AN EFFICIENT OODB MODEL FOR ENSURING
THE INTEGRITY OF USER-DEFINED
CONSTRAINTS

Belal Zaqaibehl, Hamidah Ibrahimz, Ali Mamatz, and Md Nasir Sulaiman?
lFaculty of Information Technology, Multimedia University, 63100 Malaysia,
2Faculty of Computer Science and Information Technology, University Putra Malaysia

Abstract: In this paper, a new structural model is proposed to ease the checking of the
integrity constraints in an object-oriented database system. The structure
accepts declarative global specification of constraints including user-defined
constraint, and an efficient representation that permits localized constraints
checking. A new method called “Detection” is added to the structure to check
the status of violation of the relations in an object-oriented database. The new
approach is demonstrated using ALICE rule.

The notion of the constraints is used to define the connectivity between objects
required for the valid expression of constraint and rule conditions. The event
in Integration Rules (IRules) that defines the active behavior of an application
specifies an operation to be monitored, such as modifying a data value. The
semantic analysis process applies a concept known as object-centered
conditions during the compilation of ALICE rules to detect semantically
incorrect rules at compile time.

Keywords: Constraint, Maintenance, Object-Oriented Database, ALICE, Inter-Object
Constraint.

1. INTRODUCTION

Object-oriented databases are rapidly gaining popularity, and show a
promise of supplanting relational databases. It is imperative that explores the
maintenance of integrity in object-oriented databases. By virtue of object

196 Integrity and Internal Control in Information Systems

orientation, some integrity constraints are represented naturally and
maintained for free in an object-oriented database, the system type and the
object class hierarchy will directly captured. Typical example of this sort is
the constraint that every employee is a person and that every child of a
person is a person. Other forms of integrity constraints apply to a single
object, and clearly belong as part of an object class specification. An
example of such a constraint for a person object is that years-of-schooling
must be at least 5 years old.

As known, the integrity constraints that involve the monitoring of user
updates on data items in a single object called as intra-object constraint. The
following example shows the domain constraints that specify legal values in
a particular domain: Sex in [F, M]. In other hand the integrity constraints that
involve objects from more that one class known as inter-object constraints.
For example of inter-object constraints is the association between student
and course classes is expressed as each student must register in at least three
courses, it will be represented as count (student.course) >= 3, assuming that
course in student is a data structure that holds the object identifiers of the
courses taken by the particular student.

Traditionally, integrity constraints in object-oriented database systems
are maintained by rolling back any transaction that produces an inconsistent
state for the intra-object constraint, or disallowing or modifying operations
that may produce an inconsistent state for the inter-object constraint. An
alternative approach is to provide automatic repair of inconsistent states
using production rules. For each constraint, a production rule is used to
detect constraint violation and to initiate database operations that restore
consistency. The maintenance system consists of a set of constraint services
with different solving capabilities and complexity. Each service can be
connected to maintain constraint relationships independently.

Object-Oriented Database Systems (OODBs) have been designed to
support large complex programming projects. OODBs divide the definition
and maintenance of all structures into inheritance encapsulated method, with
information shared between classes kept to a minimum, since maintenance
required code in multiple classes. The monitor specific state is changed in
instances of the external classes. This is in contrast with relational database
systems, which were designed to provide a large data repository accessible
to the user through a general purpose, and declarative-style query language.
Declarative query languages are well suited to handling arbitrary queries
presented by an end user, but they introduce a burdensome impedance
mismatch when embedded within application code. A language for the
expression of Integration Rules (IRules) is an important part of an Object-
Oriented Database Management System (OODBMS) that defines the active

An efficient OODB model for ensuring the integrity of user-defined constraints 197

behavior of an application [7,11]. The event in an IRules specifies an
operation or a situation to be monitored, such as modifying a data value.

2. PRELIMINARIES

The collection objects are the elements that allow an object to contain
multiple values of a single property. The collection objects identified by the
proposed standard including set that contains an unordered group of objects
of the same type, no duplicates are allowed so this will help to reduce the
number of constraints checking when an event happens, bag contains an
unordered group of objects of the same type, duplicates are allowed, [list is
an ordered group of objects of the same type, array is an ordered group of
objects of the same type that can be accessed by position, and dictionary is
like an index [1, 3, 7]. Collection objects are made up of ordered keys, each
of them is paired with a single value. From the collection objects a search
can be performed using the keys to find the full information about any object
in the database. Those keys are known as Object Identifiers (OID). OID is an
internal database identifier for each individual object and this might include
the page number and the offset from the beginning of the page for the file in
which the object is stored [2, 3, 7].

