
Modular Exponentiation Using 
Recursive Sums of Residues 

P.A.Findlay and B.A.Johnson (Hatfield Polytechnic, UK) 

1. Summary 

This paper describes a method for computing a modular 

exponentiation, useful in performing the RSA Public Key 

algorithm, suitable for software or hardware implementation. 

The method uses conventional multiplication, followed by 

partial modular reduction based on sums of residues. We show 

that for a simple recursive system where the output of partial 

modular reduction is the input for the next multiplication, 

overflow presents few problems. 

2 .Rivest, Shamir, and Adleman public key cryptosystem 

The Rivest, Shamir, and Adleman (RSA) [6] public key 

cryptosystem uses exponentiations of the form: 

y = xkmod m. 

where y is either ciphertext, or deciphered plaintext, and 

(k,m) form the enciphering/deciphering key. Note that k is 

different for enciphering and deciphering. In an encryption 

system offering a practical level of security, x,k, and m need 

to be 256 bits or more in length. Exponentiation is performed 

by repeated squaring operations, along with conditional 

multiplications by the original x, e.g. 

2 

x'mod m = ((x2mod m) mod m).x mod m 

Note that in each case, the previous modulo reduced result is 

fedback to be multiplied by itself, or by x. Modulo reduction 

G. Brassard (Ed.): Advances in Cryptology - CRYPT0 ‘89, LNCS 435, pp. 371-386, 1990. 

0 Springer-Verlag Berlin Heidelberg 1990 



372 

is associative, so can be carried out at each stage to prevent 
the intermediate results from growing too large. 
Several algorithms for performing this exponentiation already 
exist . These can be divided into algorithms that are suitable 
f o r  hardware implementation [ 1,3,5], and those that are 
suitable for software implementation [2 ,7 ]  . 

3 .  The Method as implemented i n  Hardware 

The core operation of exponentiation is modulo multiplication, 
and this can be performed in two ways: 

a) Multiplication and reduction can be combined into a 
single operation. As multiplication partial products are 
formed, a decision is taken whether or not to perform a 
reduction on these partial products. 

b) Multiplication and reduction are separate tasks, with 
the output ofthe multiplier feeding the input ofthe reduction 
unit. 

For the purposes of this paper, case b) is being considered. 
Also, for the purposes of the hardware method, multiplication 
is best performed in a bit-serial form using a multiplier as 
described in [ 4 , 8 ] .  These multipliers take the two arguments 
in bit-serial form, least significant bit first, and produce 
the product in bit-serial form, least significant bit first. 
They have the advantage that they are simple, are of cellular 
construction, and are easily expandable to larger bit-widths. 

3.1 Sums-of-Residues Reduction 

Modulo reduction can be performed by division, which is slow, 
or by trial subtractions incorporated into the multiplication 
that modify the partial products formed in the multiplication 
process [l, 31. It is suggested that neither of these is used 



373 

as a reduction method. If the number, P, to be reduced by the 
modulus, m, is expressed as a binary vector: 

P = [p1,p2,. .pn], pi = t o ,  11 for i = 1 to 2n. 

then the modulo reduction could be expressed as: 

i-2n 
P mod m = (x pi,2i- ' )  mod m. 

i- 1 

The modulus operation is associative, so the above could be 
expressed as : 

i=2n 
P mod m = Cc pi.  (2i-1 m o d  m) ) m o d  m. 

i=1 

Now the reduction is simply a conditional sum of powers of 2 
reduced modulo m: "residues", hence the name of sums-of- 
residues (SOR) reduction. This reduction is simple to 
calculate, given a table of residue values [ 5 ] .  

The final modulus operation in the above equation is necessary 
because of the possibility of getting incomplete reductions. 
For example, 15 mod 13 using the above method is still 15. This 
may lead to the conclusion that a conventional reduction using 
division or other techniques is still required. In order to 
perform an exponentiation, these incomplete reductions could 
lead to the multiplications in the next exponentiation step 
overflowing. A limited overflow does occur, but one which is 
bounded above, and can be taken into account by using extra 
hardware. A simple derivation ofthis upper bound is now given. 

3.2 Sums-of-Residues Overflow Bound 

Let P be the result of a squaring or multiplication step, i, 
in the exponentiation, i.e. 

2 n Pi = Xi or Pi = A.Xi; where A < m < 2 , 
and Xi i s  an intermediate result of bit-length Li. 



