IMPROVING DAMAGE ASSESSMENT
EFFICACY IN CASE OF FREQUENT ATTACKS
ON DATABASES

Prahalad Ragothaman and Brajendra Panda
Department of Computer Science and Computer Enginering, University of Arkansas,
Arkansas, USA

Abstract: A database log is the primary resource for damage assessment and recovery
after an electronic attack. The log is a sequential file stored in the secondary
storage and it can grow to humongous proportions in course of time. Disk I/O
speed dictates how fast damage assessment and recovery can be done. To
make the process of damage assessment and recovery more efficient,
segmenting the log based on different criteria has been proposed before. But
the trade off is that, either segmenting the log involves a lot of computation or
damage assessment is a complicated process. In this research we propose to
strike a balance. ~We propose a hybrid log segmentation method that will
reduce the time taken to perform damage assessment while still segmenting the
log fast enough so that no intricate computation is necessary. While
performing damage assessment, we re-segment the log based on transaction
dependency. Thus during repeated damage assessment procedures, we create
new segments with dependent transactions in them so that the process of
damage assessment becomes faster when there are repeated attacks on the
system.

Keywords: Database log, damage assessment, log segmentation, transaction dependency

1. Introduction

Ever since the dawn of the Internet, there have been reports of
unauthorized entry into computer systems and rendering them inconsistent
and unstable. There are many methods to protect a system from such attacks
but savvy hackers always find newer ways to break into a system and use it
maliciously. Several intrusion detection mechanisms have also been
developed. But those methods do not detect an intrusion as soon as it

Damage Assessment in Case of Frequent Attacks on Databases 17

occurs. This results in the damage caused by the malicious user to spread
throughout the system in an exponential manner. In course of time, the
system may become so unstable that we have to shut the entire system down
in order to bring it back to a consistent state. This is highly unacceptable in
time critical database systems where valid users must have access to data at
every, and all times. Hence the next best solution to the problem would be
to design fast and efficient damage assessment and recovery algorithms to be
used during the post intrusion detection scenario.

Traditional logging mechanisms as described in [2], [5], and [3], record
only the “write” operations of a transaction. A traditional log does not
suffice to recover a database from an attack, as it does not contain the “read”
operations of the transaction. Read operations are essential to establish
dependences among transactions and data items.

To expedite the process of damage assessment and recovery after an
attack, the log can be segmented based on certain criteria. That way, when
an attack is detected, we can skip large portions of the log, which, we are
sure, does not contain malicious or affected transactions.

Several log segmentation approaches have been devised. Notable among
them are the transaction dependency based approach [8], the data
dependency based approach [10], and segmenting based on certain criteria
like fixed number of transactions, time window for transactions to commit
and space for committed transactions [11]. In this research, we propose to
devise a hybrid method of log segmentation that uses the approaches
presented in [8] and [11] so that damage assessment and hence recovery can
be expedited.

The rest of the paper is organized as follows. In section 2, the prior work
and the motivation behind this research are described. In section 3,
description of log re-segmentation with accompanying cases and algorithms
are presented. In section 4, the damage assessment model using the re-
segmented log is described. Section 5 presents the simulation results.
Section 6 concludes the paper.

2. Prior Work and Motivation

In [4], the researchers have proposed several guidelines for trusted
recovery. Amman et al. [1] followed a transaction dependency approach
that uses relationships among transactions to identify and repair damage in
the database. Panda and Giordano [9] adopted a data dependency approach
to recover from malicious attacks. Reordering transactions for efficient
recovery has been discussed by Liu et al. [6]. A distributed recovery
approach has been offered by Liu and Hao in [7]. But all of these

18 DATA AND APPLICATIONS SECURITY XVII

approaches scan a sequential log file, which is very huge. Log segmentation
techniques using transaction dependency and data dependency were
presented in [8] and [10] respectively. These methods segment the log file
in such a way that all dependent transactions (or dependent data-items in the
case of data dependency segmentation) are stored in one segment. By doing
so, it can be made sure that we do not have to scan a large portion of the log
when an attack is detected.

