
A WEB SERVICES PROVIDER

In this paper, we define a generic tool ‘GenericServ’ that offers a ‘service
providers’ platform which facilitates the programming tasks of web
application development. The system’s architecture is generalized to propose
three patterns for business applications’ development. The paper is divided
into two major parts. In the first one, we expose the motivation for the
definition of the service provider, where we emphasize the architecture of the
system and the arguments to choose such architecture. In the second part, we
define the patterns based on this generic service provider.

The Internet became an essential media, especially the World Wide Web
that is recognized and used by enterprises, government agencies and the
wide public. The information flow that uses the World Wide Web represents
today more than two thirds of the overall Internet traffic [2]. In the last five
years, the Online Computer Library Center research determined that the
public web has more than doubled in size, increasing from 1,450,000 sites in
1998 to over three million in 2002 [15]. More than 55% of web site creators
are not programming specialists. The web has become now a requirement for
everyone in all domains. User types are multiplying, the requirements are
increasing and the web sites are more and more complex. For this reason, a
web services provider, facilitating the web applications development,

Chapter 22

Jean-Paul BAHSOUN * 1, Bilal CHEBARO 2, Samar TAWBI 2

Abstract:

Key words: Web development, Web services, Genericity, Patterns.

1. THE WEB EVOLUTION

Scholar from the CNRSL.
* Names are in alphabetical order.



becomes critical, especially if it is a generic one that can be deployed in
many areas on the web. This paper presents a solution to simplify the
development of web applications.

The paper is divided into two major parts: in the first one (section 2) we
will outline the motivation for this generic service provider’s development.
Then, we will propose a general architecture for our system, taking into
consideration the different existing architectural styles that can be used in
this application. In the following part (section 3), we define a set of patterns,
based on this tool, and generalized to the development of business
applications.

Since the needs for sophisticated web sites is more and more relevant,
especially for the functionality that is related to business domains like
commerce, education and banking, a generic service provider ‘GenericServ’
was proposed in [23]. It is a generic tool or server that offers a platform
providing the web site designers the ability to store, access and process the
information. Its generic nature makes it independent of business domains. It
defines a protocol for service creation and a general architecture that can be
extended to deploy concrete servers in Web domains as article publishing, e-
commerce, e-mailing and education, by defining the set of functionalities
needed in these areas.

Many tools were proposed to facilitate the web site development, from
the HTML editors to content managers. But the first category of tools
appears to be too basic for sophisticated needs. This is especially true for the
functionalities that are related to business domains. On another hand, even
though the content managers are very helpful for easy web development, the
users of such tools should have the product on their working environment.
So their update and upgrade are not automatically accessible by the users.
Meanwhile, approaches that have been taken in the distributed data
communications and the Internet development areas like [5][8][9][10] face
two main obstacles for web application developers: They still require deep
programming skills and they impose a very specialized development
environment. In this context, we propose a generic service provider as a
platform used to create servers offering complex functionalities that Web
application creators could call from their pages (HTML or XML). The

280 Digital Communities in a Networked Society

2. GENERICSERV: A GENERIC SERVICE
PROVIDER FOR WEB DEVELOPMENT

2.1 Presentation



A Web Services Provider 281

services offered are remotely called from the web pages, and are executed in
real time, when the page is accessed. Such server has a simple interface to
use as it is dedicated to non-specialists.

Thereby, the generic service provider constitutes an abstract architecture
that proposes the management of client sessions, services and data storage as
well as a template for the definition and the interface to use the services. In
fact, this nucleus serves as a base for concrete servers extension.
Instantiating a server will consist of implementing the functionalities needed
in a certain domain, as services according to a template imposed by the
generic service provider. These services always follow the same interface so
that the provider could take them into consideration automatically. In
addition, this allows easy evolution and maintenance of the system and
complete transparency to end-users. This tool defines also the cooperation
means between the developers and the graphical designers. It is responsible
of merging the two efforts through a common interface.

