
AUTOMATED CHECKING OF SAP SECURITY
PERMISISONS

Sebastian Höhn
Software & Systems Engineering, Informatics, TU Munich, Germany
hoehn@in.tum.de

Jan Jürjens
Software & Systems Engineering, Informatics, TU Munich, Germany
juerjens@in.tum.de
http://www.jurjens.de/jan

Abstract: Configuring user security permissions in standard business applications (such
as SAP systems) is difficult and error-prone. There are many examples of
wrongly configured systems that are open to misuse by unauthorized parties.

To check permission files of a realistic size in a medium to large organization
manually can be a daunting task which is often neglected.

We present research on construction of a tool which automatically checks the
SAP configuration for security policy rules (such as separation of duty). The
tool uses advanced methods of automated software engineering: The permis-
sions are given as input in an XML format through an interface from the SAP
system, the business application is described ba a diagram modeled with stan-
dard UML CASE (Computer-Aided Software Engineering) - tools and output
as XMI, and our tool checks the permissions against the rules using an ana-
lyzer written in Prolog. Because of its modular architecture and its standard-
ized interfaces, the tool can be easily adapted to check security constraints in
other kinds of application software (such as firewall or other access control
configurations).

Key words: integrity and internal control in financial systems, automated configuration
review, security restraints



14 Integrity and Internal Control in Information Systems

1. INTRODUCTION

The management and configuration of security-related resources in stan-
dard business applications is one of the most important tasks in mission-
critical departments. There is not only the potential of a negative impact of
public disclosure of confidential information and a resulting loss of faith
among customers, but the threat of direct financial losses. Computer
breaches are a real threat as a study by the Computer Security Institute
shows:

Ninety percent of the respondents detected computer security breaches
within the last twelve months.
Forty-four percent of them were willing and/or able to quantify their
losses. These 223 firms reported $455,848,000 in financial losses
[Pow02].
It is important to realize that the existence of security mechanisms itself

does not provide any level of security unless they are properly configured.
That this is actually the case is often non-trivial to see. One example is the
rule of “separation-of-duty”, meaning that a certain transaction should only
be performed jointly among two distinct employees (for example, granting a
large loan). Difficulties arise firstly from the inherent dynamics of permis-
sion assignment in real-life applications, for example due to temporary dele-
gation of permissions (for example to vacation substitutes). Secondly, they
arise from the sheer size of data that has to be analyzed (in the case of the
large German bank, which motivated the current work, some 60,000 data
entries). A manual analysis of the security-critical configurations through
system administrators on a daily basis is thus practically impossible, which
might result in security weaknesses in practice. This observation motivated
the current research which has been initialized in cooperation with a large
German bank and their security consulting partner. The goal was to develop
a tool which can be used to automatically check security permissions against
given rules in a specific application context (such as the separation of duty
rule in the banking sector). The tool should in particular be applied to ana-
lyze the SAP security permissions of the bank at hand. The current paper
reports on the design and development of this tool.
The permissions are given as input in an XML format through an interface
from the SAP system, the business application is described by a diagram
modeled with standard UML CASE-tools and output as XMI, and our tool
checks the permissions against the rules using an analyzer written in Prolog.
Because of it’s modular architecture and it’s standardized interfaces, the tool
can be easily adapted to check constraints in other kinds of application soft-
ware (such as firewalls or other access control configurations).



Automated Checking of SAP Security Permisisons 15

In the next section, we explain the task the tool is supposed to solve in more
detail (including the format of permissions and rules to be supported), as
well as the architecture of and the underlying concepts and important design
decisions regarding the tool. Section 3 explains the actual analysis performed
in the tool at the hand of some examples. We close with a discussion of re-
lated work and a conclusion.

2. AUTOMATED ANALYSIS OF SECURITY RULES

2.1 The Goals

As explained above, the correct configuration of secure business applications
is a challenging task. So there is a need for automated tool-support. The tool
presented here takes a detailed description of the relevant data structure of
the business application, the business data, and some rules written by the
administrator. Using this information, the tool checks whether the rules hold
for the given configuration. If the rules do not hold this is written to the gen-
erated security-report. The tool should be able to accomplish the following
specific tasks:

It should read the configuration from the business application.
It should automatically generate a report of possible weaknesses.
It should provide a flexible configuration of the report’s data.
It should be easily configurable for different business applications.
It should be able to check large-scale databases.
The checking should be based on freely configurable rules.

