N., An Examination of Federal and Com-
mercial Access Control Policy Needs, Proc. 16th NIST-NSA National Computer
Security Conference, 107-116, 1993.

InterProlog by Declarativa. www.declarativa.com/InterProlog/default.htm

Jajodia, S., Samarati, P., Sapino, M., and Subrahmaninan, V., Flexible Support
for Multiple Access Control Policies, ACM TODS,26, 2, 214-260, 2001.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A



RBAC Policies in SQL 301

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

The ISISTAN Brainstorm Project: JavaLog.
www.exa.unicen.edu.ar/~azunino/javalog.html

Java Native Interface, Sun Microsystems. java.sun.com/products/

Java Servlet Technology: Implementations and Specifications, Sun Microsystems.
java.sun.com/products/jdk/1.2/docs/guide/jni

The JDBC API, Sun Microsystems. java.sun.com/products/jdbc

Libkin, L, The Expressive Power of SQL, Proc. ICDT, 1-21, 2001.

LLoyd, J., Foundations of Logic Programming, Springer, 1987.

Przymusinski, T., Perfect Model Semantics, Proc. 5th ICLP, MIT Press, 1081-
1096, 1988.

Ramaswarmy, C., and Sandhu, R., Role-Based Access Control Features in Com-
mercial Database Management Systems, Proc. 21st National Information Systems
Security Conference, 503-511, 1998.

Sagonas, K., Swift, T., Warren, D., Freire, J., Rao, P., The XSB System, Version
2.0, Programmer’s Manual, 1999.

Sagonas, K., Swift, T. and Warren, D., XSB as an Efficient Deductive Database
Engine , ACM SIGMOD Proceedings, p512, 1994.

Sandhu, R., Ferraiolo, D., and Kuhn, R., The NIST Model for Role-Based Access
Control: Towards a Unified Standard, Proc. 4th ACM Workshop on Role-Based
Access Control, 47-61, 2000.

Ullman, J., Principles of Database and Knowledge-Base Systems: Volume 1,
Computer Science Press, 1990.

Van Gelder, A., Ross, K., and Schlipf, J., The Well-Founded Semantics for Gen-
eral Logic Programs, J. ACM, 38(3), 620-650, 1991.

Decker, S., YAJXB, www-db.stanford.edu/~stefan/rdf/yajxb