But a major drawback in these approaches is that they use valuable
system resources to perform intricate computation to determine dependences
among transactions or data-items while the execution of the transactions is
still on. Also, there is a chance of a segment growing too large because too
many transactions or data-items may be dependent on one another. Different
segments have a chance of merging into one segment and ultimately it could
be one huge segment, as big as the log itself. This defeats the purpose of log
segmentation. In [11] researchers have presented methods of segmenting the
log based on number of transactions, a time window for transactions to
commit and fixed space for committed transactions. In the first method, a
segment is formed after a fixed number of transactions commit. In the
second approach, there is a time window provided for transactions to
commit. All transactions that committed in that time frame form one
segment. In the third method, the space for a segment remains fixed. All
committed transactions that fit into that segment are stored. Transactions are
not allowed to span from one segment to another. Thus the size of each
segment is kept under control and running the risk of a segment growing too
big is avoided in all these three approaches. Also, each of these methods
uses very little computation while segmenting the log. However, a
significant amount of computation has to be done to determine the
dependences among the segments during damage assessment. In scenarios
where attacks are quite frequent, this method may not yield the fastest
solution to recover a database.

In this research, we present a hybrid method of log segmentation that
uses the techniques provided in [11] and [8]. We propose to further segment
a log already segmented based on any of the three approaches described in
[11] based on transaction dependency approach as described in [§]. We
shall do the re-segmentation while assessing damage during subsequent
attacks on the database. By doing so, we intend to achieve a significant
improvement in terms of time required during damage assessment while still
keeping the log segmentation algorithm simple enough so that the time for
execution of transactions is not hindered.

Damage Assessment in Case of Frequent Attacks on Databases 19
3. Hybrid Log Segmentation

Our model is based on the following assumptions: (a) Transaction
operations are scheduled in accordance with the rigorous two-phase locking
protocol as defined in [3], (b) Read operations are also recorded in the log
file, (c) Intrusion is detected using one of the intrusion detection techniques
and the id of the attacking transaction is available, (d) The log is never
purged, and (e) Blind writes are not allowed. Below, a list of definitions is
presented that are helpful in understanding the research and the algorithms.

Definition 1: Transaction T; is said to be dependent on transaction T; if Tj
read one or more data items that was previously written by the committed
transaction T;.

Definition 2: A tuft is a group of transactions that adheres to any one of
the three models presented in [11]. The transactions in a fuft are stored in
the chronological order in which they committed. It is represented as T
where ‘i’ denotes the tuff number.

Definition 3: A read_items list is a list of all the data items that were read
by all the transactions in a segment.

Definition 4: A write_items list is a list of all the data items that were
written by all the transactions in a segment.

Definition 5: A tuft_table is a table that contains the transaction number
and the tuft in which it is present.

Definition 6: Anaffected_itemslist contains all the data items that were
written either by a malicious or an affected transaction.

Definition 7: A transaction is said to be affected if it updates the value of
a data item using the value of another data item that was previously written
by either a malicious or another affected transaction.

Definition 8: A “‘size-controlled-segment” is a segment that was created
using one of the three approaches described in [11]. In other words, we
choose to call a fuft as a size-controlled-segment.

Definition 9: A “size-un-controlled-segment” is a segment that was
created using transaction dependency.

The log segmented based on any of the three approaches described in
[11] can be pictorially represented as shown in Figure 1.

Y

I il I S "l I. 1. La > I's I's

Figure 1: Log Segments before Re-segmentation

Re-segmenting the log begins after an attack is detected and the attacking
transaction is available. The process is done during the damage assessment
phase. Let us assume that an attack was detected in I's. It has been shown

20 DATA AND APPLICATIONS SECURITY XVII

that scanning of transactions in I'y is unnecessary because none of the
transactions in I'y read a data item written by any of the transactions present
in I';. Rigorous two-phase locking protocol ensures this. The attacking
transaction in I'; is determined using the fuft_table. All transactions in all
the segments until the last affected segment, i.e. the segment that has the last
affected transaction in it, are scanned. A new segment is started with the
first malicious transaction in it. To determine the dependency among
transactions, we intersect the “write” set of the malicious transaction with
the read set of the transaction to be scanned. There are two cases, as
discussed below, depending upon the results of the intersection.

3.1 The result is not a null set

The transaction is affected. That particular transaction is stored in the
newly formed segment that contains the malicious transaction and other
affected transactions. The data items that were written by the transaction are
appended to the affected_items list. Thus all malicious and affected
transactions will be present in one segment at the end of the damage
assessment phase and all affected data items in the affected_items list.

3.2 The result is a null set

This means that the transaction did not read any affected data. The
“read” and the “write” sets of the transaction are stored in a new read_items
list and write_items list respectively. We can be sure that the transaction is
not dependent on any other transaction in any of the other size-un-controlled
segments that were formed. Hence a new segment is created and the
operations of the transaction are stored in it.