Two other goals are particularly important to enable use of the tool beyond
the specific task of checking SAP permissions of the SAP installation at
hand: it has to be easy to integrate the tool with different business applica-
tions, and the rules that have to be checked need to be very flexible.

2.2 Architecture

The tool mainly consists of three parts. They store the information describ-
ing the relevant data structure of the business application, define the rules
and evaluate the rules. An additional part is needed to import the data from
the business application (such as the SAP system). As in our example this is
the user data and some structural information about transactions.
The complete separation of the tool and the business application provides
additional security and privacy: Firstly, by separating the tool from the busi-
ness application, there is no way the tool could add any weaknesses to this
security-critical part of the company’s IT-system. The tool does not interact



16 Integrity and Internal Control in Information Systems

with the system at all, the only interaction the tool requires is data export.
When the tool has completed it’s task, there is a list of proposals for the ad-
ministrator to review. So it is the administrator’s task to decide whether he
will follow the proposal or not. So there is no way the tool itself could add
any weaknesses to the system.

Secondly, this way it can be made sure that only the information needed for
the analysis is exported to a foreign tool, which is important privacy matters.
Both aspects should facilitate adoption of the tool.
The information itself is completely stored in XML. The business applica-
tion’s data has to be exported to XML files. In the specific application of the
tool – the analysis of SAP security permissions – this task is outside the
scope of the current paper.
The data structure of the business application is defined by UML class dia-
grams. Any case tool capable of saving XMI data can thus be used to do the
modeling. The modeling in the current project will be done manually, be-
cause that will add some additional security (misconfiguration could result in
a wrong model which will not be recognized as wrong then) and it is rather
easily done. The complexity of the creation of this model depends one the
size of the system. In SAP you can think about one diagram for each data
table and the associations between these tables. Rules are stored in XML.



Automated Checking of SAP Security Permisisons 17

There is a graphical user interface in development which will help with the
creation of rules.

2.3 The Business Application as a Model

Following conventions published by the Object Management Group (OMG)
as “the classical four layer meta-model framework”[Obj02], software sys-
tems can be modeled particularly flexibly in an approach based on several
layers of information (see Figure 2). Throughout the description of the ana-
lyzer there will be several types of information that fit into different layers
on OMG’s meta-model framework. In this framework there are UML models
on layer 1 (M1) and application data on layer 0 (M0) (see Meta-object facil-
ity, pp. 2-2 to 2-3.
According to this separation of “model” and “information” the analyzer
needs two distinct types of data. First it needs “metadata” which is the de-
scription of the data structure of the business application itself and is given
as an UML model of the application. This is what sometimes is called the
“structure of the business” application and it is on level M1. On the other
hand the analyzer needs to know about the data itself, this is what is called
“instance data” and it is information on level M1.

To illustrate the separation of data on layer M1 and data on layer M0 we
consider an example. Assume there is “some” user-data in the business ap-
plication. Every user has a name and a password. To formally describe the
meaning of “some” in the expression “some user-data” there is a “model”
that tells the tool about the class user and it’s attributes name and password.
This is done with an UML model and is data on level M1. When the tool
checks the rules and needs to evaluate information of some special user e.g.
“John”, it needs what is called “information” in the “meta-model frame-
work”. This information is called “instance-data” and it is given as XML
documents (this is, as the analyzer uses it, placed on layer M0)[Obj02].



