
Chapter 24

A SERVICE ORIENTED APPROACH TO
INTERORGANISATIONAL COOPERATION

Christian Zirpins, Winfried Lamersdorf, Giacomo Piccinelli

Abstract: Many E-business applications are based on increased cooperation between
various organisational units and partners. System support for such applications
can be provided using concepts from the area of service oriented computing –
thus lifting inter-organisational integration to a higher level of effectiveness
and efficiency. E-services provide means for modularisation of arbitrary
organizational assets into components that can be dynamically offered,
discovered, negotiated, accessed, and composed in an open application
environment. Technically, E-services are software systems that are
implemented on top of conventional information and communication
technology. As an important step into that direction, Web Services have laid
the foundation for interoperable communication between arbitrary systems.
This paper introduces an approach to plan, build, and run such application-
level services efficiently. Therefore, a fundamental notion of service,
originating from distributed systems, is being extended by a specific concept
of cooperative interaction processes. Accordingly, an application-level service
model and corresponding service engineering mechanisms are proposed and
realised as system software middleware based on OGSA Web Services and
BPEL4WS processes.

Key words: E-Business, Inter-Organisational Integration, Cooperative Interaction
Processes, Electronic Services, Workflow, Web-/GRID Service Architecture

1. INTRODUCTION: SERVICE ORIENTED
DISTRIBUTED APPLICATIONS

Various application domains like electronic business, -government and
-education face recurrent cooperation scenarios where a constant change of
participants is a predominant characteristic. Typical examples are business-
to-business integration problems (Medjahed et al., 2003) that focus on the
dynamic relationship between one company and a set of frequently changing
partners. Also, situations like flexible outsourcing of business functions or

308 Digital Communities in a Networked Society

dynamic supply chain management face similar recurring types of
cooperation with interchangeable partners. For example, a company might
contract out freight logistics to various carriers or forwarding agencies
changing over time. The rationale for this kind of relationship is, on the
provider-side, to expose new revenue streams (e.g. providing freight
logistics on demand) and, on the customer-side, to seek for new efficiencies
(e.g. outsourcing freight logistics if profitable) in a form that allows for
constant optimization of partnership settings. Strategic planning of
cooperation types, tactical preparation of cooperation settings, as well as
operational control of functional cooperation are among the main challenges
to be tackled here. In more advanced scenarios, the patterns of functional
cooperation are often a subject of variation too, because different partners
pose different operational requirements that have to be negotiated between
the participants beforehand.

For example, a customer cooperates with various carriers that all move
goods but impose different procedures of payment. Moreover, when
broadening the scope, a party often faces multiple of such cooperative
relationships that are in some cases mutually dependent. In order to preserve
these dependencies, they have to be made explicit independently from
individual partners. For example, a forwarding agency has to ensure that it
can move goods of various individual customers by relying on alternating
carriers under contract.

1.1 Extending the service notion

Henceforth, the notion of a service is used to refer to such recurring
cooperation scenarios between changing autonomous participants. In order
to substantiate this notion, one can benefit from former work in distributed
information systems: Revisiting ODP concepts (ISO/IEC-JTC1/SC21,
1995), we distinguish the constant class of cooperation (service type) from
changing cases of cooperation (service instance). Service instances can vary
in the conditions of cooperation referred to as service properties (e.g. QoS)
that arise from the characteristics of actual participants. Those participants
are typed by roles, indicating expected cooperative behaviour within service
relationships. Providers offer type and properties of instances they are
willing to participate in. Clients observe offers of a specific type, choose a
provider with respect to service properties and engage in service instances.

Specific interdependencies between services are often referred to as
service composition. In this case, a participant relates (composes) services in
which he acts as a provider (composite services), to services in which he acts
as a client (service components), stating how characteristics of the composite
service are put down to characteristics of service components. In terms of
characteristics, services on application-level are more complex then those

A Service Oriented Approach to Interorganisational Cooperation 309

found in classical distributed object systems. Apart from the ‘semantic’
reason (e.g. move goods), the ‘syntactic’ cooperation process (e.g. customer
orders carrier confirms and ships goods customer pays) is among the
predominant service characteristics. In particular, the focus here is on the
interaction patterns, that is, the communication processes between roles.