374 

C l e a r l y ,  the  p r o d u c t  w i l l  give a maximum b i t - l e n g t h  f o l l o w i n g  
a s q u a r i n g ,  r a t h e r  t h a n  a m u l t i p l i c a t i o n ,  and hence t h e  maximum 
b i t - l e n g t h  o f  Pi is 2 L i .  

=2L 
Let P = pj.Z'-' d e f i n e  pj,' and 

k-1 l e t  r k  = 2 mod m, where m < Zn. 
j-2Li 

Then t h e  n e x t  v a l u e  of X w i l l  be X i + l  = PjXj 
j-1 

S i m p l i f y i n g  t h i n g s  s l i g h t l y ,  t h i s  new X va lue  can be c o n s i d e r e d  
t o  be  t h e  sum of a t  most 2~~ n - b i t  numbers. The re fo re ,  

n 
X i + l  < 2 L i ( 2  -11, hence  Li+l ,  t h e  max. b i t - l eng th  of  X i + l  i s  

L i + l  < [ l o g * ( 2 ~ i ) ]  + n. 

F i g u r e  1: B i t - l e n g t h  overhead  v e r s u s  inpu t  b i t - l e n g t h  



37s 

To f i n d  t h e  maximum f o r  L, the  above equa t ion  i s  r e l a x e d ,  
s t a r t i n g  w i t h  a n  i n i t i a l  L = n. A graph  of t h e  b i t - l e n g t h  
overhead,  h (= L-n) , is  shown i n  f i g u r e  1. 

The r e s u l t s  show t h a t  f o r  a t y p i c a l  i n p u t  b i t - l e n g t h  o f  256 
b i t s ,  t h e  a c t u a l  ha rdware  i s  r e q u i r e d t o  handle  2 6 6 b i t n u m b e r s .  
Th i s  r e p r e s e n t s  a n  ove rhead  o f  on ly  4 % .  

Any f i n a l  r e d u c t i o n  t h e n  becomes necessa ry  only  a t  t h e  v e r y  
o u t p u t  o f  t h e  e x p o n e n t i a t i o n ,  and n o t  a t  t h e  o u t p u t  o f  e a c h  
modulo m u l t i p l i c a t i o n .  

3 . 3  Residue Calculation 

The r e s i d u e s  can  be s t o r e d  i n  a look-up t a b l e  [51, and used  when 
needed.  Th i s  u s e s  a modest amount o f  s t o r a g e ,  t y p i c a l l y  2n by 
n - b i t s .  However, the  da ta  p a t h s  f o r  t h i s  s t o r a g e  are  v e r y  w i d e ,  
and  t h i s  i s  u n d e s i r a b l e  i n  s i l i c o n .  I t  i s  easier t o  c a l c u l a t e  
the r e s i d u e s ,  r, a s  t h e y  are needed, and t h i s  can  be done w i t h  
a s imple  r e c u r s i v e  fo rmula :  

2 . i f f  (2 . r i -1  - m) < 0 . 
2.r i -1  - m i f f  (2.r i -1  - m) 1 0 ’ ) 1 =  2..2n, r1 = 1. ri  = 

F i g u r e  2 shows a p o s s i b l e  a r c h i t e c t u r e  f o r  sum-of-residues 
c a l c u l a t i o n  c o r r e s p o n d i n g  t o  t h e  s e r i a l  product  P,  assuming 
t h a t  P a p p e a r s  lsb f i r s t .  I t  i s  a l s o  assumed tha t  n - b i t  
e n c r y p t i o n  i s  b e i n g  per formed,  and t h a t  t h e  m u l t i p l i e r  i s  able 
t o  hand le  (n+h) b i t  numbers.  

Two n - b i t  registers,  M and  R, ho ld  ( - m )  ; t h e  two’s complement 
o f  t h e  modulus, a n d  r, t h e  c u r r e n t  r e s i d u e .  The r e s i d u e  i s  
i n i t i a l l y  set  t o  1. As t h e  s y s t e m  i s  clocked,  t h e  r e s i d u e  
r e g i s t e r  i s  r e l o a d e d  w i t h  e i t h e r  ( 2 r ) ,  o r  w i t h  ( 2 r - m ) ,  
depending  on t h e  s i g n  b i t  of  t h e  (2r-m) c a l c u l a t i o n .  A n  (n+h) 
b i t  accumula to r  sums t h o s e  r e s i d u e s  which a re  gated i n t o  it by 
t h e  incoming 2 ( n + h )  b i t s  o f  t h e  s e r i a l  product  P .  