We should note that although it could; in general, the concrete service
provider does not provide hosting services for web sites. In fact, it
constitutes an intermediate layer between the end-user (i.e. the navigator)
and the hosting server of the web site (see figure 1).

The system explained above aims at providing a simpler and reusable
way to achieve the goal of implementing Web sites covering several services
and domains. Therefore, the architecture design should support the required

2.2 The System’s General Architecture



282 Digital Communities in a Networked Society

software system qualities such as robustness, adaptability, reusability and
maintainability [3][4]. So in the case of this services provider, the
architecture has to guarantee its flexibility, easy reuse and evolution.

Patterns have become now a must that software designers and developers
should use or at least try to apply systematically in all phases of their work.
There have been patterns applied to the analysis phase [11]. Patterns have
also been applied at the architectural analysis phase of the software
development process. In this level, patterns propose an abstract
representation of the system’s architecture [1] [4]. They are also called
architectural styles [21] [20]. A number of architectural styles [12] was
defined serving certain categories of software systems like repository models
[6], layered architectures [19], client server architectures [17] and others.

The major concern in ‘GenericServ’ was to choose the architectural style
that is the most suitable for this system. Since each one of the known styles
[12] [18] has some drawbacks to apply to our system, we have opted for a
heterogeneous architecture using a combination of the three architectural
styles listed above.

2.2.1 A heterogeneous architecture

The provider will be deployed on a three-tier client/server architecture
that has the advantage to split the deployment to three levels, which are
appropriate to the deployment of the system.

In this architecture, every server based on GenericServ (the generic
service provider) will consist of the three tiers: client, processing and
database (Fig.2). The other styles are used to define the internal architecture
of the different tiers.



The Client tier represents the interface that the web applications’ creator
uses for accessing the services offered by the provider. This is a thin
client with almost no processing responsibilities to free the web
application developers from programming tasks. So, it does not restrict
any special software platform in order to free the users from any
programming effort. Thus, the web site creators will just need the list of
the services available with their parameters, if any.
The Database tier centralizes the data related to the applications in a
repository database managed by a DBMS. It is accessed through the
services offered to users, but stays completely transparent in order to
allow independent updates and changes. It is accessed through an
interface implementing the DAO pattern [13]. This makes the
deployment of the Database server changeable and upgradeable
independently of the other parts of the system.
The Processing tier constitutes the services provider itself. It is deployed
as the middle-tier containing all processing, client management, testing
and security. Its internal architecture consists of three opaque layers
designed in a strongly modular object-oriented architecture in order to
take the advantages of the independence that the layered style offers.
‘GenericServ’ standardizes the management of the services and defines a

A Web Services Provider 283

In the following we provide more details on each one of the tiers forming
the architecture.

communication protocol between the different actors of the application.
Thus, around this core, a set of services could be defined for a specific
domain to form a useful server, like the one created for online article
publishing needs ‘PubliWeb’ [23]. In the next paragraph, we will focus on
the structure of this tier as it is the central one and it contains all the
processing tasks of the system.

2.3 The processing tier architecture – three layers –

In the processing tier of every concrete server, we distinguish three layers
(Fig. 3):

The core layer It constitutes the kernel of the system that includes
general processing. This core layer defines and implements the
management of the users and services in a generic way, in order to be
independent from the specified servers business domain. It proposes a
skeleton for all services that will be defined on this server. It contains
four modules:

Connection manager: It constitutes the entry point of the server (its
interface of use). It manages the connection requests, the verification,

1.



if the requests include the necessary parameters, and the interaction
between the client and the server.
Analyzer: It analyses users’ requests. It must be transparent in order
not to put too many constraints on the users. Its role is to capture the
service calls, to verify them syntactically and to extract their
attributes. Then it sends these calls to the “Service Manager” that
will delegate them to the corresponding services.
Service manager: It dispatches the calls, arriving from the analyzer,
to the appropriate services after verifying their existence and their
dependencies with other services. This is achieved by keeping a
temporary trace of the running services that will be consulted for any
dependency tests.
Session Manager: It handles the client session’s management. It also
safeguards the state of the client’s work during the session.