The field of problems faced by organisations in terms of service
participation can be structured into strategic, tactical and operational
challenges. On the strategic level, exposing and expressing semantic and
syntactic aspects of service types and their interdependencies requires
expressive models and systematic design methodologies (service modelling)
taking under account the (technological and conceptual) context of
participants. For example, a forwarding agency needs models to express a)
meaning and procedure of a logistics service it provides b) dependencies of
the logistics service on a freight service that it uses and c) mappings of the
service interactions to its internal business information systems. On the
tactical level, service types have to be constantly maintained to keep track
with organisational change (service type adaptation). Also on this level,
partners have to be located for the types of service a participant is interested
in as client (service discovery) or provider (service publication). On the
operational level, partners have to be matched (by providers) and chosen (by
clients) for service types (service aggregation). In some cases, providers
additionally have to choose component service types matching the clients of
composite services beforehand (service composition). During the actual
service interaction procedure, terms and conditions of the service have to be
ensured (service coordination and control). Additional flexibility can be
reached by dynamic changes of service instances (service instance
adaptation).

Generally for all levels, system software middleware is needed to arrange
organisational environments of information- and communication technology
(ICT) into a cooperative information system (Michelis et al., 1997) which
realise services and provide support for the various tasks described above.

We refer to such a middleware as service management system and to the
joint tasks of planning, building, and running of service oriented distributed
applications as service engineering.

1.2 Current state of technology

Current techniques of service oriented computing are strongly focused on
technology. While application-level (i.e. business) service support is out of
their scope, they nevertheless pave the way towards it. The emerging Web
Service standard (Tsalgatidou and Pilioura, 2002) provides interoperability
between heterogeneous systems by leveraging the expressive power of XML
to specify operational interfaces that can be accessed using open internet

310 Digital Communities in a Networked Society

communication. Thus, organisations can externalise their internal
information systems as web enabled components. Those components
provide interaction endpoints (subsequently called ports) to participate in
automated inter-organisational cooperation. Concerning cooperation
procedure, the service oriented model adopted by Web Services only defines
a very basic type of interaction (i.e. ‘broker triangle’). However, web service
flow standards like BPEL4WS (Curbera et al., 2002) provide the means for
individual definitions of basic interaction processes. This is the crossing
point to more general research on cooperative, inter-organisational
interaction-processes (e.g.(Baïna et al., 2003, Bussler, 2002, Schuster et al.,
2000)) and workflow (e.g.(van der Aalst, 1999, Colombo et al., 2002, Chen
and Hsu, 2000)), where several practical approaches for application-level
services are located (e.g.(Mecella et al., 2001, Perrin et al., 2003, Casati et
al., 2001)).

1.3 The Fresco Project

The FRESCO project is about foundational research on service
composition (Piccinelli et al., 2003b). Its goal is to develop a framework of
concepts and technologies that support organisations in playing the provider
role for composite services. As a basis for composition, the focus is on the
components first. Subsequently, a fundamental service model was developed
that describes basic application-level services as classes of recurring
cooperative interactions. The model was then implemented as a generic
service engineering environment built on the Web Service family.

In the remaining parts of this paper, the Fresco approach will be detailed:
After the second part sketches a basic blueprint of our service

engineering concepts, the third part introduces the Fresco Toolkit
implementation. Finally, a summary and an outlook are given.

2. SERVICE ENGINEERING IN FRESCO

Fresco service engineering is based on a model that defines services as
structured sets of cooperative interaction procedures. This model implies a
specific architecture of service oriented applications that builds on an open,
distributed component environment with service-enabling extensions.
Subsequently, a service engineering environment provides a concise
framework to plan, build, and run such service oriented distributed
applications.

2.1 Service Model

The FRESCO Service model (Piccinelli et al., 2003a) defines a view on
services that is provision-oriented and service-centric. Cooperation

A Service Oriented Approach to Interorganisational Cooperation 311

procedures that constitute atomic, self-contained parts of a service-
relationship are exposed by so called capabilities. In particular, capabilities
represent purpose, interaction logic, and resulting artefacts of the
cooperation between organisational roles. Thereby, capabilities define
additional coordinative roles that introduce a level of indirection between
participating roles. Unlike meta-level protocols, capabilities take the position
of first-class participants (i.e. coordinators) that may be just virtually or
effectively enforced. A service is made up by a set of such capabilities.

An important feature of the model is a separation of capabilities in terms
of service content and -provision. Content reflects the purpose of a service
(e.g. moving goods). It is assumed that it arises from specific resources of
the provider (e.g. internal processes, knowledge, people, machines, etc.). To
represent service content, cooperation procedures, featuring interactions with
such resources, are explicitly exposed as meaningful units of content (e.g.
transport tracking...) by capabilities referred to as assets. Assets are
degenerated in the sense that they don’t represent cooperative interaction
between roles but monologues of the provider (i.e. binding (Bussler, 2002))
that have to be provided to clients indirectly by other capabilities. Assets are
grouped into a service core representing the complete content.