376 

- A. r - P  

For pract ical  s i z e s  of  n, t h e  t i m e  t aken  f o r  the s i g n  b i t  t o  
appear is p r o h i b i t i v e  because o f t h e  long carry-propagate pa th .  
However, for a g i v e n  modulus, t h e  sequence of s i g n  b i t s  i s  
a l w a y s  t h e  same. Therefore ,  t hey  can be precomputed by a h o s t  
machine each  t i m e  t h e  modulus i s  changed, and s t o r e d  as a 
sequence of bits i n  a s h i f t  r e g i s t e r .  ( I n  an RSA system, t h e  
modulus changes on ly  when the enc ipher ing  o r  dec iphe r ing  keys 
a r e  changed) .  T h i s  a l l ows  t h e  c a r r y  chain t o  be p i p e l i n e d .  

A c  cumu 1 a t  0 r 

I n  fact ,  n o t  all of t h e  s i g n - b i t  sequence needs t o  be 
s t o r e d .  Suppose m is  q b i t s  long, q I n, then 

q-1 9 i-? < m < 2 , SO for i = 1 . . ( q - l ) ,  ri+l = 2 r i  = 2 - 
and hence t h e  s i g n  b i t s  are a l l  t h e  same. 

To make the mast of  t h i s  fact ,  a 'working modulus', m', can  be 
used; be ing  t h e  a c t u a l  modulus m u l t i p l i e d  by an a p p r o p r i a t e  
power of 2 ( l e f t  s h i f t e d )  t o  make an n - b i t  number, i .e .  

n 3  m '  = m . 2  



377 

The sum of residues derived from the working modulus will be 
congruent to that of the real modulus, and the bit length of 
the result will still not exceed the upper bound previously 
described. The first n bits of the product P, may be loaded 
directly into the accumulator, and the residue register, R, may 
be preloaded with (-m') in two's complement form; as this is 
the residue of 2 mod m'.t n+l 

So far the SOR system has been described as being essentially 
parallel in operation, using the serial output of the 
multiplier to gate a parallel accumulation of the residues. 
This parallel architecture may be transformed into a bit serial 
array format by 'skewing' the original data paths in both time 
and space. The modulus and residue registers are now 
effectively shift registers, and the sign bit register is 
essentially static. Static storage is also required for the 
(n+2h) most significant data bits, hence (n+2h) 'cells' are 
needed if they are all to be identical (essential for 
expandability) . Each cell contains two full adders, a 2 : l  
multiplexer, nine flip flops, and one AND gate. The functional 
description of a cell is shown in figure 3. 

Each 'T' block in figure 3 represents a commonly-clocked 
storage element. The SELECT signal is a pulse that is passed 
from one cell to the next at each clock signal, and the arrival 
of this signal will cause the current input on the global 
PRODUCT line to be stored into the P-register. The two's 
complement of the working modulus (-m' ) circulates in the shift 
register formed by the MODULUS, MODULUS (out) chain. ADRl 

t Note: if the lower n bits of P represent a number,>m', then 
the preloading of the accumulator results in m' being added to 
the accumulation. However, this still yields a final sum that 
is congruent to the true residue, and within the maximum bit 
length defined. It does however mean that the sign bit register 
is (n+2h) long, as opposed to (n+2h+l). 



378 

MODULUS(out) * 

R E S I D W O U t )  

RESIDUE I VMUX 

Figure  3:  SOR r e d u c t i o n  hardware ce l l  

cor responds  t o  t h e  a d d e r  r e q u i r e d  i n  c a l c u l a t i n g  t h e  (2r-m') 
t e r m  i n  the SOR r e s i d u e  c a l c u l a t i o n .  The s i g n  b i t  (Q-bi t )  f o r  
t h e  ce l l  i s  permanent ly  s t o r e d ,  having p rev ious ly  been s e t  up 
by t h e  h o s t  system, and i s  used t o  g a t e  e i t h e r  2 r  o r  2 r - m '  
v i a  m u l t i p l e x e r  MUX. The r e s u l t  i s  propagated t o  t h e  n e x t  ce l l  
v i a  double  s t o r a g e  e l emen t s .  This  double de l ay  ach ieves  t h e  
doubl ing  o f  t h e  r e s i d u e p r e s e n t e d t o t h e  next  cel l .  The s i n g l e  
de layed  ADRl o u t p u t  i s  gated by t h e  s t o r e d  product  b i t  i n t o  
t h e  ca r ry - save  adde r  ADR2. Using t h e  s i n g l e  delayed r e s i d u e  
r e s u l t  f u r t h e r  p i p e l i n e s  t h e  des ign ,  making t h e  c r i t i c a l  t i m i n g  
p a t h  w i t h i n  t h e  c e l l  l i t t l e  more than  a s i n g l e  adder  delay.  