18 Integrity and Internal Control in Information Systems

2.4 Permissions

To associate permissions for transactions via roles to users in role based ac-
cess control (RBAC), the tool uses UML class diagrams. These diagrams can
be directly used to give this information, and we do not need to introduce
any additional features. The tool reads the class diagram and evaluates
classes and associations.
In general, the analyzer is not restricted to such an RBAC model or to any
specific model at all. It is capable of evaluating rules on any class diagram
that has the connection attributes assigned as names of the associations and
the direction of associations defined by the navigable flag. The analyzer
evaluates the model as a graph with classes as nodes and associations as
edges, where edges are directed. As we will see later, for the evaluation of
rules, we need to require that there must be a path between the two classes
involved in that rule, and there must be instance data so that the connecting
attributes of each class match.
To explain this in more detail, we consider the example in Figure 3: the class
diagram assigning permissions to users consists of the classes user, role,
transaction, and permission, with attributes as in Figure 3. There is an asso-
ciation role_id between user and role, an association role_id between role
and transaction, and an association transaction_id between transaction and
permission. The analyzer uses this model to automatically find a user’s per-
missions.
Note that when assigning a permission p to a user u via a role r, and the user
u also happens to have another role then (of course) it is not admissible to
conclude that any user with the role should also be granted the permis-
sion p. In that sense, assigning permissions to users via roles is “uni-
directional”. In the class diagrams defining permissions, this is specified by
using the “navigable” flag of UML class diagrams. This flag is an attribute
of an association’s endpoint. If this flag is set to “true” at the endpoint of a
class c (signified by an arrow at that side of the association), our rule-
analyzer may associate information from the other end of the association
with c. If it is set to “false”, this information may not be evaluated. This way
our tool may gather the permissions with respect to transactions granted to a
given user by traversing the class diagram along the associations in the navi-
gable directions permitting a “flow of information”. This way the tool “col-
lects” all users that have a given role, but does not recursively collect all us-
ers that have any of the roles that a given user has (as explained above).



Automated Checking of SAP Security Permisisons 19

To know how the elements in the application are connected there must be
some kind of ID that can be evaluated at both sides of the connection. As in
the short example above the user would have some kind of “role-id” in his
user data, and a role would have the same id. The application retrieves the
user’s “role-id” and finds the role with the same id. To express that mecha-
nism in our static UML class diagram, there is an association between the
classes that exchange information. The user-class would be associated with
the role-class, so the tool knows there is some kind of interaction (i.e., the
application is able to find a user’s role). To enable the search of information
the analyzer implicitly adds an additional attribute to either class at the asso-
ciation’s endpoints. These new attributes are assigned the association’s name.



20 Integrity and Internal Control in Information Systems

2.5 Instance Data

Besides the structural data elements explained above, we need so-called “in-
stance data”. Here an instance may, for example, be a real user of the sys-
tem. This information is very important for most of the rules one would like
to evaluate. There are, of course, rules that do not need instance data (if one
is checking the UML data structure model itself for some constraints, for
example), but in general there will be instance data. It is read by the analyzer
from additional XML files (for an example see Figure 4), containing a tag
for every class, and within that tag another tag for each attribute. The ana-
lyzer is able to generate the XML-Schema file for an UML model specified
by the user, because the contents of the instance file depends on the model of
the business application.

2.6 Rules

As defined in the previous section, the business application data structure is
represented by a class diagram, that is, a directed graph together with the
data from the business application. These two pieces make up a rather com-
plex graph whose structure can be seen in Figure 5 as an example. One can
see that for every user in the business application data structure, a node is
added. The model gives the tool the information that there is a connection
between user and role, but in the graph in Figure 5 there are only edges be-
tween certain users and certain roles. It shows that there is an edge between
user john and role users, because there is the attribute role that instantiates it.
There is no edge between user john and role admins, because john does not
have admins in his roles. This is the graph that the analyzer uses to analyze
the rules.
Rules in this paper consist of the following elements:

a name (used as a reference in the security report)
the type of the rule, which can be either of PROHIBITION or
PRECONDITION (meaning that the condition given in the sub-rule de-
fined below should either not be fulfilled, or be fulfilled)
a message (printed in the report if the rule fails)
a priority level (to build a hierarchy of importance, so that less important
rules can be turned off easily - typical values may include DEBUG,
INFO, WARNING, ERROR, FATAL, or a numerical value)
a sub-rule, which defines a path in the analyzer’s graph and a set of con-
straints, as defined below

A sub-rule has the following elements:
the head, which is the starting point of the path in the analyzer’s graph
defined by the sub-rule



Automated Checking of SAP Security Permisisons 21

the target, which is the target of that path
a list of constraints, which defines conditions that the path has to satisfy

Here a constraint consists of the following elements:
element, the node that has to be checked
condition, to be checked on that node

We consider the following example: If it has to be ensured that a certain
user, say john, does not have the role admins assigned, the following pa-
rameters would be set for the rule:

name check user roles
type PROHIBITION
message check user for given roles
priority ERROR = 4