Provision addresses procedures that drive a service and make content
available (e.g. negotiating terms and conditions, incorporating assets, etc.),
whereby control is exclusively and proactive. Service provision capabilities
(hence called “capabilities”) are grouped around core assets in a layer called
service shell. Within a shell, capabilities are mutually interrelated and share
a common view on roles and provision-relevant information. Interrelations
embody the overall behaviour of provision by defining the global interplay

312 Digital Communities in a Networked Society

of capabilities. A service is fully characterised by defining the basic core
and, above all, the enabling shell (Figure 1). Our main focus is on the later.
To realise this service model, associated technology has to focus on a) an
architecture mapping the service notion to organisational ICT and b) an
environment of mechanisms that facilitate service engineering tasks on top
of it.

2.2 Service oriented architecture

For technology mapping we define a framework referred to as service
oriented architecture (SOA). It provides a layer of abstraction that is
assumed to wrap around diversified ICT systems in order to provide a
homogeneous platform for service management. Service types are defined as
schemas with respect to the SOA. Service instances can be run in any
environment implementing the SOA framework.

In SOA, we assume that all organisational ICT resources of any role (e.g.
client’s ERP, provider’s DBMS...), providing ports for service-related
interactions, are represented by means of a homogeneous component model.
Shell capabilities appear as glue between ports that reflects purpose,
interaction logic and result. We represent this glue using workflow concepts
based on the WfMC reference model (WfMC, 2002). Common patterns are
prescribed to define capabilities as well as their structuring and interrelations
by means of the workflow language XPDL, resulting in a service schema.

In particular, a capability maps to a set of workflow schemata describing
a self contained unit of interaction. Ontology-associations define the purpose
of interaction logic that emerges from the flow of interaction activities and
results in data artefacts. Interaction activities can be defined for a participant
(i.e. a role-associated component-port) to express cooperative procedure or
for another capability workflow to express capability interrelation. Coherent
sets of capability workflows are grouped together into packages with respect
to a self contained task (e.g. negotiation capability, payment capability). The
shell is given as a top-level package, where each capability is abstracted as a
component type itself that realises the enclosed interaction flows and has a
specific role assigned to it. Thus, various coordination concepts can be
expressed including centralised- (orchestration) and distributed scenarios.

In brief, a schema specifies a partitioned set of highly interrelated
components with precise interaction behaviour, where a subset A represents
interacting participants and a subset B represents and enforces their
interaction patterns. Service engineering is about planning, building and
running B based on A.

A Service Oriented Approach to Interorganisational Cooperation 313

2.3 Service engineering environment

Our concept of service engineering defines a set of basic engineering
mechanisms that allow building customized extensions upon it. Besides
modelling, the main problems addressed here are adaptation, aggregation,
and coordination.

As services are inherently complex, we anticipate that support will be
needed for their design, that is, a graphical service modelling language and
tool, which help developers in creating service schemata. This is supposed to
be the initial step of the service lifecycle, performed by the provider role.

Service schema management provides the functionality to process the
schema programmatically. Beside storing and retrieving it, adaptation is its
vital task. We adopt a rule based approach that provides a precise and
systematic way to change schemata automatically. Back in the service
lifecycle, the schema is subject of continuous static adaptation until
eventually brought to action.

Then, it’s the task of service aggregation management to create a service
instance, based on the schema and a mapping of roles to actual participants.
The main problem is to allocate resources of the participants according to the
components associated to their roles, thereby optimising resource allocation
while guaranteeing a constant and consistent flow of service procedures even
when schema or participants change during provision. Initially, at least the
provider is known and resources for an initial capability have to be allocated.

Service engines are components that manage the aggregation and
coordination of capabilities they realise. The crucial problem is for
participants to implement the capabilities of an engine while keeping the
service context including associations to other engines and a homogeneous
view on roles and data. We propose a generic implementation framework
that can be parameterized with executable specifications generated from the
schema. When all engines reach a final state the instance expires and the
service lifecycle continues with a new round of static schema adaptation.

In addition to the core functions introduced so far, three other
mechanisms are considered particularly useful: service monitoring to
integrate the measurements of distributed sensors deployed throughout the
service components into a coherent view of the overall service status,
security management to allow controlling component access and delegating
access privileges, and, finally, type management that defines a type system
for generic software components and allows discovering compatibility and
equivalence between them to support the handling of resources during
service design and aggregation. Figure 2 gives an overview of all
mechanisms and their respective relations.