During subsequent scanning of transactions, the “read” items of that
transaction is intersected with all the write_items lists and affected_items list
available to determine if there is a dependency between the transaction and
the segments. By doing so, it is checked whether the transaction read a data
item that was previously written by another transaction. If the result of all
the intersections is a null set, it means that transaction is completely
independent of all other transactions scanned so far. A new segment is
created and the operations of that transaction are stored in it. Also, a new
read_items list and a write_items list is started as in the previous case and
the “read” set and the “write” set of the transaction are stored into the
respective lists.

If on the other hand, the result of the intersection of the “read” set of the
transaction with two or more write_items lists is not a null set, it means that
the transaction is dependent upon two or more transactions that are present

Damage Assessment in Case of Frequent Attacks on Databases 21

in two different segments. In such a case, those two segments are merged
and the operations of the current transaction are stored in the merged
segment. The read_items list and the write_items list are also merged and
the “read” set and the “write” set of the transaction are stored into the
appropriate lists.

If the transaction is dependent on only one of the segments that have
been formed, it is added to the end of the segment upon which it is
dependent. The “read” set and the “write” of the transaction are stored into
the appropriate lists. Thus one or more size-un-controlled segments will be
present in parallel between I'y and the last affected segment. Each size-un-
controlled segment will have its own read_items list and a write_items list.
A pictorial representation of a re-segmented log is shown in Figure 2.

f I | | .
< ! g
e T IL)
| ey

Figure 2: Log Segments after Re-Segmentation

Some segments may be larger or smaller than others depending on how
many transactions are present in that segment. Each of the newly formed
segments Iy, T3, and Ty will contain transactions that are dependent on one
another. When an attack is detected, only the segment containing the
malicious transaction has to be scanned since all affected transactions would
be present in that segment alone. All other size-un-controlled segments can
be safely avoided. We present an algorithm for log re-segmentation in the
following section.

3.3 Algorithm for log re-segmentation during damage
assessment

1. Determine the position of the attacking transaction using the tuft_table.
Let us assume that the transaction, say Tj, is presentin .
2. Set affected_items = write_set(T;); read_items = read_set(T)).
. Start new segment Iy’
4. For each transaction, say Tj, that appears after the attacking transaction Tj,
in Tjuntil the last transaction in the last affected ruft, say I'jwhere j>1i
If (affected_items ™ read_set(Tj) 1= ¢)

(98]

22 DATA AND APPLICATIONS SECURITY XVII

Add T; to I''’; Add the write set of T to affected_items; Add
read_set(Tj) to read_items.
Else
Intersect the write set of T; with all available read_items list. If
none are available, start a new size-un-controlled-segment, add the
operations of Tj in the segment, start a new read_items list and a
write_items list and add the read_set and write_set of T; into the
respective lists. Continue from step 3.
If the result of all the intersections is a null set
Start a new size-un-controlled-segment, say I'y’, and add the
operations of Tj.
Start a new read_items list and a write_items list and add the
read set and the write set of T;into the respective lists.
If the result of the intersection is not a null set with only one of
the segments
Add the operations of Tjinto that segment.
Update the appropriate read_items list and the write_items
list.
If the result of the intersection is not a null set with more than
one of the segments
Merge the segments into one single segment.
Add the operations of Tjinto the merged segment.
Merge the appropriate read_items list and write_items list
and add T;’s read and write items into the respective lists.
As it is evident in the above method, there is the risk of having to manage
a segment that is too large because various segments might get merged to
form one big segment. Eventually this segment might end up being as big as
the log itself. In order to avoid this scenario, a new method to segment the
log in a hybrid manner is proposed. In this approach, pointers are provided
to link the information flow from one segment to another instead of merging
the segments together. Thus after subsequent damage assessment on the
database, the log can pictorially be represented as shown in Figure 3.

