
AN EFFECTIVE REFINEMENT ALGORITHM
BASED ON MULTILEVEL PARADIGM FOR
GRAPH BIPARTITIONING

Ming Leng, Songnian Yu, Yang Chen
School of Computer Engineering and Science,Shanghai University, Shanghai, PR China.
Email: lmsly(3,263. net

Abstract: The min-cut bipartitioning problem is a fundamental partitioning problem and
is NP-Complete. It is also NP-Hard to find good approximate solutions for this
problem. In this paper, we present a new effective refinement algorithm based
on multilevel paradigm for graph bipartitioning. The success of our algorithm
relies on exploiting both new Tabu search strategy and boundary refinement
policy. Our experimental evaluations on 18 different graphs show that our
algorithm produces excellent solutions compared with those produced by
MeTiS that is a state-of-the-art partitioner in the literature.

Key words: min-cut, graph bipartitioning, multilevel paradigm. Tabu search

1. INTRODUCTION

Partitioning is a fundamental problem with extensive applications to
many areas, including VLSI design [1], information retrieval [2], parallel
processing [3], computational grids [4] and data mining [5]. The min-cut
bipartitioning problem is a fundamental partitioning problem and is NP-
Complete [6]. It is also NP-Hard [7] to find good approximate solutions for
this problem. Because of its importance, the problem has attracted a
considerable amount of research interest and a variety of algorithms have
been developed over the last thirty years [8],[9]. The survey by Alpert and
Kahng [1] provides a detailed description and comparison of various such

Please use the foil owing format when citing this chapter:
Leng, Ming, Yu, Songnian, Chen, Yang, 2006, in International Federation for
Information Processing (IFIP), Volume 207, Knowledge Enterprise: Intelligent Strategies
In Product Design, Manufacturing, and Management, eds. K. Wang, Kovacs G., Wozny
M., Fang M., (Boston: Springer), pp. 294-303.

An Effective Refinement Algorithm Based on Multilevel Paradigm for 295
Graph Bipartitioning

schemes which include move-based approaches, geometric representations,
combinatorial formulations, and clustering approaches.

As problem sizes reach new levels of complexity recently, a new class of
graph partitioning algorithms have been developed that are based on the
multilevel paradigm. The multilevel graph partitioning schemes include
three phases [10], [11],[12], [13]. The coarsening phase is to reduce the size
of the graph by collapsing vertex and edge until its size is smaller than a
given threshold. The initial partitioning phase is to compute initial partition
of the coarsest graph. The uncoarsening phase is to successively project the
partition of the smaller graph back to the next level finer graph while
applying an iterative refinement algorithm. In this paper, we present a new
effective refinement algorithm based on multilevel paradigm which is
integrated with Tabu search [14] for refining the partition. Our work is
motivated by the multilevel partitioners of Saab [13] who promotes locked
vertex to free by introducing two buckets for per side of the partition and
Karypis [10], [11],[12] who proposes a boundary refinement algorithm and
supplies MeTiS [10], distributed as open source software package for
partitioning unstructured graphs. We test our algorithm on 18 graphs that are
converted from the hypergraphs of the ISPD98 benchmark suite [15]. Our
experiments show that our algorithm produces partitions that are better than
those produced by MeTiS in a reasonable time.

The rest of the paper is organized as follows. Section 2 provides some
definitions, describes the notation that is used throughout the paper and the
min-cut bipartitioning problem. Section 3 briefly describes the motivation
behind our algorithm. Section 4 presents an effective refinement algorithm
based on multilevel paradigm for graph bipartitioning. Section 5
experimentally evaluates the algorithm and compares it with MeTiS. Finally,
Section 6 provides some concluding remarks and indicates the directions for
fiirther research.