The major types of classes used in object-oriented are control classes
which manage data and have visible output, it controls the operational flow
of the program [1, 2, 7]. Entity classes are used to create objects that manage
data. Most object-oriented programs have at least one entity class from
which many objects are created. In fact, in its simplest sense, the object-
oriented data model is built from the representation of relationships between
objects created from entity objects [2, 11]. Container classes existed to
“contain” or manage, multiple objects that created from the same type of
class [2]. Because they gather objects together, they are also known as
aggregations.

Entity integrity normally enforced through the use of a primary key or
unique index [2, 3]. However, it may at times be possible to have a unique
primary key for a tuple (row) a relation and still have duplicate data in its’
fields. This simply means that in any given relation, every tuple is unique. In
a properly normalized, relational database, it is of particular importance to
avoid duplicate tuples in a relation because users will expect that when a
tuple is updated, there are no other tuples that contain the same data.

In the domain integrity the values in any given column fall within an
accepted range [2, 3]. It is important to make sure that the data entered into
a relation is not only correct, but also appropriate for the columns it is
entered into. The validity of a domain may be as broad as specifying only a

198 Integrity and Internal Control in Information Systems

data type (text, numeric, etc.) or as narrow as specifying just a few available
values. Referential integrity, here is the foreign key value points to valid
rows in the referenced table or points to, a related tuple in another relation. It
is absolutely imperative that referential integrity constraints be enforced [6,
8]. While it is possible that foreign key values may be null, it should never
be invalid. If a value of foreign key is entered, it must reference a valid row
in the related relation.

There are two models that deal with object-oriented database; Abstract
Data Type (ADT) and Object-oriented System Model (OSM). The proposed
approach is built on OSM because it has some similar features to formal
syntax and semantics based on a temporal, first-order logic and it allows for
multitude of expressive, and high-level view [2].

3. OUR CONSTRAINTS DOMAIN

In general there are two types of integrity constraints: static constraint
and dynamic constraint. The static constraints are known and controlled by
the OODBMS in addition to some dynamic constraints. Most of the dynamic
constraints are complicated and unpredictable because it depends on the
users needs. Figure 1 shows that the subclass employee inherits classes and
details from manager and secretary in which both inherited from their
superclass name.

Name
+ First_name string
+ Last_name string
Middle_init string

+ First_name ()
+ Last_name ()

A
[|
Secretary Manager
Classes: integer + Classes: integer
Birthday date # Class_des: string
+ Agent: integer # Class_date: date
Details () # Classes ()
A
I
Employee
- Salary: integer

- Leave: integer
+ Contract: integer

- Calculate ()

Figurel. The multi inheritance relationship

An efficient OODB model for ensuring the integrity of user-defined constraints 199

4. RELATED WORK

The most relevant researches on expression capabilities for active rule
languages that are designed to maintain the database integrity. High
Performance ACtive DBMS (HiPAC) is one of the first projects to
extensively address active database issues and it is proposed for coupling [7,
9]. Active DBMS allows rules to be fired and executed automatically. One
of the first occurrences of active capabilities was the use of ON conditions.
Triggers and assertions are used to maintaining integrity constraints [5].

ARIEL rules are based on the relational data model extended with a
production rule system. Rules in ARIEL are triggered based on specific
events or pattern matching, as in expert systems. Rule condition testing in
ARIEL is implemented by use of a variation of the Rete algorithm to
improve performance [5, 7, 9].

The Object Database and Environment (ODE) represents some of the
more efforts in the development of active rule languages [5]. Unlike most of
the other systems, it supports a rule language within an OODB, the
expression of constraints which are triggered by database updates, and the
expression of rules triggered by condition monitoring [9].

STARBURST also represents one of the more developments in active
rule languages [9]. Conditions in STARBURST are expressed by use of SQL
with additional syntax for the expression of events, conditions, actions, and
rule priorities.

Based on the active rule languages described above, a summary of the
basic features associated is presented in the Table 1.

Table 1. Comparison of constraint rules

Features e HiPAC | ARIEL | ODE |STARBURST
* Temporal events

Absolute points v v v v
Relative points v v v
Periodic points v v v v

* Integrity of constraints

State constraints v v v v
Transition constraints v v

* Conditions

Quantified variables v
Negated conditions v v v v
Aggregate functions v v

v

User-defined functions v v v

200 Integrity and Internal Control in Information Systems

Features © 7t o HiPAC | ARIEL | ODE | STARBURST
* Actions

Single database operations v v v v
Compound operations v v v v
User-defined operations v v v

* Triggers

Event v v v v
Pattern v v

* Data model

Relational v

Extended relational v
Object oriented v v

Assertion Language for Integrity Constraint Expression (ALICE) is an
expression active rule language that is designed to maintain constraints over
the expression of complex database.