In this example, we have a single sub-rule.
head user
target role
constraint head.user.name = param.user.name
constraint target.role.name = param.role.name

This rule has two parameters that the user has to provide when generating
the report, indicated by the keyword param: the user-name john and the role
admins. A suitable XML document that provides these parameters for every
rule is expected as input.
The evaluation of this example rule is as follows: The analyzer attempts to
find the head of the rule (i.e. “user: john”) in the analyzer’s graph. After-
wards, it tries to find a path to the target (i.e. “role: admins”). If that suc-
ceeds it prints the given message in the security report.
The separation between the rule itself and the two parameters
(param.user.name and param.role.name) is introduced to make editing more
comfortable: One does not need to edit a rule for every user and every role
that has to be checked.
With the help of these elements rather powerful rules can be defined. To the
analyzer the model is a graph representing the business application data



22 Integrity and Internal Control in Information Systems

structure. The head and the target represent nodes within that graph. For ex-
ample, head could be user and target could be role. With that definition there
should exist a path between head and target. If it does not, the rule fails. If
that path exists, the analyzer will try to fill that path with valid data from the
given instance-data. That means that for a valid connection from head to tar-
get, every association along that path is instantiated with a discrete entry
from the business application’s data. If there is no valid instantiation, the rule
fails. If there is one, the constraints are checked. Every instantiated element
will be examined, and if one of the conditions fails, the rule fails. Otherwise,
it succeeds.
To make the rules more expressive, a rule can consist of several sub-rules,
where a sub-rule does not have the additional type, message and level attrib-
utes. This way the analyzer is powerful enough to check rules such as
separation of duty, for example by using the sub-rules:

check for distinct role A,
check for distinct role B and
ensure that no user has both of them.

For a rule to succeed, each of the sub-rules has to succeed.
The type is given to distinguish between preconditions and prohibitions,
meaning that either the success or failure of that rule is reported. So it is
conveniently possible to define states that must be fulfilled for every con-
figuration and to define states that may not appear within a configuration.
For example, it may be vital for a system to have the password set for the
super-user account. Conversely, for separation of duty, it would be forbidden
for the same user to have two exclusive roles. A template system prints out
the messages with any of the instance’s attributes in a freely configurable
manner. So it is possible to insert values from the violating instance to the
message, for example as: “there is no password for user Joe”. Only with such
a feature the messages become readable and thus the tool easily usable by a
human user.



Automated Checking of SAP Security Permisisons 23

3. EVALUATING RULES

We use Prolog for the evaluation of the rules. Prolog seems particularly suit-
able, because it was specifically designed for such a task. In our experience
it is also sufficiently efficient for a real-life application. To evaluate the effi-
ciency of Prolog we implemented some simple tests with randomly gener-
ated clauses. These clauses were generated such that they had the same
structure as the ones generated by the analyzer. We then could evaluate
rules, with a database of up to several million clauses in seconds. So it
seems, that Prolog will do for the project, were according to our business
partners 60.000 entries are generated. If there really will be far more than
several millions of clauses, one could think about batch processing.
The advantage of using Prolog is that we can concentrate on the essential
problems specific to the rules without having to solve the hard problems of
finding the instances along the paths.

3.1 Translating rules to Prolog clauses

First of all the data structure of the business application is defined in Prolog.
For this each class from the model describing the business application is
converted to a predicate with an argument for each attribute. A class user (U)
with two Attributes (name (n), role-id (r)) gives the following expression:

U(n,r).



24 Integrity and Internal Control in Information Systems

To evaluate an expression like “the user’s role”, we need an additional predi-
cate for each association. The “connecting” predicates have the following
form: Assume there is a predicate U(n, r) and a predicate R(m, r). Then the
connection C(n, m, r) is given by the following term:

That means that there is a user n in role m if there is a user n and a role m
such that the role-id r is the same. These predicates can be extended to paths
with any number of intermediate nodes, because Prolog evaluates all predi-
cates to true, and the provided connecting attributes match, as in the follow-
ing example:

Note that the tool could be modified to eliminate the arguments not needed
to determine the existence of a path. However, it is convenient to be able to
include this additional information in the report.
After the structure is added, the instance will be added, too. For every class
several predicates are created. In Prolog syntax that’s what it looks like:

user( john,500).

