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Not since the early work of [DH], [RSA], and [GM] has there been a great 
deal of work on the basic definition of "normal" cryptography, and on what 
it means for a cryptosystem to be secure. By normal cryptogaphy, I mean 
not protocols to accomplish sophisticated goals, but merely the situation 
where party A wishes to send a message to party B over a line which is 
being tapped. Existing definitions of such a system, when they aren't too 
vague, are overly restrictive; existing definitions of security of such 
systems, when given rigorously, are usually overly liberal. In this paper 
I ' l l  present what seem to me to be the proper definitions, give statements 
of the basic theorems I know about these definitions, and raise some very 
fundamental open questions. Most of the definitions and results appeared 
in [RJ. 

A cryptosystem looks like the following picture. 
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A and B are probabilistic interacting Turing Machines. Normally, if 
there is a private key, one only allows A to talk to B,  but I allow A and B 
to talk back and forth. n is called the security parameter. The intuition 
behind the (plain-text) message is that it should consist of all bits to be 
sent by the cryptosystem until the universe dies; usually this is taken to 
be some fixed polynomial in n ,  but I find it more pleasing to let i t  be 
infinite. 8 must output its guess at the ith bit of the message in time 
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polynomial in n a n d  i, including the computing time of A .  We also need 
some kind of "on-line" condition; a natural (although not completely 
necessary) one is that A doesn't read bit i+l of the message until B has 
output its guess at bit i. (For convenience, assume that the time at which 
A reads bit i of the message just depends on i and n .) A and B also read an 
R -bit key. The two sensitive issues are correctness and security. My 
definition of correctness allows a small probability of error for B .  
Although most definitions don't allow for this possibility, many suggested 
cryptosystems have in fact had this feature (since "prime" numbers that 
were used might not really be prime). My definition of security is 
intended to encompass all reasonable attacks by an eavesdropper, 
including chosen plain text attack. Most definitions given in the past 
(including those discussed in [MRS]), have the property that a secure 
system can be modified to be secure according to the other definition, but 
trivially breakable using a chosen plain text attack. The reader will note 
that neither the definition of correctness nor of security assumes any 
distribution on the message space. We will always assume (unless stated 
otherwise) that a cryptosystem is correct. 

Correc tness :  For every c,d E N, for every sufficiently large n E N, for 

every c1 E { O , l } *  of length nc, if A tries to send a message beginning with a 
and the key is randomly chosen, (and the random bits of A and B are 
randomly chosen,) then the probability that B outputs a is >l-(llnd). 

S e c u r i t y :  Let L = { L  i , L z ,  ...} be  a family of polynomial size "circuits". 
Actually, what Ln can do is as follows: it sees the communication between 
A and B up until the time A reads message bit 0; Ln then fixes message bit 
0; Ln then sees the communication between A and B up until the time A 
reads message bit 1; Ln then fixes message bit 1 ;  this continues up until 
some message bit i (i determined by L n ) ,  is chosen randomly from { O , l }  
(but not seen by L n  ); Ln then sees the communication up until the time A 
reads message bit i+ l ;  Ln then fixes message bit i+l;  this continues until 
L n  chooses to output its guess at message bit i. Let p n  be the probability 
that L n  is successful at guessing this bit. Then for every d and 
sufficiently large n ,  p n  <( 1 /2)+( 1 l n d ) .  

Given a definition of security, it is easy to prove many of the facts 
normally assumed in the folklore. Theorems 1 and 2 below are examples. 
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Another example is that a secure (in the sense of [GGM]) pseudo-random 
number generator implies the existence of a secure cryptosystem. Such a 
theorem, however, is only as meaningful as the definition of security is 
good. 

In the definition of security, the listener is modeled as nonuniform 
"circuits" rather than as probabilistic algorithms. This isn't very 
important, but it makes theorems easier to prove and various things 
become cleaner. For example, with nonuniform circuits, i t  is  not 
necessary to add probabilism to L since this would not affect the power of 
the listener. Certain other aspects of the definitions are there for 
cleanness and convenience. For example, if we had a system which was 
secure but only 3/4 correct (instead of 1-(l/nd)), the "majority" trick 
could be used to make it correct with probability exponentially close to 1, 
and still secure. If we had a system which was correct, but only secure if 
we replaced (1/2)+(1/nd) by 3/4, then the "exclusive-or" trick could be 
used to convert it to one which is secure (although not, as far as we know, 
"exponentially close to 1/2" secure), and still correct. 

I f  the key, instead of being chosen randomly, is chosen to be On, then I 
call the system a public cryptosystem. Presumably, when people talk 
about a secure "key exchange protocol", what they mean is a public 
cryptosystem which is secure for sending (say) n message bits; these bits 
can be sent as a single block (rather than one bit at a time), possibly 
speeding things up by a factor of n, but the question of the existence of 
such a protocol appears to be equivalent to the question of the existence 
of a secure public cryptosystem. Theorem 1 shows that the open question 
about the existence of secure public cryptography can be formulated as a 
question of sending only 1 message bit securely. If A only sends to B ,  the 
system is called "1-pass"; if €3 sends to A and then A sends to €3, the 
system is called "2-pass"; "j-passes" is defined in the obvious way. A 2- 
pass public system is what is often called a "public key cryptosystem", 
where the string sent by B is called the "public key". Theorem 2 is part of 
the basis of "public key cryptography". 

