
Chapter 9

SOFTWARE FOR THE CHANGING E-BUSINESS

Maria Alaranta, Tuomas Valtonen and Jouni Isoaho

Abstract: In this article, we first acknowledge the requirements for more rapid and cost-
efficient development cycles and systems evolution for e-business software
applications. Thereafter, we discuss the contemporary solutions used to meet
the requirements. These include technological and organizational innovations,
as well as commoditization. After that, we discuss attributes of modification of
an e-business application, i.e. the depth of modification, the sophistication of
the modification method, operational continuity, and freedom from errors.
These attributes are combined into a framework that is then used to evaluate
four common e-commerce applications, a spreadsheet application and a novel
dynamic e-commerce platform, also presented in this article. The dynamic e-
commerce platform is proposed to be the most favorable solution in cases
where system specifications change frequently.

Key words: e-commerce, information system, modification, flexibility

1. INTRODUCTION

Due to the globalization of business and the evolution towards web-based
systems, it is necessary to re-evaluate the way information systems are
developed, modified, operated and maintained [1]. Changes in the global
marketplace require frequent changes in software because firstly, globally
used systems need to be locally adjusted [15]. Secondly, different industries
– e.g. banking, insurance and stock exchanges in both Europe and also
globally – are responding to increasing competition by mergers and
acquisitions [12].

Hence, there is a demand for systems that evolve with and support the
changing organization, facilitate business process redesign to better exploit
the characteristics of IT, and fulfill the requirements for outward-facing
information systems linked to networks of suppliers and customers [7].



104 Digital Communities in a Networked Society

These links include e.g. supply chain management (SCM), for which an
increasing number of companies are using web sites and web-based
applications [14].

These new applications, or changes in those currently in use, are called
upon at a pace that requires significantly shorter development cycle times.
Reducing both the cost and the time from idea to market – while ensuring
high quality – is crucial for gaining a competitive advantage in the
increasingly competitive IT market that is facing new entrants also from
developing countries, such as China and India. [3], [15] Furthermore, the
migration towards web-based systems makes time and creativity essential
success factors as technology and demand change rapidly [5]. However,
manifesting the apparent need for flexible software, as well as corrective and
adaptive maintenance, accounts for a significant share of software activities
in organizations, and erroneous concentration on the development project –
rather than the whole product life cycle is a major cause of software
problems [7].

In this article, we aim at answering the question: How can the ever-
changing requirements for the software for e-business be met? In order to
reach this objective, we (1) review contemporary solutions, (2) present a
framework for analyzing the characteristics required for a solution aimed at
fulfilling the requirements, (3) present a technically oriented concept in
software development that aims at reducing evolution cycle time and
increasing flexibility, and (4) analyze the novel concept, as well as some
examples of contemporary solutions, against the framework.

2. CONTEMPORARY SOLUTIONS

Looking back at more than 50 years of history in software development,
three main paths of trajectories of innovation can be observed. These are: (1)
technical change, i.e. new programming languages, tools, techniques, and
methods, etc.; (2) organizational change, i.e. new ways of managing the
people and the process; and (3) substitution of standard products (generic
packages) for custom building. [9]

Technological change manifests itself in the development of
programming languages, starting from writing in machine code, all the way
to 4G languages that have vocabularies and syntax very similar to natural
language. After these, the technology advanced to e.g. “declarative systems”,
and structured techniques such as modularity and object-oriented (OO)
design and programming. Object-oriented techniques provide significant
possibilities for shortening the development life cycle, in addition to greater
rigor and predictability. [9] Tools for supporting the development processes



Software for the Changing E-Business 105

have also evolved, ranging from programmer aids – e.g. testing and
debugging tools – to tools supporting the whole development life cycle, such
as computer-aided software engineering (CASE) tools [9], as well as
structured methods supported by CASE tools, e.g. information engineering
(IE) [1]. Other technical innovations include the “cleanroom” approach in
which the aim is to prevent the entry of defects during the development, and
non-serial machine architectures, such as neural networks [9].