I

Figure 3: A Newer Method to Segment the Log in a Hybrid Manner

Damage Assessment in Case of Frequent Attacks on Databases 23

Let us consider the segments as shown in Figure 1. Assume that an
attack was detected in I'>. As mentioned before, none of the transactions that
are present in I'y need to be scanned as they are not affected. Damage
assessment is carried out as mentioned before and all the cases hold true here
too. Let us assume that the first set of parallel segments are formed and they
are named as Iy, Iy and Ty. During subsequent scanning of transactions
from other size-controlled segments, it is assumed that a transaction read
data items that were written by transactions from two different size-un-
controlled segments making that transaction dependent on two different
segments. From Figure 3, it is evident that a transaction presentin I's read
data items written by transactions in Ty and Ty. Thus pointers are
established from these two segments to I s to show that there is an
information flow fromboth I'; and I'y onto I's. Thus during subsequent
damage assessment procedures, the pointers can be checked and the
information flow can be obtained. An algorithm to segment the log using
the new hybrid log segmentation approach is given below.

3.4 Algorithm for log re-segmentation using the new
method of hybrid log segmentation

1. Determine the tuft, say I';, where attacking transaction, say T;, is present.
2. Set affected_items = write_set(T;); read_items = read_set(T;); Start new
segment I},
3. For each transaction, say Tj, that appears after the attacking transaction T;,
in Tjuntil the last transaction in the last affected ruft, say I';, wherej > i
If (affected_items M read_set(T)) = ¢)
Add T to I’y Add the write set of Tj to affected_items; Add
read_set(T;) to read_items.
Else
Intersect the write set of Tjwith all available read_items list.
If none are available, start a new size-un-controlled-segment, add
the operations of Tjin the segment, start a new read_items list and
a write_items list and add the read_set and write_set of Tjinto the
respective lists. Continue from step 3.
If the result of all the intersections is a null set
Start a new size-un-controlled-segment, say I';’, and add the
operations of Tj.
Start a new read_items list and a write_items list and add the
read set and the write set of Tj into the respective lists.
If the result of the intersection is not a null set with only one of
the segments
Add the operations of Tjinto that segment.

24 DATA AND APPLICATIONS SECURITY XVII

Update the appropriate read_items list and the write_items list.
If the result of the intersection is not a null set with more than one
of the segments

Establish pointers between the two segments.

Retain the read_items list and write_items list as it is.

4. Damage Assessment Using the Re-Segmented Log File

There are two cases to consider during damage assessment process when
an attack is detected after re-segmentation. They are explained based on the
segments shown in Figure 3.

4.1 An attack is detected in I'y or in any of the size-
controlled segments that were ignored when damage
assessment was done the first time

The operations of all the transactions from the point of attack in I'; until
the point where the size-un-controlled segments start are scanned. The
“write” set of the first malicious transaction in I'y is added to the
affected_items list. The affected_items list is then intersected with the “read”
set of transactions that appear after the malicious transaction in all the tufts
until the size-un-controlled-segments start. The log gets re-segmented with
all dependent transactions in one segment. Cases similar to those described
in the previous section hold good here too. Thus new sets of parallel size-
un-controlled segments are formed. Dependency between each of the newly
formed size-un-controlled-segments and the existing size-un-controlled
segments is then established. It has to be noted that the segments will not be
merged as described in the previous section. Instead, pointers will be
established to determine information flow. An algorithm to assess damage
for the case discussed is given below.

411 Algorithm for damage assessment for the case described above

1. Let the first attacking transaction in I'y be T;. Add the write_set of T; to
the affected_items list. Start a new size-un-controlled-segment, say I';’
and add the operations of T;in Iy’

2. For every transaction that appears after T, say Tj, until the last transaction
before the size-un-controlled-segment starts, do

If (affected_items M read_set(Tj) = ¢)
Add write_set(Tj) to affected_items; Add the operations of Tjto I'}".
Else

Damage Assessment in Case of Frequent Attacks on Databases 25

Intersect the read_set of T with all available read_items lists that
were formed for the newly created size-un-controlled-segments.
Ifnone are available, start a new size-un-controlled-segment and add
the operations of Tj to that segment. Start new read_items list and
write_items list and update them accordingly.
If the result of all the intersections is a null set
Start a new size-un-controlled-segment and add the operations
of Tj.
Start a new read_items list and a write_items list and add the
read set and the write set of Tjinto the respective lists.
If the result of the intersection is not a null set with only one of
the segments
Add the operations of Tjinto that segment.
Update the appropriate read_items list and the write_items list.
If the result of the intersection is not a null set with more than one
of the segments
Establish appropriate pointers between segments.
Record the “read” items and the “write” items in the
appropriate lists.