The Basic Utilities: this layer contains basic services that can be present
in all service providers independently of their domains. It contains, for
example, services to communicate with the database tier. Other common
services like client authentification, security or any other domainless
functionnality can be created in this layer in order to encourage reuse and
avoid redunduncy.
The Specific Layer represents the set of services proposed in a precise
domain like article publishing. Some examples are online article
submission, article viewing and article acceptance or rejection. A module
‘Utilities’ is defined in this layer covering redundant parameters and
functions that are necessary for the services’ processing.
The processing tier uses also the Reflection pattern defined in [6] as a

284 Digital Communities in a Networked Society

2.

3.

way to divide the system into two levels: a Base level and a Meta level. The
base level is responsible for the computation that stays stable through the



concrete server’s lifetime. It contains the core and the basic utilities layers.
The Meta level contains the varying part of the system. It is the services
layer. The separation of the server into these three layers allows an
instantiation of the generic provider into concrete servers with a minimum of
effort, since this task consists of implementing services according to the
prototype imposed by GenericServ.

In this section, we define a set of patterns inspired from GenericServ and
generalized to business applications. The first pattern proposes a service
provider to help the non-experimented programmers to perform
sophisticated development in a certain domain. In the second pattern
‘Generic Server’, we propose genericity in order to respond to the permanent
evolution of users’ needs and to make the server functionality independent
from the business domain of the services it provides. And finally, the last
pattern defines an opaque ‘modular layered architecture’ for this type of
applications. These patterns are discussed in the following sections.

A Web Services Provider 285

3. A CATALOGUE OF PATTERNS

3.1 The Services provider pattern

Context
Applications in a same domain may have lots of common functionalities

with each other, but different designs and user interfaces. Redoing the same
development several times is a waste of time and effort. In addition, an
application needs different type of actors (analyzers, graphic designers,
developers...). And sometimes the cooperation between these actors may
cause certain problems.

One would like to create an application in a certain domain. Therefore,
the creator of the application may not be very well experienced in
programming, although he wants to conceive a robust and performant
application.

Problem
You would like to minimize the redundancy of the functionalities in

order to reduce the development efforts. So, you are trying to reuse functions
that have been developed in other applications. On another hand, you have to
guarantee a good cooperation between the different actors of the application
without affecting the robustness and the efficiency of the applications. And



essentially, you want to offer some functions created by experienced
developers to non-specialists or simply less experienced people.

Solution
Create a service provider offering the common functionalities needed by

the applications in a certain domain, in the form of services that could be
used by the applications’ creators (Fig.4). This services provider could be
used by different applications in the same domain. It has to have a simple
interface for the users. This interface must be transparent to the user services
in order to allow the developer to call the services without the need to know
the structure of the provider. The system could be deployed as a server in a
client/server structure, where the applications using the services will act as
clients of this server; or, for example, as an application where the users will
choose their services in some kind of graphical interface.

Known uses
The html page editors, the IDLs (Interface Definition Languages), the

development environments for programming languages like Borland C++,
Symantec Visual Studio, etc.

286 Digital Communities in a Networked Society

Consequences
The Services Provider pattern will free the application creator from most
of the development tasks, so it makes it possible for a large group of non
well-experienced programmers to implement relatively sophisticated
applications.
There is a complete separation between the different actors of an
application while keeping an efficient communication between them.

Related patterns
Generic Server (see next section) is the generic version of this pattern.

Our pattern is inspired from Technical Infrastructure [14] that proposes a
solution to system complexity by encapsulating the computing tasks from
the application developer.



Context
You are designing a services provider application, but you need different

types of services in different domains. In addition, not all of the services are
foreseen at the time the application is created. You want your system to be
extensible during its lifetime, and to easily support updates. New services
will continuously be added responding to new requirements. Realizing a
service provider will soon be insufficient because of the continuously
increasing needs. On another hand, the extensions and updates of the
services built on the system must not affect the system’s users. These users
do not want to redo their work each time the provider’s developers make
changes to the system.