2. MATHEMATICAL DESCRIPTION

A graph G = (V,E) consists of a set of vertices V and a set of edges E such
that each edge is a subset of two vertices in V. Throughout this paper, n and
m denote the number of vertices and edges respectively. The vertices are
numbered from I ton and each vertex v e v has an integer weight S{v) . The
edges are numbered from I to m and each edge eeE has an integer weight
w{e) .A decomposition of a graph V into two disjoint subsets Vi and V2,
such that v^[jV2 = v and v;n\/2 = 0 , is called a bipartitioning of V. Let

296 Ming Leng, Songnian Yu, Yang Chen

s(A) = 2^^^s(v) denote the size of a subset A^v . Let /D(v) be denoted as v's

internal degree and is equal to the sum of the edge-weights of the adjacent
vertices of v that are in the same side of the partition as v, and v's external
degree denoted by ED{\/) is equal to the sum of edge-weights of the adjacent
vertices of v that are in the different side of the partition. The cut of a
bipartitioning P = ^^y2} is the sum of weights of edges which contain two
vertices in Vi and V2 respectively, such that cut(P) = ^^^^^^^^^^^^w{e) .
Naturally, vertex v belongs at boundary if and only if ED{v) > 0 and the cut of
P is also equal to 0.5^,^^^ ED(V) .

Given a balance constraint r, the min-cut bipartitioning problem seeks a
solution P = ^v^2} that minimizes cut{P) subject to
(i-r)S(\/)/2<S(v;),S(\/2)<(l + A')S(\/)/2. A bipartitioning is bisection if r is as
small as possible. If the edges are ignored, the problem is the set partitioning
problem which is NP-Complete [6]. Therefore, unless all vertices have unit
sizes, it is NP-Hard to find just a bisection of arbitrary cost of graph. Most
existing partitioning algorithms are heuristics in nature and they seek to
obtain reasonably good solutions in a reasonable amount of time. Kernighan
and Lin (KL) [8] proposed a heuristic algorithm for partitioning graphs,
which requires o[n'^\oq{n)) computation time. The KL algorithm is an

iterative improvement algorithm that consists of making several
improvement passes. It starts with an initial bipartition {A,B} and tries to
improve it by every pass. A pass consists of the identification of two subsets
of vertices A a A and Ei aB of equal size such that can lead to an improved
partition if the vertices in the two subsets switch sides, that is to say,
{ (^ - A) U 6 ' , (B - B) U A } is a better bipartition than {A,B) . Fiduccia and

Mattheyses (FM) [9] proposed a fast heuristic algorithm for bisecting a
weighted graph by introducing the concept of cell gain into KL algorithm.
The previously unmoved vertex veA (or veB) with highest gain that
computed by cut ([A, B}) -cu t ({/\ - \/, B+v]) is moved from A to B.

3. MOTIVATION

Tabu search has its antecedents in methods designed to cross boundaries
of feasibility or local optimality standardly treated as barriers, and to
systematically impose and release constraints to permit exploration of
otherwise forbidden regions. Tabu search is a "higher level" heuristic
procedure for solving optimization problems, designed to guide to other
methods to escape the trap of local optimality [14].

An Effective Refinement Algorithm Based on Multilevel Paradigm for 297
Graph Bipartitioning

During each pass of KL and FM, they have the same restriction that each
vertex can move only once and the restriction may prevent the exploration of
certain promising region of the search space. In the terminology of Tabu
Search, the KL and FM strategy is a simple form of Tabu search without
aspiration criterion whose prohibition period is fixed at n. In [13], Saab
introduces the concept of forward move step and restore balance step for
refining the partition and adopts aspiration criterion to allow a locked vertex
to become free in the same passes of ALG2 algorithm. As a consequence of
allowing locked vertices to move in an iterative pass, ALG2 algorithm can
explore a certain promising regions of the search space. However, Saab
limits the vertices move-direction of two kinds of steps in A-*^B and B-*A
respectively and is obliged to adopt two different aspiration criterions for
two kinds of steps respectively to avoid cycling issue.

In both FM and ALG2 refinement algorithms, we have to assume that all
vertices are free and insert the gain of all vertices in free bucket. However,
most of gain computations are wasted since most of vertices moved by FM
and ALG2 refinement algorithms are boundary vertices that straddle two
sides of the partition. As opposed to the non-boundary refinement algorithms,
the cost of performing multiple passes of the boundary refinement
algorithms is small since only boundary vertices are inserted into the bucket
as needed and no work is wasted. In [11], the boundary KL (BKL)
refinement algorithm presented by Karypis swaps only boundary vertices
and is much faster variation of the KL algorithm.