5. OVERVIEW OF ALICE

ALICE was developed as a declarative constraint language for the
expression of complex and for stating constraints in an object-oriented
environment, and logic-based constraints in an object-oriented environment.
As in an object model, it assumes that the existence of objects with unique
object identifiers. Objects of a similar type are organized into classes, which
are organized into ISA relationships; one class is a subclass of another class.
If an object is an instance of a subclass, then the object must also be an
instance of all of its superclasses [5,7]. The immediate subclasses of a
superclass can be specified as disjoint subclasses as a way of imposing
additional constraints on the classes in which an object participates.

Each class is described through the use of property definitions.
Properties can be single or multi-valued. Inverse property relationships are
also supported. As additional semantic detail, properties can be specified as
required (no null values) and/or unique (establishing a one-to-one
relationship between an object and its property values). A subclass inherits
all of the property definitions of its superclasses [4, 5, 7].

ALICE provides a tool for expressing generalized, logic-based
constraints against an object-oriented schema. In addition, its constraints are
analyzed by a constraint explanation tool (CONTEXT) and are subsequently
transformed into active database rules. The rules generated by CONTEXT
provide a way to recover from constraint violations at execution time and
also provide tools for translating constraints into active database rules [7, 9].

An efficient OODB model for ensuring the integrity of user-defined constraints 201
An important aspect of ALICE is representing a rule language that can be
applied within an object-oriented model of data. Figure 2 shows the syntax

of ALICE rule.

rule-name [IN rule-set-name] [LEVEL n 118

EVENT: database-operation | user-defined-operation | time-specifier
[CONDITION: logical-expression| quantification]

ACTION: {sequence-of-operations}
END OF RULE

Figure 2. ALICE rule format

ALICE is strictly a constraint language [7, 9]. It cannot be used to
directly express constraints in rule form, and does not support the expression
of rules in general. It is restricted to the expression of static constraints
among objects. The condition expression capabilities of ALICE are also
limited because the original work on ALICE focused on the mapping of
ALICE constraints to first-order logic [7, 9]. Also it does not support the
expression of transition constraints or the use of external functions for
complex conditions.

6. METHODOLOGY

The proposed structure exhibits some properties as it provides the
capability to represent complicated relationships as it is based on a generic
object system, so that some special relationships can be specified and
maintained uniquely such as the relationships between domains and tasks. It
can also maintain relationships between a set of distributed objects. This
object model makes it possible to implement concurrent or distributed
maintenance services. When the sets of objects or the constraints
relationships of different types are completely independent, the constraints
can be maintained by multiple processes simultaneously. This improves
performance, which makes the new model constraint system easy to extend
and can be integrated with any existing or specialized constraint services.

For example, assume that some information about two types of
employees in a company is needed. The first type is a manager with (ID,
name, classification ID, classification description, and classification date).
The second type is a secretary with (ID, name, classification ID, birthday,
and recruiting agent). Figure 3 shows the data definition language of the
above example.

202

Integrity and Internal Control in Information Systems

CREATE TYPE Name AS OBJECT (
First_name char (15),
Last_name char (15),
Middle_init char (1);
MEMBER PROCEDURE initialize);

CREATE TYPE BODY Name AS
MEMBER PROCEDURE initialize IS
BEGIN
First_name := NULL;
Last_name := NULL;
END;

CREATE TYPE Secretary AS OBJECT (
Classes integer,
Birthday date,
Agent integer,
S_Name Name;
MEMBER PROCEDURE initialize);

CREATE TYPE BODY Secretary AS
MEMBER PROCEDURE initialize IS
BEGIN
Details := NULL;
END;

CREATE TYPE Manager AS OBJECT (
Classes integer,

Class_description char (15),

Class_date date,

M_Name Name;

MEMBER PROCEDURE initialize);

CREATE TABLE Employee (
Person_ID integer,
Recruiting_agent integer,
Classes Manager,
Details Secretary,
PRIMARY KEY (Person_ID),
FOREIGN KEY (Classes) REFERENCES Manager);

Figure 3. A relation and its constraints

An efficient OODB model for ensuring the integrity of user-defined constraints 203

As shown earlier in Figure 3, the two reserved words OBJECT and
BODY are used to declare the relations (Name, Secretary, and Manager).
OBJECT considers as a class that contains the declaration of the attributes of
the relations Name, Secretary, and Manager. BODY considers as a relevant
container that contains methods and constraints. Class Name contains three
attributes (First_name, Last name, and Middle_init) and two methods, in
our example we just assigned initial values but it could be function or
procedure. Class Secretary contains the attributes (Classes, Birthday, Agent,
S_Name.First_name, S_Name.Last_name, and S_Name.Middle_init) and a
method Details. Class Manager contains the attributes (Classes,
Class_description, Class_date, M_Name.First_name, M_Name.Last_name,
and M_Name.Middle_init).