Organizational innovation aims at offering better tools, techniques and
methods for the quality of development, supply and maintenance of
software, as well as project management and the organization of work [9].
These include time-based software management [2], total quality
management (TQM) [4], quality function deployment [5] and the Capability
Maturity (CMM) [7]. Extreme programming (XP) is a team-based
engineering practice that is suggested to be especially suitable for the high-
speed, volatile world of web software development, which can also be
combined with other innovations such as CMM [8]. Recent developments
include the Model-Driven Architecture (MDA), which aims is to automate
the transformations between the models and code [13], and the ISO 9001
[e.g. 15] quality standard that distinguishes between the technical and
organizational aspects of software development.

The third development tendency is commoditization, which refers to the
substitution of the process of custom building software for a software
product or package. Packages should reduce uncertainty in the length of time
and cost of development and ensure a predictable level of reliability and
known quality, as bugs are identified by earlier users. However, in theory,
packages customizable by the end-user would remove the productivity
problem from the IT developers. [9] Besides these, recent developments
affecting the e-business include, e.g., Web Services and Semantic Web. Web
Services can be described as modular Internet-based applications that
facilitate business interactions within and beyond the organization. As
opposed to the traditional business-to-business applications such as EDI,
Web Services are typically decentralized, open and unmonitored, shared, and
dynamically built, and the user base and scale are not predefined. [10] On
the other hand, Semantic Web aims at solving the problem of machines not
being able to interpret the meaning and relevance of documents in the web.
Semantic Web offers a vision for the future in which information is given
explicit meanings, which enables people and computers to co-operate more
efficiently. [11]



106 Digital Communities in a Networked Society

3. ATTRIBUTES OF MODIFICATION

As described in the previous section, the rapidly changing environment
creates new requirements, while simultaneously obsolescing old
specifications, at an increasing pace. In order to study the feasibility of
different technical and architectural solutions in a changing environment, we
first define the concept of flexibility in e-commerce systems. Here we
identify the main attributes of e-commerce systems that influence the type of
actions required and cost incurred when functionality is altered. We then
combine these to form a framework for classifying and evaluating
components of systems, as well as entire e-commerce systems.

3.1 Depth of Modification

We first distinguish between two top-level classes of system components:
a) core components and b) user components. Core components are an
integral part of the e-commerce system and are identical in each installation
of the system. These components specify the functionality of the system and
methods for accessing information in the system. User components are
related to user requirements and may vary from one installation to another.

The depth of modification attribute (hereafter the “depth” attribute)
indicates which component classes in the information system are subject to
changes. A simple system may allow the end-user to insert, modify and
delete database records, while a more elaborate system may also permit
changes to the structure of the record. An advanced information system may
also allow changes to functionality and internal structures of the system
itself. All of these cases are possible without reprogramming the system
itself; naturally, more elaborate modifications are possible if we allow
reprogramming of the system (see Section 3.2 for further discussion on this
topic).

We identify four main levels of depth in system components, according
to the content and structure that can be modified in these, corresponding to
levels 1–4: 1) content in user components only, 2) content and structure in
user components, 3) content and structure in user components, as well as
content in core components, and 4) content and structure in both user and
core components. Level 1 allows modification of content in user
components, typically data related to the application area of the user. At
level 2, the structure of such information can also be modified, allowing the
addition of new information types or the extension of existing types. A level
3 component allows changes in content of core components, in addition to
that of case components. In this case, both functionality and access to



Software for the Changing E-Business 107

information in user components can be altered. At level 4, one is also able to
modify the structure of core components.

In Figure 1 we demonstrate the differences in the depth levels of various
generic components (applications in this example) when the sophistication
of the modification method 3; i.e., components that can be modified
without any reprogramming labor (see Section 3.2). Depth level 1
encompasses stand-alone or web-based e-commerce applications built on a
database platform. A typical website/database management tool at level 2 is
able to modify both the content and structure of the content; however,
automated mechanisms for providing end-user functionality are not
included. An integrated, possibly web-based, database management and
reporting tool with an automated end-user editor would fulfill requirements
at level 3, allowing modification of core components, such as database
access mechanisms and some functionality for the end-user. Level 4
applications do not currently exist without reprogramming work.

