
How To Sign Given Any Trapdoor Function
(extended abstract)

Mihir Bellare Silvio MiCali*

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

We present a digital signature scheme based on trapdoor permutations.
This scheme is secure against existential forgery under adaptive chosen message
attack. The only previous scheme with the same level of security was based on
factoring.

Although the main thrust of our work is the question of reduced assump-
tions, we believe that the scheme itself is of some independent interest. We
mention improvements on the basic scheme which lead to a memoryless and
more efficient version.

1 INTRODUCTION
In 1976 Diffie and Hellman proposed that modern cryptography be based on the
notions of one-way functions (functions that are easy to evaluate but hard to invert)
and trapdoor functions (functions that are easy to evaluate and hard to invert without
the possession of an associated secret).

In a few years, though, it became clear that basing security solely on assumptions
as general as the existence of one-way or trapdoor functions was indeed a great chal-
lenge. The first provably good solutions that were found for several cryptographic
problems were based on simple complexity theoretic assumptions about the com-
putational difficulty of particular problems such as integer factorization ([GM], [Y] ,
[BlMi]). More recently, however, it was found that pseudo-random number genera-
tion is possible if and only if certain kinds of one-way functions exist ([Y],[Le],[GKL]).
Similarly we now know that secure encryption is possible if and only if trapdoor pred-
icates exist.

Thus Diffie and Hellman's original goal was realized for two of the major crypto-
graphic primitives. Somewhat surprisingly, in sharp contrast with the progress made

supported in par t by NSF grant DCR-84-13577 and ARO grant DAAL03-86-K-0171

S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 '88, LNCS 403, pp. 200-215, 1990.
0 Springer-Verlag Berlin Heidelberg 1990

201

in encryption and pseudo-random number generation, digital signatures, the other
fundamental cryptographic primitive, was not yet based on a general assumption.
The first paper to address the issues of security in a sufficiently general way and
provide a signature scheme with a proof of security was that of [GMY]. Their results
and the underlying notions of security were further improved in [GMR]. But both
their schemes were based on factoring. Actually, [GMR] base their scheme on the
existence of claw-free pairs, an assumption weaker than factoring but stronger than
the assumption that trapdoor functions exist.

Thus, not only did we not know whether digital signatures are available based on
a general complexity theoretic assumption but, even worse, digital signatures were
totally linked to a single candidate hard problem. This is particularly unsatisfactory
as a great many protocols make use of digital signatures and thus the computational
intractability of factoring becomes a bottleneck in the assumptions of many crypto-
graphic protocols.

The contribution of this paper is to free digital signatures from the fortunes of a
specific algebraic problem by establishing a truly general signature scheme. Namely,
we prove the following

Main Theorem: Secure digital signature schemes exist if any trapdoor permutation
exists.

Thus, we show once again the feasibility of Diffie and Hellman's original pro-
posd. To appreciate the generality of our theorem, let us clarify what "secure" and
"trapdoor" mean.

By secure we mean "non existentially forgeable under an adaptive chosen message
attack" as defined by [GMR]. Informally, in an adaptive chosen message attack, a
polynomial time enemy (who sees the public key) can choose any message he wants
and request to have it signed. After seeing the desired signature, the enemy can
choose another message to be signed; and so forth for a polynomial (in the security
parameter) number of times. Not to be existentially forgeable means that, after the
attack, the enemy will not be able to sign any new message; that is, he will not be
able to produce the signature of any string for which he had not previously requested
and obtained the signature.

We believe this to be the strongest natural notion of security. In essence, in a
scheme secure in this sense, signing is not only hard, but remains hard even having a
"teacher" for it. This is more than we may need in practice, where an enemy may be
able perhaps to see a few message-signature pairs, but is not able to ask for signatures
of messages of his choice!

By trapdoor function we mean a permutation f hard to invert (without knowledge
of the secret) on a polynomial fraction of the k-bit strings (when f has security
parameter k). Notice that this underlying trapdoor f may by itself be insecure
against an adaptive chosen message attack; that is, after being given the value of f-'
at a few chosen inputs, one may be able to easily invert f on all inputs. Our scheme
will work with such functions as well. In fact our construction has a strengthening
effect, and the resulting signing algorithm will be more secure than the trapdoor
function it uses.

202

We are indebted to [GMR] not only as a source of ideas for the present paper, but
also for their development and exposition of the notions of signatures and security on
which we model our own.