4.2 An attack is detected in any of the size-un-controlled
segments

In this case, all the size-controlled segments that appear prior to the
segment in consideration and all other size-un-controlled-segments that were
formed with the current segment can be safely ignored, as there would be
definitely no dependency between those segments. Thus, the damage
assessment process begins by scanning each transaction after the first
malicious transaction in the current segment. This is followed checking
every size-controlled-segment and size-un-controlled-segment that appears
after the first scanned segment until the last affected segment in the log file.
With the help of pointers from one segment to another, we can determine the
information flow and thus know what segments need to be scanned after the
current one. If there are pointers from a segment leading to two different
segments, both the segments have to be scanned after the current segment is
scanned. Similarly, if two different pointers from two different segments
lead to one single segment, then that segment must be scanned twice while
assessing damage. If the result is not a null set, it means that segment is
affected and one or more transactions in that segment have read a data item
that was previously written by a malicious or affected transaction. An
algorithm for this case is presented below.

26 DATA AND APPLICATIONS SECURITY XVII

4.2.1 Algorithm for damage assessment for the case described above

1. Identify the size-un-controlled-segment where the malicious transaction
is present. Let us assume it is I';’. All other size-un-controlled-segments
parallel to I';’ can be ignored. Identify the malicious transaction, say Tj,
in I“i.

2. Append the write_set of T; and all other transactions in the same
segment to the affected_items list.

3. For each segment, say Ij, that appears after the current segment until the
last affected segment, do

If (affected_items M read_items(I'j) = ¢)
If I'j is a size-un-controlled segment
Merge Iy’ and T
Merge the respective read_items list and write_items list.
Append the write_items list to the affected_items list.
If I’ is a size-controlled-segment then for each transaction, say Ty
in Fj
If (affected_items ™ read_items(Ty)!=¢)
Append operations of Ty to I}’
Append the read_set and write_set of Ty to appropriate
read_items list and write_items list.
Else
Intersect the read_set of Ty with all available write_items
lists of size-un-controlled-segments that were recently
created.
If the result of the all the intersections is a null set or if no
size-un-controlled-segments were recently formed
Create a new size-un-controlled segment with the
operations of Ty in it.
Start a new read_items list and a write_items list and
add the read_set and write_set of Ty to the appropriate
list.
If the result of the intersection is not a null set with only one
segment
Append the operations of Ty and its read_set and
write_set to the segment, the read_items list and
write_items list respectively.
If the result of the intersection is not a null set with more
than one segment
Establish pointers between the appropriate segments.

Damage Assessment in Case of Frequent Attacks on Databases 27

In the case when an attack is detected in any of the size-controlled-
segments that appears after all the size-un-controlled segments, the scenario
is similar to that described in section 3.

5. Simulation and Results

A “C* program was developed to simulate a database log file that
conforms to the rigorous two-phase locking protocol. The log was
segmented using the fixed number of transactions approach with 50
transactions in each tuft. The algorithms developed in this research were
then implemented into a program and applied on the segmented log file.
Table 1 shows some of the parameters used to draw the chart depicted in
Figure 4.

Table 1. Values of Parameters for Chart Shown in Figure 4

Total number of transactions 500
Total number of data items 5000
Maximum data items accessed by a transaction 30

The values obtained under the “traditional approach” legend were
determined by assuming an attacking transaction having transaction id 150,
and then determining how many bytes of data are read from the log while
performing damage assessment without having a segmented log. The
“number” legend shows the number of bytes read from a log segmented
based on the number of transactions and assuming an attacking transaction
with transaction id 150 too. The third legend, which is “Hybrid 17, shows
the number of bytes read from a log which was re-segmented based on the
hybrid approach presented in this research. An attacker was assumed and
damage assessment was done once and a log segmented based on the hybrid
approach was obtained. With this log, and the same attacking transaction,
the algorithm was implemented again but the log was not segmented as it is
proposed in this research. The number of bytes read was determined. This
process was carried out several times by changing the seed of the program
thus obtaining a new log file. An average of all the runs was calculated and
the chart was obtained.

28 DATA AND APPLICATIONS SECURITY XVII

Hybrid Log Segmentation

a T?aEt"iu_:_r;a.l a.pproach-
m Number
O Hybrid 1
O Hybrid 2 |

Attacker ID

Figure 4: Comparison of Various Damage Assessment Procedures with the Hybrid Approach
Using the Values Shown in Table 1

“Hybrid 2” shows the number of bytes read by the damage assessment
program when it was implemented as proposed in this research. An
attacking transaction with transaction id 50, was assumed to be stored in a
log that is segmented based on the number of transactions. Damage
assessment was performed and a log segmented based on the hybrid
approach was obtained. With this log as reference, four different attacking
transactions with ids 150, 250, 350 and 450 were assumed. Each time an
attack was assumed, damage assessment was done and while doing so, the
log was re-segmented based on transaction dependency using the pointer
method that was discussed earlier. An average of all the runs was taken.
Subsequently, attackers 150, 250, 350 and 450 were assumed and each time
the same procedure was carried out. A different log was obtained each time
by changing the seed in the program. Figure 5, shows a graph obtained
using parameters given in Table 2.

