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The linear syndrome (LS) method is elaborated f o r  the purpose of sol- 

ving problems encountered in cryptanalysis,which can be reduced to the fol- 

lowing mathematical settinq. Suppose the cryptanalyst has at his hand a 

sufficiently long segment of the binary sequence 

where A is a linear sequence with known feedback polynomial f ( x )  and X is 

a sequence with unknown or very complicated algebraic structure, but is 

sparse in the sense that, if we denote its signals by xti). i > 0 , then 

we shall have 

s = prob( x ( i )  = 1 ) = 1/2 - 6 , 0 6 < 112 . 

We call s the error rate of the sequence A in the sequence B ,  and the job 

of the cryptanalyst is to recover the former from che captured segment of 

the latter. 

One way for tackling this problem is to make u s e  of the ideas of error 

correction, especially when s is comparatively small. In doing this w e  cgn- 

sider.for some fixed integer r + 3 ,  a finite collection of r-nomials of the 

form 

1r.t 
g ( x )  = 1 + x i ,  + XI' + ... + x' , 

and compute, for every i >I maxl deg g ( x )  I and all g ( x ) ,  the syndromes 
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bfi) , i $ 0 , being the signals of the sequence B. The LS method is 

based on the following 

Lemma 1. If f ( x )  divides g ( x ) ,  then 

Proof. Denote the signals of A by a ( i ) ,  i >, 0 . Since f(x) I g ( X ) .  we 

have 

r- r - a(i - ik+ ip)  + z x( i - iA+ ip) 
= 5 x(i - i.+ ip) . 

P- pc” 

P O  

Thus we see %.dg) - x(il if and only if an even number of the signals 
kd ,..., x(i - i + 1,) n x(i - ip) , . . . .  x(i - i + im) , x(i - i + R 

are *‘ 1 “ ,  and hence w e  have 

= 1/2 + (2 E )+‘ /2.  

This simple lemma suggests that i t  will be wise for the cryptanalyst to 

behave as follows. Choose the r-nomials g(x) to be multiples of the given 

polynomial f(x). take into consideration 2m + 1 of the syndromes provided 

by these r-nomials,and revise the signals of the sequence B in accordance 

with the following rule of majority logic decision. 

b ( i )  + 1 ,  if at l e a s t  m + 1 syndromes are “i” 
I 

‘ b ( i ) ,  if otherwise, 

in the hope that the error rate s ’  of the sequence A in the resulting s e w -  

ence 8 ’  w i l l  be less than the initial error rate s. 



47 1 

In order to see,  under which conditions this will be the case, we write 

I-! 
P = P(S) = (1 - (1 - 2s) ) / 2 ,  q = 1 - p ,  

and prove the following 

Theorem 1. If the  number of syndromes used in making the majority logic 

decision is n = 2m + 1,then the error rate of the sequence A in the sequen- 

c e  8' which results from one round of revision will be 

Proof. It is e a s y  to see from the revision algorithm. that b'(i) = a(i) 

if and only if at least in + 1 syndrome values are different from x(i). But. 

by lemma 1. the probability €or a given syndrome value to be different from 

x ( i )  is p ,  so we have 

Further, we have 

But 

*I nn m 
Ch+l = c"*(+ cn*, = c;-+ 2c: , 

so we have the following recursive relation 

m m i  1 

T,,= T_- ( 1 - 2p) Czm,,( pg) , 

which, together with T o =  p , gives rise to ( 2 )  
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Now. it is easy to see from ( 2 )  that, s being fixed. 5 '  decreases as m 

increases. Furthermore. since 

and 

-1 

'p- (1 - 2p)((1 - 2pl - 1)/2 = 0 , 

we see that €or each possible initial error rate s there is a critical nun- 

ber mc = me(s). such that s' will be less than s if and only if m > mc. The 

following is a table of critical numbers computed f o r  practically tractable 

values of s. for the case r = 3 ,  where the LS method works the best. 

S mC 

0 . 2 2  3 

0 . 2 8  4 

0.32 5 

0.35 6 

0 . 3 7  7 

0.38 8 

0.40 9 

(I11 Iterated revision and its convergence 

The above analysis shows also.that the error rate of the sequence A can 

be made arbitrarily smal1,when we make use of a large enough number = f  syn- 

dromes. But such an approach is quite impractical in view of the diff-culty 

in finding the necessary collection of r-nomials, divisible by f(x) and of 

degrees not too large. A better alternative is to fix the number of synd- 

romes but apply the revision algorithm iteratedly to the segment under con- 

sideration.and the problem is that the convergence of such an iterative re- 

vision procedure has to be considered. 
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In order to settle the problem just raised, we consider the polynomial 

and prove a couple of simple lemmas about the function p(s) mentioned before 

as well as about the function 

Lemma 2.The function p ( s l  is increasing on 0 , 1 / 2  I and maps this in- 

terval onto itself. 

Proof. In fact, w e  have 

and 

p(0) = 0 , p(1/2) = 1/2 , 

as expected. 

Lemma 3 .  The derivative of the polynomial T,ix) is 

Proof. First. a s  w e  have noticed before 

whenever 1x1 < 1. So w e  have 

and hence 
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Further, we have the functional relation 

41 m i  

T,[1 - X )  = 1 - X + (1 - 2x1 C & ( x ( l  - X I )  
A90 

1 - T,,,(X) . 

By differentiation on both sides we have 

T;!x) = (m + 1 

But TA (x )  is a polynomial of degree 

T:, (XI = (rn + 1 

m 
( mod (1 - X I - ' ) .  

m CIW(l - x )  

2m, SO we conclude that 

m c,:,,(x(l - X I 1  . 