The sum of  r e s i d u e s  i s  c a l c u l a t e d  a s  follows: c o n s i d e r  t i m e  
step i=l.. 2 (n+h)  , and ce l l  number j=l.. (n+2h) . 

During t i m e  s teps i = l . . n ,  the  a r r a y  s t o r e s  t h e  l eas t  n 
b i t s  of the  p roduc t  P .  



379 

During time steps i = n..2(n+h)-l, cell j calculates the 
(i-j-n+2)th bit of the residue modulo m' of 2 j +n 

During time steps i = (n+l). .2(n+h), cell j also holds 
(jtn)th product bit, which gates the accumulation of the 
j-n)th bit of the residue of 2 , for all j S (i-n) . j+n 

The accumulator is effectively preloaded by bits l..n of 

the 
(i- 

t he 
product. In practice this is achieved by adding bit (i-n) of 
the product to the accumulating adder ADR2 during time steps 
i=(n+l). .2n. Array operation is illustrated for cells 1,2,3 at 
time steps i=n,n+l,nt2 in figure 4 below. Note that P is the 
product to be reduced, and that the carry terms for the 
accumulator are not shown. 

Time 

Calculates: 
ADR2 
Accumulates: 

------ 

n+ 1 

7 

n+2 

ADR 1 

Accumulates: 

ADRl 
Calculates: 
ADRZ--- --- 

Processing Element ..... 
1 

n+2 
Bit 1 of 

2 mod m '  2 mod m 
Bit 2 of n+l 

Bit 1 of P +Bit 1 
------- ------- 

Of 2n+1mod m '  I 
Bit 3 of I Bit2of 

n+2 

n+l n+2 
2 mod m '  I 2 mod m' 
I 

3 

------ 

Bit 3 of 
n+3 

2 mod m' _----- 

Figure 4: Array Operation after time step (n-1) 

This results in the sum-of-residues appearing serially, lsb 
first, at cell (n+2h). The latency between input of the product 
msb, and output of the sum-of-residues lsb is just one clock 
cycle. 



380 

FROM MULTIPLIER ARRAY 

TO MULTIPLIER ARRAY 

F igu re  5: SOR Array  i n t e r c o n n e c t  

A scheme f o r  i n t e r c o n n e c t i n g  a p r a c t i c a l  sum-of-residues a r r a y  
i s  shown i n  f i g u r e  5 .  Th i s  a l s o  shows p a r t  of t h e  accumulator  
be ing  used  as a s h i f t  regis ter  t o  b u f f e r  t h e  f i r s t  n b i t s  of 
t h e  product  P. The feedback p a t h s  f o r  t h e  ' s h i f t i n g '  modulus 
and a c i r c u l a t i n g  'select' p u l s e  a r e  a l s o  inc luded .  The 
f u n c t i o n  o f  t h e  se lec t  p u l s e  a l lows  t h e  a r r a y  t o  be self-  
s i z i n g ,  and hence  e a s i l y  expandable.  

3.4 Practical Exponentiator Hardware 

A p r a c t i c a l  hardware modulo exponent ia t ion  s y s t e m  W i l l  

t h e r e f o r e  c o n s i s t  o f  a hardware b i t  s e r i a l  m u l t i p l i e r ,  fo l lowed  
by a SOR r e d u c t i o n  u n i t ,  a s  shown i n  f i g u r e  6 .  Ext ra  hardware 
i s  r e q u i r e d  f o r  t h e  exponent and p l a i n t e x t  r e g i s t e r s ,  and t o  
Cont ro l  t h e  f l o w  o f  r e d u c t i o n  u n i t  ou tput  i n t o  t h e  m u l t i p l i e r .  



38 1 

+ # 

+ EXPONENT PLAINTEXT 
A 

I b SWITCH ,'.- . 
1 

4 REDUCE *- MULTIPLY 3- 

* 
LOGIC 

HOST SYSTEM 

Figure 6 :  Practical Exponentiator Hardware System 

3.5 Advantages and Disadvantages of this Architecture 

This implementation of the RSA algorithm requires slightly more 
hardware than some of the existing systems [l, 31. It requires 
roughly twice as many clock cycles to perform a modular 
multiplication, but each clock cycle requires only 8 gate 
delays, and no broadcast fanout logic - as opposed to the 20- 
28 or so gate delays plus fanout time required for the two other 
schemesmentioned. Therefore, a speedimprovement of approximately 
50% would be expected using similar process technology. 