The previous code appears as an efficient way to declare different types
of objects in OODB. The problem is not easy to detect the violation of the
database and check the integrity of the data because it’s very difficult to
detect all constraints that appear as a result of composite inheritance. The
integrity constraints in OODBSs are maintained by rolling back any
transaction that produces an inconsistent state, or disallowing or modifying
operations that may produce an inconsistent state. Maintaining the violation
of constraints needs to know which constraint violates the database and what
is the covered solution. So it is suggested that an efficient way to help in
maintaining the constraints when any violation or inconvenient
circumstances appears.

Our suggested model is illustrated in Figure 4, is says that to combine all
related attributes together under the reserve word ATTRIBUTE, same thing
with METHOD and CONSTRAINT in one class. We added another method
called Detection to express the status of the database.

CLASS class_name
ATTRIBUTE {user defined attributes}

METHOD {user defined operations}
CONSTRAINT (user defined operations}
Detection {it will be hidden}
END CLASS

Figure 4. The general structure of the model

Figure 5 shows the grammar of the suggested model, notice here the
reserved word Detection should be hidden from the user because it will be
declared by the OODBMS automatically for every class when puts the class

204 Integrity and Internal Control in Information Systems

declaration. An initial value zero will be assigned to the Detection and the
OODBMS changes its value depending on the database status.

The access of the specifier CONSTRAINT is declared the relationships
and the constraints on the attributes of a class or between classes when
inherit a subclass from a superclass. So the method Detection will contain
the code that refers to the constraints status. The initial value is proposed to
be zero to say that is no violation, and if an unexpected error happens then a
code should be assigned to the Detection method.

S — <classes>
<classes> — CLASS <name> <members>
<members> — ATTRIBUTE <attributes> METHOD <methods> CONSTRAINT
<constraints> | ATTRIBUTE <attributes> CONSTRAINT
<constraints> | ATTRIBUTE <attributes> METHOD <methods> |
ATTRIBUTE <attributes>
<attributes> — <attributes> <name> <data type> | <name> <data type>

<methods> — <methods> <operations> | <operations>
<constraints> — <constraints> <condition> | <constraints>
<data type> — integer | char | date | <classes>

<name> — set of alphabet characters

<operations> —» functions

<condition> — special rules

Figure 5. The grammar for the suggested model

By using the “Detection” the status of the constraints can be checked at
any time. The constraints are separated from the methods and the attributes.
The constraints will be maintained or at least a message can be displayed
about any error may appear as a result of data violation, then gives the
programmer the choice to modify the constraints or refine the class members
to avoid the violation.

7. IMPLEMENTATION

Using our proposed model the relation will be recreated as shown in
Figure 6 the relation has been created to replace the code that was shown
earlier in Figure 3.

CLASS Name
ATTRIBUTE:
First_name char (15),

An efficient OODB model for ensuring the integrity of user-defined constraints

Last_name char (15),
Middle_init char (1);
METHOD:
First_name := NULL;
Last_name := NULL;
END CLASS;

CLASS Secretary
ATTRIBUTE:
Classes integer,
Birthday date,
Agent integer,
S_Name Name;
METHOD:
Details:= NULL;
CONSTRAINT:
PRIMARY KEY (Classes);
END CLASS;

CLASS Manager
ATTRIBUTE.:
Classes integer,
Class_description char (15),
Class_date date,
M_Name Name;
CONSTRAINT:
PRIMARY KEY (Classes);
END CLASS;

CALSS Employee
ATTRIBUTE:
Person_ID integer,
Recruiting_agent integer,
Classes Manager,
Details Secretary;
CONSTRAINT:
PRIMARY KEY (Person_ID),
FOREIGN KEY (Classes)
END CLASS;

Figure 6. Classes using the proposed model

205

206 Integrity and Internal Control in Information Systems

Referring to the example in Figure 6, two subclasses Manager and
Secretary are inherited from the superclass Name. Employee inherited from
Manager and Secretary. The composite inheritance for attributes M_Name
and S_Name from class Name gave them the same data type of Name. The
First_name, Last_name, and Middle_init are added to the classes Manager
and Secretary as it is inherited from same class. The constraints are inherited
too and collected to be under CONSTRAINT so by grouping them the
conditions that have been grouped can be checked easily. This effective
especially when the user declares two constraints which conflict with each
other as shown in Figure 7.