2 SIGNATURE SCHEMES AND THEIR SECU-
RITY

In a digital signature scheme, each user A publishes a “public key” while keeping
secret a “secret key”. User A’s signature for a message m is a value depending on m
and his public and secret keys such that anyone can verify the validity of A’s signature
using A’s public key. However, it is hard to forge A’s signatures without knowledge of
his secret key. Below we give a more precise outline of the constituents of a signature
scheme and of our notion of security against adaptive chosen message attack. We
follow [GMR] for these notions.

2.1 Components of a Signature Scheme
A digital signature scheme has the following components:

A security pammeter k which is chosen by the user when he creates his public
and secret keys and which determines overall security, the length and number
of messages, and the running time of the signing algorithm.

A message space which is the set of messages to which the signature algorithm
may be applied. We assume all messages are binary strings, and to facilitate
our exposition and proofs we assume that the message space is Mk = {0,1} ,
the set of all k-bit strings, when the security parameter is k.

k

A polynomial SB called the signature bound. The value SB(k) represents a
bound on the number of messages that can be signed when the security param-
eter is k.

A probabilistic polynomial time key generation algorithm KG which can be
used by any user to produce, on input lk, a pair (P K , SIC) of matching public
and secret keys.

A probabilistic polynomial time signing algorithm S which given a message m
and a pair (PIC, SIC) of matching public and secret keys, produces a signature
of m with respect to PI‘, S might also have as input the signatures of all
previous messages it has signed relative to P K .

a A polynomial time verification algorithm V which given S, m, and P K tests
whether S is a valid signature for the message m with respect to the public key
PIC.

203

Note that the key generation algorithm must be randomized to prevent a forger from
re-running it to obtain a signer’s secret key. The signing algorithm need not be
randomized, but ours is; a message may have many different signatures depending on
the random choices of the signer.

2.2 Security against Adaptive Chosen Message Attacks
Of the various kinds of attacks that can be mounted against a signature scheme
by a forger, the most general is an adaptive chosen method attack. Here a forger
uses the signer A to obtain sample signatures of messages of his choice. He requests
message signatures, with his requests depending not only on A’s public key but on
the signatures returned by A in response to the forger’s previous requests. From the
knowledge so gathered he attempts forgery.

The most general kind of forgery is the successful signing, relative to A’s public
key, of any message rn. This is called an existential forgey. (Note that forgery of
course only denotes the creation of a new signature; it is no forgery to obtain a valid
signature from A and then claim to have “forged” it). The security we require of
our scheme is that existential forgery under an adaptive chosen message attack be
infeasible with very high probability. For qualifications and a more precise expression
of these notions we resort to a complexity theoretic framework.

A forger is a probabilistic polynomial time algorithm F which on input a public
key PI(with security parameter k

engages in a conversation with the legal signer S, requesting and receiving
signatures for messages of his choice, for a total number of messages bounded
by a polynomial in k (the adaptive chosen message attack),

0 then outputs S purporting to be a signature with respect to PIC of a new
message rn (an attempt at existential forgery).

We say 7 is successful if the signature it creates is a genuine (i.e. V(S ,m , P K) =
true) forgery. We say that a signature scheme is Q-forgable (Q a polynomial) if there
exists a forger 3 who, for infinitely many k, succeeds with probability more than
on input a public key with security parameter k. The probability here is over
choice of the public key, which is chosen according to the distribution generated by
KG, and over the coin tosses of 3 and S.

The security property we are interested in consists of not being Q-forgable for any
polynomial Q.

3 TRAPDOOR PERMUTATIONS
We propose here a relatively simple complexity theoretic definition of trapdoor per-
mutations which nevertheless captures all the known candidates for trapdoor permu-
tations.

204

Definition 3.1 A triplet (G, E , I) of probabalistic polynomial time algorithms is a
trapdoor pernu ta t ion generator if on input I k the algorithm G outputs a pair of k bit
strings (z,y) such that
(1) The algorithms E (z , -) and I(y, .) define permutations of (0, which are in-

verseS of each other: I(y, E (r , 2)) = z and E(s , I(y,z)) = z for all I € (0, l}k.

(2) For all probabilistic polynomial time (adversary) algorithms A(. , ., .) and for all
c and sufficiently large k,

Pr[E(z , A (l k , s, z)) = 21 c k-'
when z is chosen at random from (0, l } k and the pair (2, y) is obtained by running
the generator on input Ik (the probability is over the random choice of z and the
coin tosses of G and A).

The algorithms G , E and I are called the generating, evaluating and inverting algo-
rithms respectively.

Definition 3.2 A function f is a trapdoor permutation with security parameter k if
there is a trapdoor permutation generator (G, E, I) such that f = E (s , .) for a pair
of strings (2, y) obtained by running G on input l k .