314 Digital Communities in a Networked Society

A vital characteristic of the overall engineering environment lies in the
fact that all management mechanisms are first class components themselves.
Thus changes can a) be made at provision time and b) arise from capabilities
themselves. For example, a capability can lead to dynamic changes of
participants (e.g. a new participant is introduced as a result of a brokerage
capability) or dynamic schema adaptation (e.g. a payment procedure is
changed as the result of a negotiation capability). Note, that this allows
extending the service engineering mechanisms by realising them as
capabilities.

3. THE FRESCO TOOLKIT

As a proof of concept, we developed the core functions of service schema
design, adaptation, aggregation, and coordination in a prototype
environment referred to as the Fresco Toolkit (FrescoTK) 1. This
implementation is structured into parts related to service schema and
instance management.

3.1 Service schema management

The focus of service schema management in Fresco is on the
representation and organisation of interactive procedures that make up a
service. A schema defines the complete shell of a service including roles and
resources as well as the mapping of procedures to capabilities. More
precisely, a service schema is realised as a structured transformable set of
abstract workflow definitions. We use XPDL, where generic workflow
elements are defined in the context of packages that can again refer to other

A Service Oriented Approach to Interorganisational Cooperation 315

packages thus allowing the definition of coherent structures. A service
schema contains a) a root package representing the service shell and
declaratively defining the service capabilities, b) one set of packages for
each capability that defines its interactive procedures, and c) one context
package that defines a common context of roles, data structures, and
resources. The FrescoTK Schema Manager component (Figure 3) holds
generic specifications of various service schemata and makes them
programmatically accessible. Its vital characteristic is the ability to apply a
variety of transformations to them that allow for controlled changes of
service structures as well as for the logic of interactive procedures.
Moreover, it is possible to change the representation of procedures into
executable format.

Evolutionary adaptation is supported by means of a language for change
rules that are enforced by a rule engine within the schema manager. It allows
matching arbitrary patterns in XPDL workflow process descriptions and
removing or replacing those matches with newly created process elements
into self contained revisions. However, the procedural logic of capability
components, given in XPDL, has to be transformed into a format that can be
executed by an engine. Those engines are used as active components that
enforce provision procedures at runtime (see 3.2). The transformation is
based on the fact that most workflow languages share a set of core concepts
with common semantics (see (van der Aalst, 2003)). We chose the emerging
BPEL4WS standard as our execution format and defined a mapping to it
from XPDL (a full coverage can be found in the FrescoTK documentation).

316 Digital Communities in a Networked Society

3.2 Service instance management

Service instance management comprises organisation of participants and
resources for service instances. The FrescoTK Aggregator component
evaluates service schemata for involved roles and necessary resources
(Figure 4).

During service execution, all roles have to be assigned to participants and
each of them has to provide the resources associated with its roles. An
individual strategy can be chosen for each service that specifies how to do
role assignment and resource creation in terms of schedule and execution
model.

In FrescoTK the SOA is based on OGSA (Foster et al., 2002) as the
component model. Thus, service related resources as well as schema
management, aggregation, and engine components are built as GRID
services. Engine components are realised by a BPEL engine that executes
process specifications generated by the schema manager (Figure 5). The
engine is wrapped as a grid component by adapters and proxies that are
automatically generated for each capability. They bridge the gap between
stateless Web Services and long lived Grid Services using the aggregator to
resolve references of individual resources.

A Service Oriented Approach to Interorganisational Cooperation 317

4. CONCLUSION

As inter-organisational relationships and cooperation increase in
advanced e-business (and other similar) applications both in terms of
quantity and of quality, the need for new classes of distributed applications
arises that allow their effective and efficient management. In this paper, we
focus on recurring cooperation scenarios between changing autonomous
participants and system support for them based on service-oriented
distributed applications.

While, in such a context, a suitable technological foundation is already in
place to interconnect the participants, adequate support for, e.g., planning,
building, and running such solutions is still missing. Therefore, we propose a
service model based on advanced Web service and Grid Service technology
and address a set of problems realising it within a basic service engineering
approach. This approach applies process theory and workflow concepts to
specify, aggregate, enact, and adapt services as interaction patterns between
distributed resources. In particular, we adopt a homogeneous view on
resources, coordination-, and engineering mechanisms that allows for a
degree of introspection and dynamic self-adaptation.

We claim that this concept is powerful enough to implement complex
service scenarios with customized requirements. In future work, we will use
the service engineering mechanisms to examine models and mechanisms for
service composition that allow relating and connecting the capabilities of
composite services to the capabilities of their service components.