With the above Prolog-clauses in place, the analyzer can ask for instantia-
tions of the rules.
A short remark regarding the efficiency of the analysis: The “connecting”
predicates are added only when a rule needs them. If one would insert every
possible connection from every imaginable head to every target, there were
up to n(n – 1) of these connections. But to evaluate m sub-rules one would
need at most m of these connections. Thus a connection is only added when
a sub-rule implies it, reducing the number of connections in general signifi-
cantly.

3.2 Evaluating Separation of Duty in SAP systems

We use an example configuration from [Sch03] to explain how separation of
duty in SAP systems can be evaluated by the rules. First of all, the structure
of the business application needs to be defined. For simplicity it will be as-
sumed that the structure looks like the one presented in Figure 3. It certainly
is just a very small part of the SAP security concept but as an example, it
will be sufficient.



Automated Checking of SAP Security Permisisons 25

There are three employees: Karen, Susan and John. Karen and Susan are just
employees in any department, and John is a purchasing agent at the com-
pany. To have separation of duty, Karen may create a purchase and Susan
may release that purchase to John. John may order the desired goods at some
supplier firm. With that in place the Prolog rules would be very straight for-
ward:

user(Karen, 1)
role(create-purchase, 1)

To have separation of duty in place there are two exclusive roles, which may
not be assigned to the same user: “create-purchase” and “release-purchase”.
John just places the orders, he does not do any supervision here. The first
sub-rule must have the head “user” and the target “role”. The second sub-
rule must have the same head and target but it needs a condition:

rulel.user.name = rule2.user.name

The type of that rule is PROHIBITION, the other attributes do not matter for
this example. What does the tool do now? It has created the predicates and
inserted the users and the role from the instance files. Afterwards it searches
the paths for the rule:

user_role(name, role_id, rname) :- user(name, role_id), role(name,
role_id).

With that predicate the rule can be evaluated to:

user_role_rule(name, role_id1, role_id2) :- user_role(name1, role_id1,
X), user_role(name2, role_id2, Y), name1 = name2.

Now Prolog can be asked for



26 Integrity and Internal Control in Information Systems

user_role_rule(X, create-purchase, release-purchase).

and Prolog calculates the correct answer. In the example from Table 1 there
is no solution to the predicate, because there is only Karen for role “create-
purchase” and Susan for role “release-purchase”, and user Karen is not equal
to user Susan.
Although this example is very simple, it serves as a demonstration of how
the rules can be used. In a real application, the path from user to role might
contain several nodes or one might not know the roles that have to be exclu-
sive, just the permissions, so one could exclude permissions contained in
roles with several hundreds of entries each.
Note that we do not currently aim to treat object-based permissions, but re-
main at the class level. While it should be possible to extend our approach in
that direction, it is beyond the scope of the current investigation. In particu-
lar, this applies to a special kind of separation-of-duty specific to SAP sys-
tems: The system can be configured to require more than one user with a
certain role to start a transaction. Since the checks needed to enforce this
requirement are performed within the SAP system, it would not make sense
to repeat them as well at the analysis level. But one should note, that this
“internal” separation-of-duty differs form what is presented in our examples.
It is often useful to have separation-of-duty throughout different depart-
ments, so that the internal one is not sufficient (i.e. if there is some kind of
revision after the transaction was performed).

3.3 SAP Transactions

Another example for a use of the rules to improve security is, when the
transactions are also part of the data structure. Because of the design of the
SAP system (which may seem surprising from a security point of view),
there are no security checks performed when a transaction calls another one.
By this transitivity, it is very difficult in large systems to see who can exe-
cute a transaction. The permission to execute a transaction includes the per-
mission to execute every transaction called by the first one and there does
not seem to be a possibility to disable this feature. Thus creating a transac-
tion in SAP is a permission that gives access to everything. One should no-
tice that an employee who is allowed to create a transaction and execute it,
can execute any transaction by calling it from his self-created one.
If access needs to be restricted to some transactions, it is therefore not suffi-
cient to ensure that the permission is given only in the roles associated with
that transaction, and that only the users allowed to execute that transaction
are assigned those roles. It has to be ensured furthermore that there is no
transaction calling the restricted one, because SAP would not perform secu-