Notice that as defined above, a trapdoor permutation with security parameter
k has domain all of { O , l } k . This is not the case with known candidates such as
RSA ([RSA]) or the trapdoor permutations of [BBS] where the domain is a subset of
(0, l}k. Also notice that the probability of inversion that we require in part (2) of
the definition (I c - ") looks very low. Both of these, though, are not restrictions; all the
known candidates can be fit into our scenario by using a cross product construction
as in [yl. This works as follows.

Given a trapdoor permutation f on a subset D of (0, l}k such that ID1 1 2 k . k -d
for some d and f is hard to invert on all but a polynomial fraction of D, extend f
to (0, l } k by defining it to be the identity function on (0, l } k - D. This yields a
permutation on (0, l}k. Define a function F on

(0, l}k x . . . x (0, l } k
kd+2

by F (s l , . . . , zp+z) = (f(zl), . . .) f (Z k d + l)) . F is a permutation and Yao shows that
it satisfies part (2) of Definition 3.1 given our assumptions about the original f.

4 AN OVERVIEW OF THE SCHEME

We present here an overview of the scheme and a sketch of the proof of security; the
succeeding sections gives a more complete description and proof. In this section, as
well as in the complete scheme we describe later, we disregard efficiency completely
for the sake of simplicity.

205

4.1 Background

In [La] Lamport suggested the following method for signing a single bit: make public
f and a pair of points xo and z1 and keep secret f-'. The signature of a bit b E (0 , l)
is then f - ' (zb) . The drawback of this method is that the number of bits that can
be signed is limited to the number of pairs of points that are placed in the public
key. Our scheme can be considered an extension of this type of scheme in that it
removes the restriction on the number of bits that can be signed while using a similar
basic format for signing a single bit. We do this by regenerating some of the public
key information every time we sign a bit. [GMR] too uses the idea of regenerating
some part of the information in the public key, but with a different, non Lamport
like underlying signing method. Merkle ([MI) presents another way of extending the
Lamport format; his more pragmatically oriented scheme, though, is not concerned
with proofs of security.

In the scheme described below, and then in more detail in 35? we reverse the roles
of functions and points in the Lamport format with respect to signing a single bit, and
then sign new points as needed. (A dual and equivalent scheme consists of directly
using the Lamport format but signing new functions instead; this was in fact the way
our scheme was presented in [BeMi]).

4.2 The Signature Scheme
A user's public key in our scheme is of the form

PIC = (fo,o,fo,l?...,f~,o,fk,l?~~
where the fi,j are trapdoor permutations with security parameter k and a is a random
k bit string (we refer t o k bit strings equivalently as points or seeds). His secret key
is the trapdoor information f;'. A message is signed bit by bit. The first bit b~ is
signed by sending f;l1(a) and a signature of a new seed a'. The signature of the
k bit string al consists of sending, for each i = 1,. . , , k, either f;;,'(a) or f<'(cy)

depending on whether the i-th bit of crl was a 0 or a 1.
At this point not only has the bit bl been signed, but the public key has been

"recreated". That is, another bit can now be signed in the same manner with (~ 1

playing the role of a above. This process can be continued to sign a polynomial in k
number of bits. The signature of a message is thus built on a chain of seeds in which
each element of the chain is used to sign its successor.

4.3 Why is this Secure?
Suppose F is a forger (as described in 32.2). We derive a contradiction by showing
that the existence of 3 implies the existence of an algorithm A which inverts the
underlying trapdoor permutations with high probability.

Given a trapdoor permutation g with security parameter k and a k bit string 2 ,

the algorithm A must use the forger to find g- ' (z) . A's strategy will be to build a
suitable public key and then run 3 and attempt to sign the messages requested by
F . From 3 's forged signature will come the information required to invert g.

206

The public key

PI(= (fO,O, f O , l , * - . 7 fk,O, f k , l t a)
that A creates has fn,= = g for some n and c. All the other functions are obtained
by running the generator, so A knows their inverses. In the course of signing A will
use a list of seeds of the form g(cr l) , except for some one stage at which it will use as
seed the given point t. So A knows how to invert all the fi,j at all the seeds with the
single exception of not knowing f;E(t). At this point, it is possible that A will not
be able to sign a message that 3 requests. Specifically, A will not be able to sign a
message m if computing the signature would require knowledge of g-’(z). But this
is the only possible block in A’s signing process, and it will happen with probability
only 1/2. So A succeeds in responding to all 3 ’s requests with probability 1/2.