Problem
How do you design such an application in a way to ensure the flexibility

and extensibility of the system?
What could guarantee the harmony of the work between all actors of the

application? They must stay independent from each other without affecting
the performance of the system.

Solution
Conceive a generic application in such a way that it standardizes the

handling of its services and the communication with users. This could be
achieved by defining from one side, the protocol of communication with the
users, and from the other side, a prototype of services definition. As for the
generic service provider ‘GenericServ’ (Fig.5)

Known uses
In the domain of distributed applications development, the distributed

object norms have produced a communication layer as in CORBA [8] and
DCOM [5], in order to free the developers of such applications from the
implementation of communication functionality. Another known use of this

A Web Services Provider 287

3.2 The Generic Server pattern



pattern is libraries, like CASTOR [7], that illustrates a generic source
generator offering services to map between Java objects and XML schemas.

288 Digital Communities in a Networked Society

Consequences
Applying the Generic Server pattern makes the application more
extensible and more flexible. The standardization of the services allows
the developers work independently from the control and management of
the services.
The generic nature of this pattern makes it domain independent, so it will
be applicable to more categories of applications.
Future and unexpected needs could be added automatically thanks to the
standard manipulation of the services.

Related patterns
The Generic Server could be structured using several architectural

patterns like the Three Layered Architecture [18] and Pedestal [16]. But we
suggest that it will be structured according to the ‘Encapsulated modular
layers’ pattern explained below.

3.3 The Encapsulated Modular Layers pattern

Context
You want to conceive a generic application. But now you need to build a

good architecture. This architecture should reinforce the genericity. You
should keep the actors of the application independent from each other in
order to maintain a generic domain independent system.

Problem
You must find the best way to realize the genericity of your system in a

flexible architecture.

Solution
Create a four-layer architecture where you separate the processing core

from the services offered by the application. Therefore, conceive each layer
in a modular object-oriented structure. The layers must be opaque, so that
they can evolve independently from each other. Simplify the interfaces
between the layers in order to simplify modules updates.



The first layer contains the interface that is visible to users, and
encapsulates all layers behind. The second layer is the core of the server. It
includes general processing, like clients management and services control. In
this layer, the generic aspect of the application will be defined, because it
will contain service management and manipulation, but it is defined
independently from their business domains. It defines a standard way to deal
with services. The communication with the users and other layers is done via
interfaces encapsulating its internal functionnality. So, it will be completely
opaque to the user and to the other layers. A third layer that contains the
services offered by the application is defined. It is divided into two modules:
‘basic services’ that are common to all domains (can be called domainless
services), and ‘extended’ services with their utilities that are domain
dependant. The two central layers are the common layers to all types of
servers since they are domain independent. And finally, the last layer
contains the database management (Fig.6).

Known uses
The Amoeba operating system [22] consists of a kernel providing basic

services for processes and network communications, memory management
and I/O services. But the difference is that in the ‘Encapsulated opaque
Layers’ pattern, we restrict the services to have a predefined skeleton in
order to generalize their management.

A Web Services Provider 289

Consequences
The opaque Layers with the encapsulating interfaces emphasize the
reusability of the system.
The evolutions of the four layers are independent from each other due to
their opacity.

Related patterns
This pattern gives the development structure of an application of the type

‘Generic Server’. The services offered by an application specifying the
‘Encapsulated Opaque Layers’ can follow the structure of the Service
Prototype pattern [24]. It is a specialization of ‘Layered Architecture’ pattern
[19].



We have presented in this paper an approach to solve the issues
encountered in web applications development that are related to the
complexity of the new sophisticated functionalities needed in this space. We
have focused on the web development domains since it involves a large
variety of persons with very different programming expertise. So, we have
proposed a generic tool for developing web applications. The architectural
style used for this tool is a heterogeneous one that combines advantages
gained from different basic styles. Then, based on this tool we have defined
three patterns for business applications’ development. The first proposes a
service provider to avoid redundant functionalities and to facilitate the
development. The second gives a generic aspect to the provider when used
for several or evolving domains. And the third defines architecture for
this type of tools emphasizing modularity, reuse and easy update.