In this paper, we present a boundary Tabu search (BTS) refinement
algorithm that combines the Tabu search theory with boundary refinement
policy. It has three distinguishing features which are different from ALG2
algorithm. First, we initially insert into the free bucket the gains for only
boundary vertices. Second, we remove the above limitation by introducing
the conception of step-status and move-direction. Finally, we derive
aspiration criterion from lots of experiments that is simpler than that of
ALG2 algorithm.

4. BTS: A NEW EFFECTIVE REFINEMENT
ALGORITHM

BTS introduces the conception of move-direction and step-status that
consists of both forward-move and restore-balance. Given an input partition
Q and balance tolerance t, if the input partition Q satisfies the balance
tolerance t, current step-status is forward-move and we initially choose to
move a vertex from the side whose bucket contains a highest gain vertex

298 Ming Leng, Songnian Yu, Yang Chen

among all boundary vertices. Otherwise current step-status is restore-
balance and we choose to move a vertex from the larger side of the partition.
As BTS enters into the next step, if new partition satisfies the balance
tolerance t, current step-status is forward-move and we choose the last move-
direction to apply the current step, else current step-status is restore-balance
and the move-direction of current step starts from the larger side of the
partition. The strategy of BTS eliminates the limitation oi move-direction of
steps and its goal is to increase the chances of vertices that are closely
connected migrating together from one side of the partition to the other by
allowing moving sequences of vertices at one pass from one side of the
partition to the other, although the highest gain maybe negative in a
sequences of steps.

BTS uses free and tabu buckets to fast storage and retrieval the gains of
free and tabu vertices respectively. At the beginning of a pass, all vertices
are free and the internal and external degrees of all vertices are computed
and two free buckets are inserted the gains of boundary vertices of two sides
respectively that are computed by ED{v)-iD{y). After we move a vertex v,
the gains of itself and its neighboring vertices should be changed. First, we
must lock the vertex v by deleting its original gain from bucket and insert its
new gain (negative value of original gain) into the tabu bucket of the other
side. Second, we update the gains of the neighboring vertices of vertex v. If
any of these neighboring vertices becomes a boundary vertex due to the
move of vertex v , we insert its gain into the free bucket of side in which it
locates. If any of these neighboring vertices becomes a non-boundary vertex
due to the move of vertex v, we delete its original gain from bucket that
maybe free or tabu. If any of these neighboring vertices is already a
boundary free vertex, we only update its gain in free bucket. If any of these
neighboring vertices is a boundary locked vertex, we must delete its original
gain from tabu bucket and insert its new gain into the free bucket of side in
which it locates. In the terminology of Tabu Search, the tabu restriction
forbids moving vertices which are designated as tabu status and the
prohibition period of tabu vertex can be changed dynamically and decided
by the above promotion rule. The purpose of promotion rule is to increase
their chances of following neighbors to the other side of the partition and to
allow the chance for the movement of a cluster from one side of the partition
to the other.

The remains problem in BTS is how to select a vertex to move in current
step. The vertex to move must be selected from free bucket or tabu bucket of
the side that is start point of the move-direction of current step. When the
current step-status is forward-move, the next vertex to move is the highest
gain vertex in the free bucket if it is not empty. Otherwise, the highest gain
vertex in tabu bucket is chosen to move. If the current step-status is restore-

An Effective Refinement Algorithm Based on Multilevel Paradigm for 299
Graph Bipartitioning

balance, the next vertex to move is the highest gain vertex in both free and
tabu buckets. It is not possible to run out of moves as long as tolerance /
satisfies o < t < 1. The choice rule of Tabu search is to select the highest gain
vertex in free bucket and the aspiration criterion we have selected to override
the tabu restriction is simple criterion that allows tabu vertex as candidate of
vertex to move in the current step if current step-status is restore-balance or
the free bucket is empty.