REFERENCES
Baïna, K., Tata, S. and Benali, K. (2003) A Model for Process Service Interaction, In Busines
Process Management International Conference, BPM 2003, Eindhoven, The Netherlands,

June 26-27, 2003. Proceedings(Ed, Weske, M.) Springer, pp. 261 ff.
Bussler, C. (2002) Behavior abstraction in semantic B2B integration, In Conceptual Modeling

for New Information Systems Technologies. ER 2001 Workshops. HUM ACS, DASWIS,
ECOMO, and DAMA. Revised Papers Lecture Notes in Computer Science Vol.2465.
2002(Ed, Hunt, I.) Springer Verlag, Berlin, Germany, pp. 377-89.

318 Digital Communities in a Networked Society

Casati, F., Sayal, M. and Ming Chien Shan (2001) Developing e-services for composing
eservices, In Advanced Information Systems Engineering. 13th International Conference,
CAiSE 2001. Proceedings Lecture Notes in Computer Science Vol.2068. 2001(Ed, Norrie,
M. C.) Springer Verlag, Berlin, Germany, pp. 171-86.

Chen, Q. and Hsu, M. (2000) Inter-Enterprise Collaborative Business Process Management,
HPL-2000-107, Software Technology Laboratory, HP Laboratories Palo Alto

Colombo, E., Francalanci, C. and Pernici, B. (2002) Modeling Coordination and Control in
Cross-Organizational Workflows, In Proc. CoopIS/DOA/ODBASE 2002(Eds, Meersmann,
R. and Tari, Z.) Springer, pp. 91 ff.

Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S. and Weerawarana, S.
(2002) Business Process Execution Language for Web Services, V 1.0, BEA, IBM,
Microsoft

Foster, I., Kesselman, C., Nick, J. and Tuecke, S. (2002) The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, Open Grid Service
Infrastructure WG, Global Grid Forum ISO/IEC-JTC1/SC21 (1995) Basic Reference
Model of Open Distributed Processing -- Part3: Architecture. International Standard,
10746-3, ISO

Mecella, M., Pernici, B., Rossi, M. and Testi, A. (2001) A Repository of Workflow
Components for Cooperative e-Applications, In Proceedings of the 1st IFIP TC8 Working
Conference on E-Commerce/E-Business (Salzburg, Austria, 2001)BICE Press, pp. 73-92.

Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A. H. H. and Elmagarmid, A. K. (2003)
Business-to-business interactions: issues and enabling technologies, The VLDB Journal,
(Springer, Online First, April 3, 2003).

Michelis, G. D., Dubois, E., Jarke, M., Matthes, F., Mylopoulos, J., Papazoglou, M. P., Pohl,
K., Schmidt, J., Woo, C. and Yu, E. (1997) Cooperative Information Systems: A
Manifesto, In Cooperative Information Systems (Ed, Papazoglou, M., Schlageter, G.)
Academic Press.

Perrin, O., Wynen, F., Bitcheva, J. and Godart, C. (2003) A Model to Support Collaborative
Work in Virtual Enterprises, In Business Process Management International Conference,
BPM 2003, Eindhoven, The Netherlands, June 26-27, 2003. Proceedings(Eds, Aalst, W.
M. P. v. d., Hofstede, A. H. M. t. and Weske, M.) Springer, pp. p. 104 ff.

Piccinelli, G., Zirpins, C. and Gryce, C. (2003a) A Provision-Centric Model for Electronic
Services, In IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE-2003)IEEE Computer Society, pp. 113-116.

Piccinelli, G., Zirpins, C. and Lamersdorf, W. (2003b) The FRESCO Framework: An
Overview, In 2003 Symposium on Applications and the Internet Workshops (SAINT 2003
Workshops) IEEE Computer Society, pp. 120-123,

Schuster, H., Georgakopoulos, D., Cichocki, A. and Baker, D. (2000) Modeling and
Composing Service-Based and Reference Process-Based Multi-enterprise Processes, In
Proc CAiSE 2000(Ed, Bergman, L.) Springer, pp. 247-263.

Tsalgatidou, A. and Pilioura, T. (2002) An overview of standards and related technology in
Web Services, Distributed and Parallel Databases, 12, 135-62.

van der Aalst, W. M. P. (1999) Process-oriented architectures for electronic commerce and
interorganizational workflow, Information Systems, 24, 639-71.

van der Aalst, W. M. P. (2003) Don’t go with the flow: Web services composition standards
exposed, IEEE Intelligent Systems, 18.

WfMC, (2002) Workflow Management Coalition, http://www.wfmc.org, 1.5.2003