By assumption 3 will now return the signature of a message not signed previousley
by A. The placement of the original function g in the public key, as well as the
placement of z in the list of seeds, are unknown to T (more precisely, the probability
distribution of real signatures and A’s signatures are the same). With some sufficiently
high probability, the signature of the new message will include the value of g-’(z)
which A can output and halt.

5 THE SCHEME AND P R O O F O F SECURITY

5.1 Preliminary Notation and Definitions

The i-th bit of a binary string z is denoted (z); while its length is denoted 121.
If a = (a l , . . . , u;) and b = (b l , . . . , b j) are sequences then a*b denotes the sequence

(a l , . . . , a i , h , . . . , bj) . If a = (a l , . . . ,ui) is a sequence and j 5 i then (u l , . . . , a j) is
called an initial segment of a .

We recall [GMRI’s notation and conventions for probabalistic algorithms. E A is a
probabalistic algorithm then A (z , y, . . .) denotes the probability space which assigns
to the string u the probability that A, on input x , y, . . ., outputs u. We denote by
[A(s , y, . . .)] the set of elements of A (z , y, . . .) which have non-zero probability. We
denote by x t- A (x , y, . . .) the algorithm which assigns to x a value selected according
to the probability distribution A(z, y, . . .). If S is a finite set we write z t S () for
the aIgorithm which assigns to z a value selected from S uniformly at random. The
notation

P(p(z , y,. . .) : z t S;y 6 T I . . .)
denotes the probability that the predicate p (x , y, . . .) is true after the (ordered) ex-
ecution of the algorithms z t S , y t T , etc. As an example of this notation, part
(2) of Definition 3.1 would be written as

P (E (x , u) = z : (5 , ~) +- G (l k) ; z t {0,1}k;;21 t A (l k , z , z)) < k-‘.
We let PPT denote the set of probabalistic polynomial time algorithms. We assume
that a natural encoding of these algorithms as binary strings is used.

For the remainder of this section we fix a trapdoor permutation generator (G, E , I) .

207

With some abuse of language we will often call z a function and identify it with E (z , .).
In the scheme we now proceed to describe we will desregard efficiency completely in
order to simplify the proof of security.

5.2 Building Blocks for Signing
The signing algorithm makes use of many structures. This section describes the basic
building blocks that are put together to build signatures.

Let (z;, y!) E [G(lk)J for i = 0,. . . , k and j = 0,1, and let Z = (z:, zk, . . . , zi, zfi.),
f = (y:,yA,. .. ,y i , y i) - Let a,a' E {0,1}~.

Definition 5.1 A seed authenticator (a'; is a tuple of strings (a', a, zl, . . . , zk)

for which
E(Z,!*)', z;) = a' ,

f o r a l l i = l , ..., k.
Definition 5.2 A bit authenticator (a'; b) , is a tuple of strings (a', b, z) such that
b E {0,1} and E(z:, z) = a'.

Definition 5.3 An authenticator (c Y ' ; ~) ? is either a seed authenticator or a bit
authenticator. In the authenticator (a'; c) ~ , a' is called the root of the authenticator,
cis called the child of the authenticator, and 5 is called the source of the authenticator.

Given i and a tuple purporting to be an authenticator (a'; c)?, it is easy for anyone
to check that it is indeed one. However given a', c, and i it is difficult to create an
authenticator (a'; c) ~ without the knowledge of $.

Definition 5.4 A sequence F = (Fl,. . . , FP) of seed authenticators is a spine start-
ing at a' if
0 a' is the root of F'.
0 for i = 1,. . . , p - 1, the root of F'+' is the child of F'.

Definition 5.5 A sequence B = (B' , . . . , Bq) of bit authenticators is s-attached to
the spine F = (F' , . . . ,Fp) if the root of B' is equal to the child of Pi-' for
i = 1,. . . ,q. A sequence of bit authenticators B = (B' , . . . , B*) is attached to the
spine F = (F1,. . . , FP) if it is s-attached for some s.

5.3 Generating Keys
The key generation algorithm KG does the following on input lk:
(1) Run G a total of 2k + 2 times on input I k to get a list of pairs (4 , d) (z =

(2) Select a random k-bit seed (Y E (0, l } k .

(3) Output the public key P K = (lk, i, a, Sg) where 3 = (z:, zk,. . . , zi, zk) and SE

(4) Output the secret key SIC = y' = (y:, y:, . . . , yi , yi).

0 ,..., k, j = 0 , 1) .

is the signature bound.