“All students that getting average more than 80 should be given $10”
C1: All s in student (where s.average > 80)
Implies: (all s in s.student get $10)

“All students that have average more than 90 should be given $20”
C2: All s in student (where s.average > 90)
Implies: (all s in s.student get 20$)

Figure 7. ALICE constraints for student schema

Suppose that C1 is a constraint over class A and C2 is a constraint over
class B, and class C inherits the constraints from A and B (multiple
inheritance). Constraints violate if the students grade is 95 because his grad
is grater than 80 as C1 and grater than 90 as C2 (no violation between the
conditions) so the student may get $10 or $20 (incorrect result) as a prize? It
depends on which constraint will be enforced. A special code will be
assigned to the Detection method. Figure 8 shows the mechanism of getting
the code, assume r/ is the rule that will be checked when inheritance
happens. The involved constraints will be grouped and checked, if conflict
exists then Detection method will be assigned with detection code and
message will be displayed. The detection code is needed to modify or
maintain the constraint.

rl IS
EVENT: when inherit any subclass
CONDITION: conflict between constraints
ACTION: display a warning message
END OF RULE

Figure 8. ALICE rule example over inheritance

An efficient OODB model for ensuring the integrity of user-defined constraints 207

The model will be activated during the classes’ creation. When
inheriting class from other class, the model will work and collects the
involved constraints then checks the violation wither exist or not, then
informs the programmer with the detection code if violation exists by
displaying a warning message. So it will ease to avoid any database crash or
data corruption.

8. CONCLUSION

Typically object-oriented databases lack the capability for an ad-hoc
declarative specification of maintaining the integrity constraints [3, 6]. A
new model to check and maintain the violation or unexpected circumstances
of the object-oriented database is proposed. The model depends on the
Assertion Language for Integrity Constraint Expression (ALICE) rule
language to find the suitable way to maintain the violation by designing an
efficient structural model to create the relations and its constraints.

The model that has been developed to detect the constraints over the
relations is presented, to ensure global declarative specification and
consistency maintenance using IRules in object-oriented database
environment by applying ALICE rule. Supporting integrity constraints in
object-oriented database systems requires a high integration of the
constraints with the rich concepts available.

With the rich semantics of object-oriented paradigm a lot of work
remains to be done for future work. In particular, more optimization
techniques can be developed for constraint compilation. Object-oriented
databases made new challenges to semantic integrity especially to both
constraint representation and constraint maintenance.

REFERENCES

[1] InaGraham, Object-Oriented Methods Principles & Practice. England: Addison-Wesely,
2001.

[2] David W. Embley, Object Database Development Concepts and Principles. England:
Addison-Wesely, 1998.

[3] Bindu R. Rao, Object-Oriented Database Technology, Applications, and Products. US:

McGraw-Hill, 1994.
[4] Setrang Khoshafian, Object-Oriented Databases. New York: John Wiley & Sonslnc,

1993.

208 Integrity and Internal Control in Information Systems

[5] Urban. ALICE: An Assertion Language for Integrity Constraint Expression. Proceedings
of the Thirteenth Conference on Computer Software and Applications, 1989; pp. 292-
299.

[6] S. Ceri and J. Widom. Deriving Production Rules for Constraint Maintenance. Proc. 16th
Int’]l Conference Very Large Data Bases, 1990; pp. 566-577.

[7] Susan D. Urbana and Anne M. Wang. The Design of a Constraint/Rule Language for an
Object-Oriented Data Model. Elsevier Science Inc., J.system software 28, 1995; pp. 203-
224.

[8] Urban, Karadimce, and Nannapaneni. The Implementation and Evaluation of Integrity
Maintenance Rules in an Object-Oriented Database. Proceedings of the Eighth
International Conference on Data Engineering, 1992; pp. 656-572.

[9] Urban. Desiderio. CONTEXT: A Constraint Explanation Tool. Data and Knowledge
Engineering, North-Holtand, 1992; pp. 153-183.

[10] Michael Sipser, Introduction to the Theory of Computation. PWS Publishing Company,
1997.

[11] Ying Jin, Amy Sundermier, and Suzanne W.Dietrich. An Execution and Transaction
Model for Active, Rules-Based Component Integration Middleware. Springer-Verlag
Berlin Heidelberg 2002; pp. 403-417