3.2 Sophistication of the Modification Method

In this section, we categorize the methods available for modifying
components into the sophistication of the modification method attribute
(hereafter the “sophistication” attribute); i.e. the type of action required to
modify a system component: 0) non-modifiable, 1) pre-compiled, 2) auto-
generated, 3) configurable, and 4) self-configuring. The functionality of a
level 0 non-modifiable system component is fixed in the design phase and
cannot be changed after the manufacturing stage. Hence, modifying a
component at this level requires physical replacement. A level 1 pre-
compiled component is also designed to perform a specific function, but can
later be manually reprogrammed if modification is required. A level 2 auto-
generated component can be altered using automated modeling tools,
allowing a shorter and more reliable development process. A level 3



108 Digital Communities in a Networked Society

configurable component can be modified by the end-user at any time
without reprogramming. Finally, a level 4 self-configuring component will
monitor and modify itself autonomously.

Figure 2 illustrates some examples of system components and
development tools at different levels of sophistication. At level 0, the
Application-Specific Integrated Circuit (ASIC) is a typical non-modifiable
system component. At level 1, the functionality and content of pre-compiled
components can be created using an editor for textual programming and
markup languages, such as C++, Java and HTML. At level 2, an auto-
generated component can be re-designed using user-friendly, automated
development environments, such as Microsoft FrontPage ™. Between levels
1 and 2 are hybrid components, such as Microsoft Visual Basic ™ and
Visual C++ ™, in which some portions are created graphically, whereas
others require textual programming work.

Components at levels 3–4 constitute a new class of dynamic platforms.
At level 3, the end-user can add configurable components, or remove or
modify existing ones at any time. The main difference, in comparison to
level 2, is that the component itself is dynamic, not only the tool that was
used to generate it. Level 4 self-configuring components are similar, but are
also equipped with mechanisms for autonomously modifying themselves to
adopt to circumstances, without end-user intervention. Techniques for
implementing components at levels 3–4 are presented in Section 4.

3.3 Operational Continuity

The third attribute, operational continuity, refers to the ability to ensure
uninterrupted operation in the component subject to modification: 0)
interrupted and 1) uninterrupted. At level 0, modifying the component
results in interruption of the normal operation of the component and other
dependent components. At level 1, no interruption is necessary, and the new



Software for the Changing E-Business 109

functionality of the component is valid from the moment that the
modification takes place. Figure 3 illustrates two examples of operational
continuity. A typical compiled binary component must be replaced when any
modification other than normal data manipulation is required (depth of
modification 2). A dynamically configurable component can be modified
without downtime, expect for when modifying the structure of a core
component (depth of modification 3).

3.4 Freedom from Technical Errors

The freedom from technical errors attribute (hereafter the “error-
freedom” attribute) signifies the ability to ensure the correct implementation
of modifications; i.e., the risk of system instability or data inconsistency due
to technical errors is avoided. We can distinguish two primary levels of
error-freedom with respect to system operation, when: 0) technical errors
possible and 1) technical errors not possible. Figure 4 shows some examples
of generic system components at different levels of error-freedom.

The risk of technical error can be reduced by creating the component in
an automated development environment, by using modular and component-
based design, or by standardizing interfaces. Here components could be
positioned at intermediate levels (between 0 and 1) of error-freedom.

3.5 A Framework for Evaluating Modification

In Figure 5, the attributes of the previous subsections are combined to
form a four-dimensional framework for assessing the modification



110 Digital Communities in a Networked Society

characteristics of an information system. The indices in the axes of the
framework correspond to the levels introduced in chapters 3.1–3.4. When
depth levels 1–4 or 0–1 for each component are displayed in a single graph,
a modification profile for the component can be formed. The dotted lines
illustrate two imaginary modification profiles.

From the shape of this profile, we can determine the modification
characteristics of the component. Narrow flame-shaped profiles similar to
example A are a sign of a very static component; modifying such a
component would require manual work, could interrupt the operation of the
component and cause errors. In contrast, broad and circular profiles similar
to example B promise straightforward modification, entailing little manual
programming work or negative side effects.