208

b (mi) k - 1

t\ (m&

Figure 1: A signature corpus (left), and a signature of a message rn (right)

5.4 What is a Signature?
Definition 5.6 A signature of a message m E Mk with respect to a public key
PI(= (I k , Z,a, SB) is a triple (F , B , m) where F = (F l , . . . Fpk) (p 3 1) is a spine
and B = (B ' , . . . , Bk) is a sequence of bit authenticators such that
0 B is ((p - 1) k + 1)-attached to F.
0 F starts at a.

0 For all i = 1,. . . , k the child of B' is (m)i.

0 The common source of all the authenticators is Z.

Figure 2 shows a schema of a signature for a message rn with respect to a public
key (I k , Z , a O 7 SB); here F' = (ai-1; a;)z (z = 1,. . . , p k) and B' = (q p - 1) k + i ; (m)i)l

(2 = 1, ..., k).

5.5 The Signing Algorithm and Signature Corpus
Let PI(= (l k , Z , a o , Sg) and SIC = y' be a pair of public and secret keys. We
presume that the signing procedure S is initialized with the values of PIC and S K
and has already signed messages m l ~ . . . , and kept track of the signatures S1 =

209

(FI, B ~ , m l) , . . . , Si-1 = (Fi-1, Bi-1,mi-l) of these messages. We let Fo be the empty
sequence. To compute a signature S; = (Fi, B;,m;) for mi, where i 5 SB(~) and
mi E M k , S performs the following steps:

(1) Set 1 = (i - l) k , and select k seeds c r ~ + ~ , . . . , ul+k E (0, l}k at random.

(2) Form the seed authenticators

FJ = (a j - 1 ; ,
for j = 1 + 1,. . . , I + k, and let F be the spine (F'+', . . . , F'+k).

(3) Form the bit authenticators

Bj = (at+? ; (mi)j)f 1

for j = 1,. . . ,k, and let B; = (B' , . . . , Bk).

(4) Let Fi = Fi-1 * F and output Si = (Fi, Bi, mi) as the signature of m;.

Figure 1 shows a schemaof the data structure constructed by the signing procedure
as described above. This structure will be called a signature corpus below.

Definition 5.7 Let

be a sequence of the first i signatures output by our signing algorithm S , for some
i > 0. We call signature corpus the triple

(4 , 4, ml), * * > (Fi, Bi, mi)

Let F = F; and B = B1 * ... * B;.
c = (F , B , (7721,. , . ,ma)).

Note that a signature corpus (F , B , M) is a spine F = (P, . . . , FP) to which is
1-attached the sequence of bit carrying items B = (.€?I, . . . , Bp).

Definition 5.8 Let 2 = (F , B , M) be either a single signature or a signature CO~PUS,

relative to a public key PI< = (Ik, ?,a0, S B) , where F = (F1,. . . , P) and B =
(B', . . . , Bq). Then

(1) F (2) denotes F , the spine of 2, and B (2) denotes B , the sequence of bit au-
thenticators of 2. The authenticators in F are called the seed authenticators of
2 and the authenticators in B are called the bit authenticators of 2.

(2) The set of authenticators of 2 is A (2) = {P,. . . , F p } U {B1,. . . , Bq}.

(3) The chain of seeds of 2, denoted P(Z), is the sequence of seeds which form the
roots and children of the seed authenticators of F . That is, P (2) = (ao, cq, . . . , a p) ,
where cri is the child of F' for all i = 1,. . . , p .

of 2.

a single message m, we just let M (2) = m).

(4) The set of roots of 2, denoted R (Z) , is the set of roots of the seed authenticators

(5) The tuple Id of messages signed by 2 is denoted M (Z) . (If 2 is the signature of

210

5.6 The Verification Algorithm
Given a public key PI{ and something purporting to be a signature of a message m
with respect to PI(, it is easy to check whether t h s is indeed the case. It is easy
to see that checking whether a given object really has the form of definition 5.6 only
requires knowledge of the public key.

5.7 Extracting Information From a Forgery
As indicated in the overview of 84.3, forgery must eventually be used to extract
information about the inversion of a trapdoor function. The preliminary definitions
and lemmas here are devoted to charecterizing the structure of a forgery relative to
a given corpus.

Lemma 5.1 Let C be a signature corpus relative to a public key P K = (lk, 5, a , SB)
and let S be a signature, relative to the same public key, of a message rn not in M (C) .
Then there is an a’ in P(C) such that one of the following holds:
(1) There is a pair of seed authenticators, (a‘; hl) , in F (C) , and (a’; h2)p in F(S),

(2) a’ is not in R(C) (i.e. a’ is the child of the last authenticator in the spine) and

(3) There is a pair of bit authenticators, (a‘; h} , in B(C) , and (a’; b}z in B (S) , such

such that hl f h2.

there is a seed authenticator (a’; h) , in F (S) .

that b1 # b2.