Automated Checking of SAP Security Permisisons 27

rity checks there and one would not prevent execution of the restricted trans-
action.
To do so, one may model the transactions with its sub-transactions as part of
the analyzer’s model. Then the tool creates rules to check whether permis-
sions grant any user additional rights that are not part of his role. It is usually
not advisable to report every transaction that can be executed without ex-
plicit permission. Because of the error-prone design, there will be a lot of
transactions that are meant to be called implicitly. But the possibility to
check for some very “dangerous” transactions (in particular the ones for
changing permissions and roles) is a great enhancement of security. This
would be improved even more if there was a way to automatically create the
data that represents the dependencies of the transactions. We aim to inquire
the possibilities to do so.

3.4 Use-Case to Check SAP Permissions

The SAP database is used to generate the information necessary for the rules.
An employee creates an UML model describing the SAP system. We use the
CASE tool Poseidon for UML to do so. These two documents describe the
business application. With these documents in place one can create the rules.
For creating the rules there is a graphical user interface but the XML files
necessary can be edited manually, too.
When all the documents are prepared, the rules can check the rules automati-
cally. After the rules has finished the checks, the user can read the security-
report and start reconfiguring the business application in order to fulfill all
the conditions contained in his rule-set.
The security report is formatted as defined by the templates that are part of
the analyzer. The analyzer writes a freely configurable HTML file for review
with a web browser.

3.5 Further applications

The analyzer can not only be used to check SAP systems, it can be used to
check most configurations of large scale applications. The modular archi-
tecture makes it easy to adapt to a new application. One needs to define the
application’s structure in UML, then the instance data must be converted to
proper XML files, corresponding to the XML Schema provided by the tool’s
schema generator. Afterwards, the rules have to be defined. There the
graphical user interface can be used, or the XML files can be written manu-
ally or generated by any tool fitting the needs of the application. Then the
report can be generated by the analyzer.



28 Integrity and Internal Control in Information Systems

With that open architecture, we hope to establish a tool for a wide range of
rule-checking tasks of configuration files. Our main focus of application is
security, but there are other fields where one could use the analyzer,

4. RELATED WORK

One approach to analyzing security configurations is called “Configuration
Review Test” [Pol92]. As far as we know there is no implementation of
these tests that uses rules for this purpose. Existing tools for this approach
check some conditions of specific applications, mostly operating systems.
These tools are designed to check for certain security weaknesses, common
to a number of systems. Compared to this specific tools, the open architec-
ture presented in the current paper is new for configuration review tests. We
consider it a useful new idea for tool-supported security checks. The ana-
lyzer presented here could also replace some of the more specific tools, by
adding some applications that collect all the information necessary to check,
for example, operating system’s configurations.
Penetration tests are commonly used to assess the security of a system
[Wei95]. In our view, they are complementary to our approach: On the one
hand, penetration tests would profit from the information gathered by the
analyzer’s report. On the other hand, the analyzer presented here does not
warn about weaknesses in the software itself (such as programming errors or
buffer overflows), but it reports configuration errors. To have a penetration
test reveal the errors, the analyzer is designed to check for, one would have
to try out every possible transaction. This is usually impractical because
there are too many of them. Also, when performed on a live system, the
penetration test would be rather invasive.
There are several recent approaches using UML for security analysis, in-
cluding [Jür02], [Jür03], and [LBD02], and several contributions in
[JCF+02]. More generally, there has been a lot of work on formulating secu-
rity requirements in object-oriented data models (see for example [JKS95]
and the references there). Other approaches using logic programming for
access control analysis include [BdVS02]. [RS01] uses SQL to administer
permissions for distributed data. Compared to that approach, our tool can not
only be applied to data bases, but more generally to security configurations.
[GAR03] uses a model-checker to analyze Linux configurations.