4. THE DYNAMIC E-COMMERCE PLATFORM

Today many e-commerce systems are tailored to match the needs of a
particular end-user group (or end-user organization) at a certain time. In this
section we outline the design methodology of a next-generation real-time
dynamic e-commerce system that is completely configurable by end-users
and requires little re-engineering during its life cycle.

When creating an e-commerce system where all components are
configurable and the content of core components is modifiable, a number of
design issues must be addressed. Firstly, because the functionality of the
system (residing in core components) is dynamic, using standard techniques
for implementing functionality – such as programming and compiling code –
is not an option. Furthermore, the end-user must be able to modify the
internal methods used to access information from the database, as well as all



Software for the Changing E-Business 111

user interface components. The end-user should also have access to all user
components, be able to modify the content and structure of these, as well as
the ability to process information and use this to generate totally new
information types. The end-user must be allowed to modify components at
any time, without shutting down any components in the system or producing
technical errors. These requirements are particularly challenging for real-
time e-commerce systems, where the flow of information is continuous.

The dynamic e-commerce system (Figure 6) is divided into two main
sections: a) the system core implemented prior to installation and b) database
structures that can be modified at any time. The system core comprises
several control units for the information system. The user interface
controller is responsible for displaying user interface atoms, i.e. components
accessible to the end-user, such as windows, buttons, images, etc. The
external message controller deals with the reception and transmission of
messages from and to external information sources and other installations.
The database message controller manages communications with the
database. The atomic function unit processes incoming data. Finally, the
system kernel schedules events in the system core and coordinates
communication between other units.

The depth of modification of this system is at level 3, because the content
of core components, as well as the content and structure of user components,
is stored in the database. However, the structure of the core components is
fixed and cannot be modified without reprogramming. Hence, the system
fails to qualify for depth level 4 (above sophistication level 2).

5. MODIFICATION PROFILE ANALYSES

In this section, we use the framework presented in Section 3.5 to evaluate
four common e-commerce applications (1–4) that exhibit various levels of
sophistication, a spreadsheet tool (5), and the dynamic e-commerce platform



112 Digital Communities in a Networked Society

(6) presented in Section 4. (The spreadsheet tool is included to exemplify a
familiar user-configurable system with the possibility of end-user developed
applications.) The applications are evaluated against the framework in a
situation where a change is required, in order to analyze how the application
meets the flexibility requirements of the changing environment.

We first study a generic form in a web site created on a traditional web-
server. As seen in Figure 7, a form of this type is very flexible when
collecting and changing the data entered in its fields; however, altering the
structure of the form requires significant effort. The second example is a
user-customizable web site created on a traditional web-server, e.g. a service
that allows the user to key in a set of preferences, which then creates a
customized web site for the user. As shown in Figure 8, flexibility now
extends to the user data structure, but customization options for the user are
limited.

Figure 9 illustrates a similar system created with an automated tool. In
this case, the improvement is due to the fact that an automated tool reduces
the possibility of technical errors. In Figure 10, templates for creating an e-
store application exemplify a yet more flexible system, allowing the creation
of customized commercial web sites without programming skills. [6]

Although this system is flexible, it nevertheless has the problem of
downtime, and modification of core components still requires programming.

An analysis of the spreadsheet application in Figure 11 reveals greater
operational continuity than previously presented applications. Figure 12
displays an analysis of the dynamic e-commerce platform presented in
Section 4. This approach possesses the characteristics required from a
system that is designed to meet the constantly changing requirements; i.e.,
extensive modifiability, advanced tools for system modification, operational
continuity, and error-freedom due to the use of automated tools.

Here the main advantage is that most of the system can be modified
without any reprogramming work; the structure and content of user
components, as well as the content of core components, can be configured
during system operation. Reprogramming and recompilation of the code is
required only when the structure of core components is modified.