290 Digital Communities in a Networked Society

4. CONCLUSION

REFERENCES

Abowd, G.; Bass, L.; Kazman, R.; & Webb, M. SAAM: A Method for Analyzing the
Properties of Software Architectures, 81-90. Proceedings of the 16th International
Conference on Software Engineering. Sorrento, Italy. CA: IEEE Computer Society
Press, 1994.
Abramatic, J.F., Développement technique de l’Internet, W3C, http://www.w3c.org,
1999.
Aksit, M., Bergmans, L., Berg van den K., Broek, van den P., Rensink, A., Noutash, A.,
& Tekinerdogan, B., Towards Quality-Oriented Software Engineering, to be published in
Software Architectures and Component Technology: The State of the Art in Research
and Practice, M. Aksit (Ed.), Kluwer Academic Publishers, January 2000.
Bass, L., Clements, P., & Kazman, R. Software Architecture in Practice, Addison-
Wesley 1998.
Brown, N. & Kindel, C., Distributed Computing Object Model Protocol – DCOM/1.0,
www.grimes.demon.co.uk/DCOM/DCOMspec.htm, 2002
Castro, J. & Mylopoulos, J., Information Systems Analysis and Design, 2001.
castor.exolab.org, 2002.
Daniel, J., Au coeur de CORBA (avec Java), Vuibert 2000.
Enterprise Java Bean 2.1 Specification, java.sun.com, 2002.
Farly, J., Java Distributed Computing, O’REILLY, 1998.
Fowler, M.., Analysis Patterns: Reusable Object Models, Addison-Wesley, 1996.
Garlan, D., “An Introduction to Software Architecture,” Advances in Software
Engineering and Knowledge Engineering, Volume I, edited by V.Ambriola and
G.Tortora, World Scientific Publishing Company, New Jersey, 1993.
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html, 2002.
Meszaros, G., Archi Patterns: A process pattern language for defining architectures,
Pattern Language Of Program Design conference, 1997.
The Online Computer Library Center, http://www.oclc.org, 2002.

1.

2.

3.

4.

5.

6.
7.
8.
9.
10.
11.
12.

13.
14.

15.



Rubel, B., “Patterns for Generating a Layered Architecture”, Pattern Language of
Program Design, Vol.1, Addison Wesley, 1995.
Sadoski, D. & Comella-Dorda, S., Three Tier Software Architecture,
URL : http://www.sei.cmu.edu/str/descriptions/, 2000.
Shaw, M., Making Choices: A Comparison of Styles for Software Architecture. IEEE
Software 12, 6 27-41, November, 1995.
Shaw, M., ‘Some Patterns for Software Architectures’, Pattern Language Of Program
Design, Addison Wesley, 1996.
Shaw, M. & Clements, P. A Field Guide to Boxology: Preliminary Classification of
Architectural Styles for Software Systems, Proc. COMPSAC97, 1st Int’l Computer
Software and Applications Conference, August, 1997.
Shaw, M. & Garlan, D. Software Architectures: Perspectives on an Emerging Discipline,
Englewood Cliffs, NJ: Prentice-Hall, 1996.
Tanenbaum, A.S., Modern Operating Systems, Prentice Hall, 1992.
Tawbi, S. & Chebaro, B., GenericServ: A generic server for web application
development, web requirements & e-services workshop of the 1st EURASIA conference
for Advances in information & communication technology, workshop proceedings,
Austrian computer society, 2002.
Tawbi, S. & Chebaro, B., Service Providers patterns for client/server applications. Poster
in the proceedings of the ICEIS 2003, 5th International Conference On Enterprise
Information Systems, IEEE computer society press, 2003.

A Web Services Provider 291

16.

17.

18.

19.

20.

21.

22.
23.

24.