Automated Checking of SAP Security Permisisons 29

5. CONCLUSION

The analyzer introduced in this paper is capable of reading the business ap-
plications configuration as an UML model and a XML file, therefore it can
be easily configured for a wide variety of business applications. The rules
used for checking are rather flexible and powerful. While the tool uses a
template system for it’s report the layout of that report can be freely adopted
to any form required.
Misconfiguration of security mechanisms is a major source of attacks in
practice. The current work aims to address this issue by providing automated
tool-support for checking SAP security permissions. The tool allows one to
formulate rules (such as separation-of-duty) that the permissions are sup-
posed to satisfy. It enables one to check automatically that the permissions
actually implement the rules even in situations where this is difficult, labori-
ous, and error-prone to perform by hand, because of dynamic changes and
the size of the data volumes involved.
Because of its modular architecture and its standardized XML interfaces, the
tool can be easily adapted to check security constraints in other kinds of ap-
plication software (such as firewall or other access control configurations).
By making use of standardized mechanisms (such as UML) for specifying
the rules, it should be easily learnt to use.
The analysis engine currently exists in a prototype version; development of a
product based on it (including the interface to the SAP system) is currently
under negotiation. We tested the prototype with example business applica-
tions (including some XML test data), including a performance evaluation
for large datasets (1,000,000 entries). Hence we can be confident that the
tool can be built into an industry-strength application if the market analysis
will turn out positive.
One of the advantages of the current work in comparison to other possible
approaches to the problem is the possibility to link the analysis of the SAP
permissions with an analysis of a business process model given as a UML
activity diagram, which is work in progress [Alt03].
More information on the analyzer and on how to obtain a license can be
found at http://www4.in.tum.de/~umlsec.

REFERENCES

[AJP95]

[Alt03]

M. Abrams, S. Jajodia, and H. Podell, editors. Information security: an inte-
grated collection of essays. IEEE Computer Society Press, 1995.

E. Alter. SAP permissions and business processes. Master’s thesis, TU Munich,
2003. In preparation.



30 Integrity and Internal Control in Information Systems

[BdVS02]

[GAR03]

[JCF+02]

[JHC02]

[JKS95]

[Jür02]

[Jür03]

[LBD02]

[Obj02]

[Pol92]

[Pow02]

[RS01]

[Sch03]

[Wei95]

P. Bonatti, S. De Capitani di Vimercati, and P. Samarati. An algebra for com-
posing access control policies. ACM Transactions on Information and System
Security, 5(1):1-35, February 2002.

J. D. Guttman, A. L. Herzog, and J. D. Ramsdell. Information flow in operating
systems: Eager formal methods. In Workshop on Issues in the Theory of Secu-
rity (WITS’03). IFIP WG 1.7, ACM SIGPLAN and GI FoMSESS, 2003.

J. Jürjens, V. Cengarle, E. Fernandez, B. Rumpe, and R. Sandner, editors. Criti-
cal Systems Development with UML, number TUM-I0208 in TUM technical
report, 2002. UML’02 satellite workshop proceedings.

J.-M. Jézéquel, H. Hussmann, and S. Cook, editors. UML 2002 - The Unified
Modeling Language, volume 2460 of Lecture Notes in Computer Science,
Automated Checking of SAP Security Permissions 21 Dresden, Sept. 30 - Oct.
4 2002. Springer-Verlag, Berlin. 5th International Conference.

S. Jajodia, B. Kogan, and R. Sandhu. A multilevel-secure object-oriented data
model. In Abrams et al. [AJP95].

J. Jürjens. UMLsec: Extending UML for secure systems development. In
Jezequel et al. [JHC02], pages 412-425.

J. Jürjens. Secure Systems Development with UML. Springer-Verlag, Berlin,
2003. In preparation.

T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-based modeling
language for model-driven security. In Jézéquel et al. [JHC02].

Object Management Group. Meta-object facility, version 1.4. In OMG Specifi-
cations. OMG, April 2002.

W. Timothy Polk. Automated tools for testing computer systems vulnerability.
In NIST Special Publications. National Institute of Standards and Technology,
December 1992.

Richard Power. 2002 CSI/FBI computer crime and security survey. Technical
report, Computer Security Institute, Spring 2002.

A. Rosenthal and E. Sciore. Administering permissions for distributed data:
Factoring and automated inference. In IFIP11.3 Conf. on Data and Application
Security, 2001.

Marillyn Aidong Schwaiger. Tool-supported analysis of business processes and
SAP permissions, 2003. Study project, TU Munich. In preparation.

C. Weissman. Penetration testing. In Abrams et al. [AJP95], chapter 11, pages
269-296.