Proof: Suppose neither (1) nor (2) holds. Since F (S) and F (C) both start at a ,
F (S) must be an initial segment of F(C) . Thus P (S) is an initial segment of P(C) .
Since B (S) is attached to F (S) , the roots of all the bit authenticators of S are in
P (S) hence in P(C) . So if P(C) = (ag,.. . , c y p k) then there is some i such that

where mi E Mk is the i-th message in the corpus. But M (S) is not in M (C) , so
there is some j such that (M (S)) j # (mi)j. Let 4 = (rn;)j, b = (M (S)) j , and
a‘ = a(i-lp+j. Then (a’;h)? E B (S) and (a’;b) E B(C) are the desired bit au-

(a (i - ~) k + j ; (mi>j)i E B (C) and (a (i - l) k + j ; (M (S)) j) z E B (S) for all j = 1 , - . - , k ,

thenticators which give us part (3) of the lemma. b
Let P K = (lk, 2. a, SB) be a public key, where Z = (& xh,. . . ,xi, xk), and let C

be a signature corpus relative to PI<. We introduce the notion of a pair (a’, 4) being
unused in C, where a’ is in P(C) . Informally, we would like to say that (a ’ ,~ :) is
unused if the authenticators in the corpus C do not contain E (x i , .)-’(a’). That is,
the inversion of E(Z;, .) a t a‘ was not required in the signing process. For technical
reasons however, the formal definition that we use is rather to say that the inversion
of E(x , ! - j , .) was required in the signing process. Boundary conditions (being at the
end of the spine) complicate things a little further.

Definition 5.9 Let PI(, C be as above. We say that (c r ’ , ~ ;) is unused in C if a’ is
in P (C) and one of the following holds:

21 1

(1) There is a seed authenticator (a’; h) , in A(C) with (h) i # j .

(2) i # 0 and a’ is not in R(C). (So a‘ is at the tail end of the spine F (C)) .
(3) i = 0 and there is a bit authenticator (a’; b) , in A (C) with b # j.

With P K , C as above, let S be the signature of a mess’age m not in M (C) , relative
to PI(. We show that this signature could not have been created without inverting
E (z i , .) at a’ where (a’, 4) was some unused pair in the corpus C.

Lemma 5.2 There is a polynomial time algorithm which takes as input P K , C , and
S as described above, and outputs a triple of the form (a f , 4 , u) such that the pair
(a’, xi) was unused in C and E (s ~ , u) = a‘.

Proof: Let a’ be the seed of Lemma 5.1. The proof breaks down into the cases
provided by Lemma 5.1, and we number the cases below accordingly. Note that given
C and 5’ it is possible for an algorithm to determine which of the cases of Lemma 5.1
applies.
(1) Since hl # h2 we can find an i such that (h,)i # (3 2) i . Set j = (hz);. The

authenticator (a’; h2)g provides us with the value E(zI , .)-l(a‘), and by the first
part of Definition 5.9 the pair (a’, 4) is unused in C.

(2) Set i to any value between 1 and k and set j = (h),. The authenticator (a’; h) p
provides us with the value E(z{,-)-*(a’), and the second part of Definition 5.9
says that (a‘,<) is unused in C.

(3) Set i = 0 and j = bz. The authenticator (C Y ’ ; ~) ~ provides us with the value
E (s ~ , -)-‘(a’) and the last part of Definition 5.9 says that (a‘, 4) is unused in C.
0

5.8 Proof of Security
We are finally ready to prove

Theorem 5.1 Under the assumption that (G, E , I) is a trapdoor permutation gener-
ator the above signature scheme is not even Q-forgable (see §2.2), for all polynomials
Q and all sufficiently large k.

The proof of the theorem is by contradiction. Assume the existence of a polynomial
Q, an infinite set z, and a forger F(.) such that for all k E I?, F is succesful in forging
with probability 2 & on input a public key chosen according to the distribution
induced by ICG. Our goal is to construct an algorithm A (. , . , .) E PPT which on
input lk, x, z uses .F to find E (z , .)-’(z).

A operates as follows on input lk, 2, z :

(1) Let n + { O , . . . , k}(), c + {0,1}(), and t t { O , . . . ,kS~(k)}().
(2) Run G a total of 2k + 1 times on input I k to get (xi, y i) for i = 0 , . . . , k, j =

0,1, (i , j) # (n , c). Let xi = L, and let 5 = (z:, z:, . . . , x!, x:).
. .