Table 2: Values of Parameters for Chart Shown in Figure 5

Total number of transactions 500
Total number of data items 5000
Maximum data items accessed by a transaction 40

Damage Assessment in Case of Frequent Attacks on Databases 29

Hybrid Log Segmentation

. | |@Traditional

i 5300000 : | m Number

i §,200000 |0 Hybrid1
|oHybrid2 |

100000 -
0k
150 250 350 450
Attacker ID

Figure 5: Comparison of Various Damage Assessment Procedures with the Hybrid Approach
Using the Values Shown in Table 2

6. Conclusion

In this research, we have presented methods of re-segmenting an already
segmented log based on transaction dependency for much faster damage
assessment and hence recovery. We have overcome the shortcomings of the
previous work where we observed that damage assessment would be more
time consuming when compared to other log segmentation approaches like
transaction dependency and data dependency while still being much faster
had there been no segmentation at all. The model that we have presented
here will work best in scenarios where attacks are more frequent. The
segmented log will be re-segmented again based on transaction dependency
thus limiting damage to only one segment. The process of re-segmenting is
done while performing damage assessment and thus system resources will
not be wasted. Different cases were observed while re-segmenting and
assessing damage using the re-segmented log. Each case was discussed in
detail and algorithms were provided to handle the cases separately. The
algorithms were implemented in a simulation model and the results were
discussed. It was also shown that our model performs better during damage
assessment than when the log is not segmented at all or when the log is
segmented using number of transactions. The model is also expected to
perform similarly well on a log segmented based on either time or space.

30

DATA AND APPLICATIONS SECURITY XVII

Acknowledgement

This work has been supported in part by US AFOSR under grant
F49620-01-10346. The authors are thankful to Dr. Robert. L. Herklotz for
his support, which made this work possible.

References

(1]

(2]
(3]
[4]
(5]
[6]

[7]

(8]

9]

[10]

P. Amman, S. Jajodia, C. D. McCollum, and B. Blaustein, Surviving
Information Warfare Attacks on Databases, Proceedings of the 1997
IEEE Symposium on Security and Privacy, May 1997.

P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems, Addison-Wesley, 1987.

R. Elmasri and S. B. Navathe, Fundamentals of Database Systems,
Third Edition, Addison-Wesley, 2000.

S. Jajodia, C. D. McCollum, and P. Amman, Trusted Recovery,
Communications of the ACM, 42(7), pp. 71-75, July 1999.

H. F. Korth, A. Silberschatz, and S. Sudarshan, Database System
Concepts, Third Edition, McGraw-Hill International Edition, 1997

P. Liu, P. Ammann, and S. Jajodia, Rewriting Histories: Recovering
from Malicious Transactions, Distributed and Parallel Databases, 8(1),
pp. 7-40, January 2000.

P. Liu and X. Hao, Efficient Damage Assessment and Repair in
Resilient Distributed Database Systems, Proceedings of the 15th
Annual IFIP WG 11.3 Conference on Database and Application
Security, July 2001.

B. Panda and S. Patnaik, A Recovery Model for Defensive Information
Warfare, Proceedings of the 9" International Conference on
Management of Data, p. 359-368, Hyderabad, India, December 1998.
B. Panda and J. Giordano, Reconstructing the Database After
Electronic Attacks, Database Security XII: Status and Prospects, S.
Jajodia (editor), Kluwer Academic Publishers, 1999.

B. Panda and S. Tripathy, Data Dependency Logging for Defensive
Information Warfare, Proceedings of the 2000 ACM Symposium on
Applied Computing, p. 361 — 365, Como, Italy, March 2000.

[11] P. Ragothaman, and B. Panda, Modeling and Analyzing Transaction

Logging Protocols for Effective Damage Assessment, Research
Directions in Data and Applications Security, E. Gudes and S. Shenoi
(editors), Kluwer Academic Publishers, 2003.