Lemma 4. There is a number 4 k (  0 , 1/2 ) such that 

f!s) < s , if 0 < s < w  

and 

f ( s )  > s , if O! < s <1/2. 

Proof. Consider the auxiliary function 

w ( s 1  = f(s1 - s ~ 

Uc see from 

p ( 0 )  = 0 , p(1/2) = 1/2 

and the expression € o r  T , ( x )  that 

w ( 0 )  = w ( 1 / 2 )  = 0 . 

Further. we see from 

(31  

and 

T' (0) = 0 , p'(1/2) = 0 
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that 

( 3 )  and ( 8 )  taken together imply that w ( s )  has at least one zero in the in- 

terval ( 0 , 1/2 ) .  On the other hand, if w ( s )  has in this interval two or 

more zeroes. then as can be easily seen from ( 3 )  and the mean value theorem 

of differential calculus, ~ " ( 5 ) .  too, will have at least two zeroes in it. 

But by direct manipulation we have 

w " ( s )  = ( r  - 1 1  (1 - [ ( r  - 1)~;' 

where 

and 

a = 4m(r - 1) + 2 ( r  - 2) , b - m ( r  - I), 
so we see, by noticing the statement of lemma 2, that w " ( s )  has only one 

zero @ in the interval ( 0  , 1/2), satisfying 

This conclusion means that the function w ( s )  has only one zero in ( 0  , 112)- 

If we denote this unique zero of w ( s )  by at , then, by returning to ( 3 )  and 

( 4 )  again. we see w ( a )  is negative on (0 , a) and positive on ( d ,  1 1 2 ) .  

But this is just what we wanted to prove. 

Now we are in a position to prove the conversence theorem for the proce- 

dure of iterated revision. 

Theorem 2.If we denote by s the error rate of the sequence A in the S e W -  

ence. which results from the i-th round of revision, then the number sequence 

i 5i1 will decrease to 0 if m > mc. and increase to 1/2 if m < mc. 

Proof. Suppose m > rnc. Then we have by the definition of mc 
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s l =  f ( s J  5 , .  

? m a  4 that 

s 1  < s o <  . 

By applying the same lemma to s we have 

sl= f (51) < s1  < o( . 

By going along with the same argument we have 

m > s = 5 . )  5 , )  . . .  > s;> ... ) 0. 

so we must have 

and s. being a zero of the function w ( s )  met in the proof of lemma 4 ,  can 

be nothing else than 0. 

The case m < mc,where iterated revision wili lead to disastrous garble. 

can be discussed in exactly the same manner. 

(11x1 An example of applying t h e  LS method 

The above analysis of  the LS method is by no means rigorous ir. view of 

the assumptions made tacitly in computing the probabilities. For a really 

COnVinCing justification of this method w e ,  in the last run,have to resort 

to its Usefulness in solving concrete problem. Practical problems encoun- 

tered in cryptanalysis may not yield to the LS method immediately, Sut can 

in some cases be reduced to a suitable form,so as to make the method appli- 

cable.The following example,though artificial in nature.wil1 be sufficient 

as an illustration for what we say here. 

In the laboratory of the DCS-center people produced a stream X of digi- 

tal speech by the method of code excited linear prediction followed by vec- 

tor quantization and turned it, as an experiment. into a stream 

Y = A + X  
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of incomprehensible enciphered speech, by the help of a linear sequence A 

with generating polynomial 

e 3? f(x) = 1 + x + x . 

Now. suppose the cryptanalyst knows the polynomial f ( x ) ,  but has no 

concept about how to make use of the specific properties of the stream X 

itself, then for the purpose of recovering it he has to test one after an- 

other the 2” - 1 possible initial states of A,a task far beyond the reach 
of today‘s technique. 

We show,it is the specific structure of the plaintext stream X .  that 

makes the stream Y easily breakable. In fact. as a result of the slow va- 

riation nature of the speech data flow and the ixprudent way of encoding 

it, there exists a sort of betraying correlation between the frames 

F. , F, , . . . , Fc , . . . 

of X . A closer examination shows that if we denote the number of ‘I 1 “ S  

in the frame F by u ( F 1  and denote the frame length by 1, then for most of 

the adjacent frame pairs F; , F;, we have 

And here is the clue we need.In fact,if the cryptanalyst proves to be 

clever enough to think of going from the stream Y over to the transforned 

stream 

Y ’  = Y + LY = (A +LA) + ( X  + LX) = A ’  + X ’  , 

L being the 1-scep shift to the 1eft.then he will find himself in the ty- 

pical situation discussed in the present paper, where A’ is linear wit3 

the Same generating polynomial flx) as A, while X ‘  is sparse wit?. s = 1/4 

Experimentatioc shows, that by making use of the 4 syndromes provlded by 

the trinomials 

1 LX+ + X” , 1 + x’ + X” , 1 + X” + x’? 
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four rounds of iterated revision applied to Y' suffice to recover A '  from 

a captured segment of length n < 1500, and after that the plaintext X can 

be determined easily by 

X = Y +  ( I + L l -  A '  

A tape record has been prepared by the same lab f o r  this simple. but 

instructive instance of successful codebreaking. This example reminds us. 

in particular.that in order to guarantee safety in cornmunicacion. not on- 

ly the algorithm for generacing the enciphering signals, but also the da- 

ta flow to be enciphered. as well as the prob1e.n abou: -,he suitable way 

of encoding and enciphering, should be considered carefully. 
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