212

(3) Pick kS~(k) random k bit strings Po,. , / 3 k s B (k) , and then create
the seeds

a l = { i f l = t
E (z , P I) otherwise.

Let P be the sequence (ao, all.. . a k S B (k)) .

(4) Let P K = (Ik, Z , a o , SB).
(5) Invoke 3 on the public key P K , and attempt to sign the requested messages in the

same manner as the signing procedure S, but using the already generated seeds
from P where S would pick random new seeds. The inverses of all but one of the
functions in P are known, and, for that function zi , the value E(zC,, -)-'(a~) = /?I
is known for all values 1 # t . If either = c, or n = 0 and the sequence
of requested messages has c in the t-th position, it will not be possible to sign.
Output 8 and halt in this case. If all 3 's requested messages are succesfully
signed, let C be the corpus of these signatures.

(6) If F does not now output a signature of a message not in kf(C), output 8 and
halt. Otherwise, invoke the algorithm of Lemma 5.2 on input PK,C, and the
signature S output by 3. This algorithm outputs a tuple (a', zi, u). Now output
u and halt.

We consider the distribution of A's output when its inputs are chosen at random;
that ii, we consider the result of executing

(z,y) + G(lk);z +- {O,l}k();u t A (l k , z , t) .

Lemma 5.3 The public key P K created in step 4 has the same distribution as that
induced on public keys by the key generation algorithm KG.

Proof: The functions x: of step 2 were obtained by running G, as was 5, so 5 has
the right distribution. The were chosen at random in step 3. Since E (s , .) is a
permutation, the seeds al are also randomly distributed. Since a. is either one of
these or the randomly chosen z, it is randomly distributed. So PIC has the same
distribution as generated by KG ($5.3). 0

Lemma 5.4
(1) The distribution of signatures generated by the conversation between .F and A

is, at every stage in the conversation, the same as the distribution that would be
generated in a conversation between F and the legal signer S.

(2) With probability 2 3 all of 3 's requests are succesfully signed.

Proof: As noted above, the public key has the right distribution. Now the steps used
by A to sign are exactly those of the signing algorithm S, with the one exception noted
in step 5 of the description of A. The signatures received by 7 upto this crucial point
have the same distribution as the legal signer would have generated. Upto this point
then, 3 sees no anomaly. Now at the next step A must invert either E(z:,-) or
E(zk , .) at at. Since c was chosen at random, we can conclude that this stage is

21 3

passed with probability i. Moreover, this and future signatures are still with the
right distribution. Both parts of the lemma are thus verified. 0

Suppose all 3 's requests are signed. By the preceding lemma, the corpus gener-
ated has the same distribution as would have been generated with the legal signer.
By assumption we know 3 forges with probability & on this distribution. Since the
signing was accomplished with probability 2 3 we obtain a forgery S with probability

1

The next step is to show that the u output by A is equal to E(z, .)- '(z) with suffi-
ciently high probability.

Note that P(C) is an initial segment of the sequence P. If the requested messages
added together to a length of more than t bits, then t is in P (C) . The signing process
is accomplished only if inverting E (z , -) = E (x i , .) at z is avoided, so if z is in P (c)
then (5 , ~) is unused in C. We state this as a lemma.

Lemma 5.5 If A does succeed in signing all of F 's requests, and if z is in P(C) ,
then (2, z) is unused in C.

Proof: If z is the last seed in the sequence P (C) and n > 0 then we have case (2) of
Definition 5.9. Otherwise, since the signing was accomplished, either (1) or (3) must
hold. 0

By Lemma 5.2, u = E(zi , .)-'(a') for some pair (c Y ' , ~) unused in C. We would
like the pair to actually be (z ,z) , for then ti = E(z, .)- '(z) . The randomization of
the n and t parameters (step 1) serves to capture this event with probability at least

1

(1 + k) (l + kSB(k)) .
We conclude that for all k E E,

P (E (z , u) = z : (5, y) + G(lk); z t (0, l}k(); u + A (l k , 2, z))

1 ' 2Q(k)(l + k)(l+ k S ~ (k)) '
contradicting the fact that G is a trapdoor permutation generator. This completes
the proof of Theorem 5.1.

6 VARIATIONS AND IMPROVEMENTS
The signatures produced by the signing algorithm of the previous section are far from
compact: signatures with respect to a public key PK = (lk , . ' ,a ,S~) could reach
lengths of O (l c S ~ (k)) . We describe briefly here how tree structures in the style of
[GMR] could replace the linear structures of the above scheme to produce signatures
of length O (k log S B (~)) . The size of signatures in the modified scheme will not

214

only be smaller but will be independent of the signatures of previous messages. The
modified scheme retains the security properties of the original one.