Theorem 1: Let ( A , B )  be a public cryptosystem in which the first message 
bit is sent securely. Then a secure public cryptosystem (for all the bits) 
can be obtained by independently running ( A , B )  on each of the message 
bits (that is, each time, A and B start over and choose new random bits). 
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Theorem 2: Let ( A , B )  be a 2-pass public cryptosystem in which the first 
message bit is sent securely. Then a secure (for all the bits) 2-pass 
public cryptosystem can be obtained by running B once to see the string I3 
that B would send; then run A independently on each of the message bits, 
where each time A uses new random bits, but the same string I3 fom B. 

Theorem 3 is the analogue of Theorem 1 for (private) cryptosystems. 

Theorem 3: Let ( A , B )  be a (private) cryptosystem in which the first n+l 
message bits are sent securely, where n is the security parameter. Then a 
secure (for all the bits) cryptosystem can be obtained as follows: say that 
ao is the key and that the message is bobibz ... ; A generates random n -bit 
strings ai ,az,... ; ( A , B )  is run with key a0 on the n+l-bit message ai bo, 
then (A ,B)  is run with key c r i  on the n+l bit message a2b1, etc. Note that 
if ( A , B )  is 1-pass, then so is the new cryptosystem. However, the new 
cryptosystem will be probabilistic, even if A and B are deterministic. 

O p e n  Questions: Can it help to have more than 1 pass in a (private) 
cryptosystem? Can it help to have more than 2 passes in a public 
cryptosystem? Can it help to have more than 3 passes in a public 
cryptosystem? For each question, either prove a negative answer, or give 
a convincing example where the extra passes appear to help. 

It is interesting to note that there are settings, other than those 
discussed here, where one can either prove or give good evidence that 
extra interaction helps. An interesting example, of relevance to 
cryptography, appears in [BBR]. 

Theorem 5 below shows that at the moment, our ability to prove 
security of cryptosystems is severely limited. It is known that with a 
one-time pad, one can sent n message bits securely with an n-bit random 
key. If P-NP, which we are unable to disprove, then this is essentially the 
best we can do. Theorem 5 can be proven by observing that in the proof of 
Theorem 4, all the listener had to be able to do was "approximate 
counting"; this task is in the polynomial time hierarchy by a result of [St] 
and [Si]. Theorem 5 ,  at least in the case g(n)=O, has also been observed by 
other people. A version of theorem 4 was first prove by Shannon [Sh]. 
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Theorem 4: If we remove the polynomial time restriction on the 
listener, then there is no secure cryptosystem. In fact, a stronger result 
can be proved. Let g be a function such that g(n) is computable in time 
polynomial in n, and OSg(n) ln .  Then there is no cryptosystem which sends 
g( n)+l  bits securely (against an unrestricted time listener) if only the 
first g(n)  bits of the key are chosen randomly (and the rest are fixed, say, 
to be 0). 

Theorem 5: If P=NP, then for g as in Theorem 4, even if the listener is 
restricted to polynomial time, there is no cryptosystem which sends 
g (n)+l securely if only the first g(n) bits of the key are chosen randomly. 

Probably the most important open issue in a / /  of cryptography 
concerns the conjectures can be used to prove the existence of secure 
cryptosystems. The asumption P#NP is certainly necessary, but probably 
not sufficient. The only natural assumptions currently in use relate to the 
difficulty of integer factorization or discrete log. One possible thing to 
search for is a "complete" cryptosystem 35: one whose insecurity would 
imply the insecurity of every other system 35' . Using ideas of Levin, such a 
system can be constructed by a kind of diagonalization. Such a "complete" 
system can also be constructed for the class of 1-pass cryptosystems, for 
the class of public cryptosystems, and for the class of 2-pass public 
cryptosystems. I will not define this notion of "complete" precisely, since 
in any case, it has the following problem: the time to break 35', given an 
oracle for breaking 31, requires time only polynomial in n, but exponential 
in the size of the description of 3'. 

Open Question: Is there a cryptosystem whose security problem is 
"complete" in an appropriate sense? 

Lastly, I'd like to point out what I have no t  talked about here. I 
haven't discussed the scenerio where there is a group of mutually 
distrusting people, each pair of which wishes to communicate in the 
presence of a listener. Although many soulutions to this (and more 
complicated) problems have been proposed, I have seen no rigorous 
definition of this scenerio, let alone any definition of what security would 
mean in such a setting. Of course, there are related subproblems which 
have been rigorously studied: examples are signature schemes ([GMR]) and 
the problems studied in this paper. But it appears to be very difficult to 



254 

talk about the more complicated situation, and it can be very dangerous to 
think that security can necessarily be understood in terms of security in 
simpler situations. For example [GMT] point out that if a secure 2-pass 
public cryptosystem is used in the obvious way to create a "public key 
network of users", the result might wind up being insecure. 

The difficulties involved in understanding the relatively simple 
situation discussed in this paper imply that one must approach the more 
complicated (and realistic) situations very slowly and with a great deal of 
care. 
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