Software for the Changing e-Business 113



114 Digital Communities in a Networked Society

6. CONCLUSIONS

This article is concerned with the modification of e-commerce systems.
We first discuss contemporary solutions for frequently changing system
requirements and describe a number of technological and organizational
innovations aimed at shortening the product development cycle, whilst
maintaining rigor and predictability. We discuss four attributes of
modification in e-commerce applications: depth of modification,
sophistication of the modification method, operational continuity and
freedom from errors, and compose a framework for the evaluation of
modification in e-commerce systems. We also introduce a novel
configurable e-commerce development platform and assess its modification
characteristics against four typical e-business applications and a spreadsheet
application. We observe that contemporary e-commerce applications can
deal with certain levels of modification with no difficulty, but more
fundamental changes in system specification could lead to extensive
reprogramming, downtime and the risk of data inconsistency. The
configurable e-commerce platform is found advantageous in three specific
cases: (1) when system specifications are altered frequently, (2) when
changes are of fundamental nature, and (3) when the end-user requires
extensive control over the system. Finally, we demonstrate some of the
benefits of studying system flexibility using multiple independent attributes;
many strengths and weakness of diverse system designs can only be revealed
via thorough multi-perspective analysis. In particular, the significance of
modifiability is emphasized – the ability to rapidly adapt to a constantly
changing environment will be the key to future e-commerce.

REFERENCES

Behling, Robert – Behling, Cris – Sousa, Kenneth (1996) Software Re-engineering:
Concepts and Methodology in Industrial Management & Data Systems Vol. 96, No. 6, pp.
3–10.
Blackburn, Joseph D. – Scudder, Gary D. – Wassenhove, Luk N. – Hill, Graig (1996)
Time-based Software Development in Integrated Manufacturing Systems Vol. 7, No. 2,
pp. 60–66.
Dubé, Line (1998) Teams in Packaged Software Development – the Software Corp.
Experience in Information Technology & People. Vol. 11, No. 1, pp. 36–61.
Gong, Beilan – Yen, David C. – Chou, David C. (1998) A Manager’s Guide to Total
Quality Software Design in Industrial Management & Data Systems Vol. 98, No. 3. pp.
100–107.

1.

2.

3.

4.



Software for the Changing e-Business 115

Herzwurm, Georg – Schockert, Sixten (2003) The Leading Edge in QFD for Software and
Electronic Business in Int’l Journal of Quality & Reliability Management Vol. 20, No. 1,
pp. 36–55.
Kotisivut.com (2002) http://www.kotisivut.com/eshop.shtml. (Read: 04/30/03).
Paulk, Mark C. – Weber, Charles V. – Garcia, Suzanne M. – Chrissis, Mary Beth – Bush,
Marilyn (1993) Key Practices of the Capability Maturity Model, version 1.1. Software
Engineering Institute, Carnegio Mellon University, Pittsburgh, USA.
Paulk, Mark C. (2001) Extreme Programming from a CMM Perspective in IEEE Software.
Nov/Dec, pp. 1–8.
Quintas, Paul (1994) Programmed Innovation? Trajectories of Change in Software
Development in Information Technology & People. Vol. 7 No.1, pp. 25–47.
Ratnasingam, Pauline (2002) The importance of technology trust in Web services security
in Information Management & Computer Security. Vol. 10, No.5, pp. 255–260.
Sadeh, Tamar – Walker, Jenny (2003) Library Portals: Toward the semantic Web in New
Library World. Vol. 104, No. 1184/1185, pp. 11–19.
Saksan Pankit Yhdistyvät (2000) in Verkkouutiset http://www.verkkouutiset.fi/arkisto/
Arkisto_2000/17.maaliskuu/depa1100.htm (Read: 04/28/03).
Siegel, Jon et al. (2001) Developing In OMG’s Model-Driven Architecture at
http://www.omg.org/mda/mda_files/developing_in_omg.htm (Read: 07/15/03).
Supply Chain Management (SCM) Definition (2003) http://www.mariosalexandrou.com/
glossary/scm.asp (Read: 04/28/03).
Yang, Y Helio (2001) Software Quality Management and ISO 9000 Implementation in
Industrial Management & Data Systems. Vol. 101, No. 7, pp. 329–338.

5.

6.
7.

8.

9.

10.

11.

12.

13.

14.

15.