The public key now contains 2A; + 1 pairs of randomly chosen trapdoor functions
of security parameter k together with, as before, a single seed. Each seed is used to
sign two others, which become its right and left children in the tree; the first k pairs
of the above functions are used to sign the left child, and the second k pairs to sign
the right child. The tree is grown to height A; log 5s(fc). Each leaf can then be used
as the root of a linear chain of length k which signs a single message. The proof of
security needs little change for the modified scheme, and details are left to the final
paper.

The assumption that messages are always of length equal to the security parameter
can be removed: to sign messages of arbitrary length it suffices to first encode them
with a subsequence free encoding. This is an encoding which guarantees that no string
is a substring of the concatenation of any number of other strings, and such encodings
are easy to construct.

Further, the scheme, in its tree version, can be made memoryless (as in the mod-
ifications of [Go] and [Gu] to the [GMR] scheme); the same ideas used by [GMR]
(attributed to Levin), and extended in [Go], can be applied here. The main tool
is the use of pseudo-random functions ([GGM]) whose existence is implied by our
assumptions.

References

[BeMi] Bellare, M., and S. Micali, "How to Sign Given Any Trapdoor Function,"
Proceedings of the 20th STOC, ACM (1988), 32-42.

[BBS] Blum, L., M. Blum, and M. Shub, "A Simple Unpredictable Pseudo-Random
Number Generator," SIAM Journal on Computing, Vol. 15, No. 2 (May
1986), 364-383.

[BIMi] Blum, M., and S. Micali, "How to Generate Cryptographically Strong Se-
quences of Pseudo-Random Bits," SIAM Journal on Computing, Vol. 13,
No. 4 (November 1984), 850-864.

[DH] Dime, W. and M. E. Hellman, "New Directions in Cryptography," IEEE
Trans. Info. Theory IT-22 (November 1976), 644-654.

[Go] Goldreich, O., "Two Remarks Concerning the GMR Signature Scheme,"
MIT Laboratory for Computer Science Technical Report 715, (September
1986).

[GKL] Goldreich, O., M. Luby, and H. Krawczyk, "On the Existence of Pseudo-
random Generators," CRYPTO 88.

[GGM] Goldreich, 0., S. Goldwasser, and S. Micali, "How To Construct Random
Functions," Journal of the Association for Computing Machinery, Vol. 33,
No. 4 (October 1986), 792-807.

215

[GM] Goldwasser, S., and S. Micali, "Probabalistic Encryption," Journal of Com-
puter and System Sciences 28 (April 1984), 270-299.

[GMR] Goldwasser, S., S. Micali and R. Rivest, "A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks," SIAM Journal on Computing,
vol. 17, No. 2, (April 1988), 281-308.

[GMY] Goldwasser, S., S. Micali, and A. Yao, "Strong Signature Schemes," Pro-
ceedings of the 15th STOC, ACM (1983), 431-439.

[Gu] Guillou, L., "A Zero-Knowledge Evolution of the Paradoxical GMR Signa-
ture Scheme", manuscript (February 1988).

[La] Lamport, L. "Constructing Digital Signatures from a One-Way Function,"
SRI Intl. CSL-98. (October 1979)

[Le] Levin, L., "One Way Functions and Pseudo Random Generators," Proceed-
ings of the 17th STOC, ACM (1985), 363-365.

[M] Merkle, R., "A Digital Signature Based on a Conventional Encryption Func-
tion," Advances in Cryptology - CRYPTO 87 (Lecture Notes in Computer
Science, 293), Springer-Verlag, 1987.

[RSA] Rivest, R., A. Shamir, and L. Adleman, "A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,51 Communications of the ACM
(Feb 78), 120-26.

[Y] Yao, A. C , "Theory and Applications of Trapdoor Functions," Proceedings
of the 23rd FOCS, IEEE (1982) 80-91.

	Abstract
	INTRODUCTION
	SIGNATURE SCHEMES AND THEIR SECU- RITY
	Components of a Signature Scheme
	Security against Adaptive Chosen Message Attacks

	TRAPDOOR PERMUTATIONS
	AN OVERVIEW OF THE SCHEME
	Background
	Untitled
	The Signature Scheme
	Why is this Secure?

	THE SCHEME AND PROOF OF SECURITY
	Preliminary Notation and Definitions
	Building Blocks for Signing
	Generating Keys
	What is a Signature?
	The Signing Algorithm and Signature Corpus
	The Verification Algorithm
	Extracting Information From a Forgery
	Proof of Security

	VARIATIONS AND IMPROVEMENTS
	References