Broadcasting is only required at the interface between the 
multiplier and the reduction unit, hence an extra clock cycle 
can be allowed for broadcast propagation with minimal loss of 
throughput. 

The system needs minimal host support for loading the modulus, 
performing the final reduction, etc. These tasks could be 
handled by a dedicated single chip microcomputer. 



382 

4 .  Partitioned Sums-of-Residues 

We now give a generalisation of the method that can be used with 
both hardware and software, at the cost of higher overheads, 
either in hardware or operational complexity. 
In a parallel system, treating the multiplier output product, 
P, one bit at a time is inefficient, as observed in the previous 
section. However, for the price of introducing greater 
redundancy in the result, the product can be partitioned into 
discrete words; each word being multiplied by the residue of 
the least significant power of two that the word begins with, 
and the results accumulated. This still gives a result 
congruent to the true reduced result. 

Consider a single multiply and SOR step. Suppose the product 
is 2n bits long, and is divided up into c-bit long words. This 
is illustrated in figure 7 ,  where n = 2c. 

2n n 0 

4c 3c 2c C 0 
Figure 7 :  Partitioning the Product into c-bit Segments 

0 2c 3c 
A look-up table holds the residues of 2 ,2=,2 ,2 ,etc. 
Each c-bit segment of the product is then multiplied by the 
appropriate residue, andthe results accumulated. For instance, 
if n=8, and c=4, then 50000 mod 23 (=21) is computed as: 

(0*2'mod 23) + (5*24mod 23) + (3*2 mod 23) + (12*2 mod 23) = 113 
which is congruent to the true result. 

8 12 

The overhead incurred during exponentiation using recursive 
partitioned sums-of-residues (PSOR) must be calculated. Using 
a simple approach to maximum bit-length calculation, the ith 
multiplication followed by by PSOR reduction will yield a SOR 
of bit-length not more than: 



383 

15 

10 

5 I I I I I I I 

c=32 

c = l 6  

c=8 

C' 4 

c-2 

2 4 8 1 6  3 2  6 4  1 2 8  2 5 6  5 1 2  
Input Bit-Length 

F igu re  8 :  Graph o f  b i t - l e n g t h  overheads f o r  PSOR scheme 

Note: t h i s  e x p r e s s i o n  i s  no t  v a l i d  f o r  t h e  case c=l, as 
m u l t i p l y i n g  a number by 1 does no t  i n c r e a s e  t h e  b i t - l e n g t h .  

To s i m u l a t e  e x p o n e n t i a t i o n ,  and hence f i n d  t h e  maximum b i t -  
l e n g t h  o b t a i n e d ,  t h e  above equat ion  i s  r e l axed  s t a r t i n g  w i t h  
L=n, u n t i l  L reaches a maximum. F igu re  8 i s  a graph o f  maximum 
b i t  l e n g t h o v e r h e a d ,  h, versusmodulusbit-lengthn, f o r v a r i o u s  
v a l u e s  of c, t h e  p a r t i t i o n  width.  

It  i s  f e a s i b l e  t o  u s e  t h e  "working modulus" o p t i m i s a t i o n  aga in ,  
and t h e r e b y  s imply  accumulate t he  f irst  n b i t s  of  the  non- 
reduced p r o d u c t .  Th i s  decreases t h e  s i z e  of  any look-up table,  
and t h e  number of m u l t i p l i e s  r equ i r ed  t o  perform t h e  PSOR. 

The o p e r a t i o n s  used  i n  PSOR could  be performed by d e d i c a t e d  
hardware m u l t i p l i e r - a c c u m u l a t o r  ch ips ,  o r  a s  m u l t i p l y  and add 

i n s t r u c t i o n s  i n  so f tware .  The same hardware o r  software 
i n s t r u c t i o n s  c o u l d b e  u s e d t o  gene ra t e  t h e  non-reducedproduct .  



384 

256 
256 
25 6 
283 
4 7 4  

The total number of fixed-length multiply-accumulate cycles to 
perform the complete PSOR modulo multiplication is now 
determined. The multiplication to form the product requires 

~~ ~~~ 

8 
1 6  
32 
32 
32 

operations, using a c-bit multiply function. The PSORreduction 
would be expected to take 

operations using the same function. In practice, it would make 
sense to adjust n such that either the left-hand or right-hand 
term above is an integer. Figure 9 shows total numbers of 
multiply-accumulate cycles necessary for a complete 
multiplication and PSOR reduction. 

n I  C 
Mult- 
Accs. 

188 
188 
541 

Figure 9: Typical numbers of  Multiply-Accumulate cycles for 
P SOR 

Finally, the storage requirements forthelook-uptable f o r  PSOR 
operation will be considered. Assuming a working modulus is 
used, a table of [ (n+2h)/] 
n-bit residues will be needed, i.e. a memory requirement of 

Figure 10 below shows the residue look-up capacity for the set 
of "typical" values given in figure 9 above. The memory 
requirement is also expressed as number of registers, or memory 
locations, assuming that they are the same bit-width as the 
multiplier. 



n 
256 
256 
25 6 
283 
4 7 4  

17408 

4864 1 5 2  
5120 1 6 0  
8192 25  6 

C 

8 
1 6  
32 
32 
32 

Figure 10: Typical Residue Table sizes for PSOR algorithm 

5.Conclusions 

A n  optimised hardware algorithm has been proposed for 
performing RSA public key encryption. This algorithm lends 
itself to a high speed efficient VLSI inplementation of an 
encryption system, using serial data and one-dimensional semi- 
systolic arrays. The system consists of a serial multiplier 
array coupled with a unique serial sum-of-residues reduction 
array. Based on this architecture, it is possible to build an 
easi.ly expandable RSA en ine with hardware complexity O(n) and 
speed proportional to 9 z . 

n 

The partitioned sums-of-residues method has significant 
advantages over the bit-level method as far as operation on 
standard hardware/software is concerned. It is readily 
implemented with typical Digital Signal Processing chips, and 
couldbe programmed efficiently on any general-purpose machine 
with a fast integer multiply function, and a large register set 
(or a data cache) . No bit testing or conditional branching need 
be performed, hence the algorithm would run extremely 
efficiently on highly pipelined processors, or RISC machines, 
since no instruction queue flushing would be required. 

6.Acknowledgements 

The authors would like to thank John Guppy, the British 
Aerospace (Dynamics) Technology Executive, for the contribution 



386 

of his mathematical expertise. The original theoretical work 
behind this paper formed part of B.A.Johnson’s PhD programme, 
which was funded by the UK Science and Engineering Research 
Council. The work in this paper is the subject of a patent 
app 1 i c a t i on. 

7.Refereaces 

[l] Baker, P.W. 
’Fast computation of A*B mod N‘ 
IEE Electronics Letters, Vo1.23, No.15,16 July 1987,’ pP794. 

[21 Blakley, G.R. 
’A Computer Algorithm for Calculating the Product AB Mod M’ 
IEEE Trans. Comp. Vol.C32 No.5 May 1983 

[31 Brickell, E.F. 
‘A Fast Modular Multiplication Algorithm with application 
to two-key Cryptography‘ 
In nAdvances in Cryptology”, conf . proc. CRYPTO’ 82, Plenum 
Press, 1982. 

[ 4 ]  Ngo-Chen, I., Willoner, R. 
‘An O(n) Parallel Multiplier having Bit Sequential Input 
and Output’ 
IEEE Trans. Comp. Vol.CZ8 No.10 Oct.1979 

[ S ]  Ngo-Chen, I., Willoner, R. 
’An Algorithm for Modular Exponentiation’ 
Proc. 5th Symp. Comp. Arith. IEEE 1981 

[6] Rivest, R.L., Shamir, A., and Adleman, L. 
’On Digital Signatures and Public Key Cryptosystems’, 
Corns. ACM, Vo1.21, No.2, Feb. 1978 pp120-126 

[7] Selby, A., Mitchell, C. 
‘Algorithms for Software Implementations of RSA‘ 
IEE Proc. May 1989 Vo1.136 Part E No.3 p166 

[8] Strader,N.R., Rhynne, V.T. 
‘A Canonical Bit Sequential Multiplier’ 
IEEE Trans. Comp. Vol.C31 No.8 Aug.1982 


	Modular Exponentiation UsingRecursive Sums of Residues
	Summary
	Rivest, Shamir, and Adleman public key cryptosystem
	The Method as implemented in Hardware
	Sums-of-Residues Reduction
	Sums-of-Residues Overflow Bound
	Residue Calculation
	Practical Exponentiator Hardware
	Advantages and Disadvantages of this Architecture

	Partitioned Sums-of-Residues
	Conclusions
	.Acknowledgements
	.Refereaces