Table 1. The pseudocode of the BTS algorithm

BTS (initial partition Q, balance tolerance t, Total Moves k){
1 BEST=P;
2 COUNTER=0;
3 compute the internal and external degrees of all vertices;
4 compute the gains of boundary vertices of two sides;
5 insert the gains of boundary vertices in free bucket respectively;
6 i/\/Me COUNTER <= k do {
7 decide the step-status and move-direction of the current step;
8 select the vertex to move by choice rule and aspiration criterion;
9 move the vertex and lock it;
10 original cut minus its original gain as the cut of new partition;
11 update the internal and external degrees of its neighboring vertices;
12 update the gains of its neighboring vertices by promotion rule;
13 //(the cut is minimum and satisfies balance constraints) then
14 BEST=P;
15 end if
16 COUNTER = COUNTER +1;
17 }end while
18 }

The pseudocode of the BTS algorithm is given in Table. 1. The while
loop (lines 6-17) of BTS is iterated as long as improvements can be made
and it is necessary in BTS that setting an upper limit on the parameter k.
Because Tabu search aggressively selects the best admissible vertex based
on the tabu restriction and aspiration criterion, it must examine and compare
a number of boundary vertices by the bucket that allows to storage, retrieval
and update the gains of vertices very quickly. It is important to obtain the
efficiency of BTS by using the bucket with the last-in first-out (LIFO)
scheme, as Tabu search memory structure, can enforce the "locality" in the
choice of vertices to move. The internal and external degrees of all vertices,
as complementary Tabu search memory structures, help BTS to facilitate
computation of vertex gam and judgement of boundary vertex.

5. EXPERIMENTAL RESULTS

We use the 18 graphs in our experiments that are converted from the

300 Ming Leng, Songnian Yu, Yang Chen

hypergraphs of the ISPD98 benchmark suite [15] and rang from 13,000 to
210,000 vertices. Each benchmark comes with 3 files, a .net file, a .are file
and a .netD file. We convert hyperedges of .netD file into edges by the rule
that every subset of two vertices in hyperedge can be seemed as edge. We
create the edge with unit weight if the edge that connects two vertices didn't
exist, else add unit weight to the weight of the edge. Next, we get the
weights of vertices from .are file. Finally, we store 18 edge-weighted and
vertex-weighted graphs in graph format of MeTiS [10]. The characteristics
of these graphs are shown in Table 2.

Table 2. The characteristics of 18 graphs to evaluate our algorithm

benchmark

ibmOl
ibm02
ibm03
ibm04
ibm05
ibm06
ibm07
ibm08
ibm09
ibmlO
ibmll
ibml2

ibml3
ibml4
ibml5
ibml6
ibml7
ibmlS

vertices

12752
19601
23136
27507
29347
32498
45926
51309
53395
69429
70558
71076
84199
147605
161570
183484
185495

210613

hyperedges

14111
19584
27401
31970
28446
34826
48117
50513
60902
75196
81454
77240
99666
152772
186608
190048
189581
201920

edges

109183
343409
206069
220423
349676
321308
373328
732550
478777
707969
508442
748371
744500
1125147
1751474
1923995
2235716

2221860

We implement the BTS refinement algorithm in ANSI C and integrate it
with the leading edge partitioner MeTiS. In the evaluation of BTS
refinement algorithm, we must make sure that the results produced by BTS
refinement algorithm can be easily compared against those produced by
MeTiS. First, we use the same balance constraint r and random seed in every
comparison. Second, we select the sorted heavy-edge matching (SHEM)
algorithm during coarsening phase because of its consistently good behavior
in MeTiS. Third, we adopt the greedy graph growing partition (GGGP)
algorithm during initial partitioning phase that consistently finds smaller
edge-cuts than others algorithms. Finally, we select the BKL algorithm to
compare with BTS algorithm during uncoarsening and refinement phase
because BKL can produce smaller edge-cuts when coupled with SHEM
algorithm. These measures are sufficient to guarantee that our experimental
evaluations are not biased in any way.

An Effective Refinement Algorithm Based on Multilevel Paradigm for
Graph Bipartitioning

301

The quality of partitions produced by our BTS refinement algorithm and
those produced by MeTiS are evaluated by looking at two different quality
measures, which are the minimum cut (Mincut) and the average cut
(AveCut). To ensure the statistical significance of our experimental result,
two measures are obtained in twenty runs whose random seed is different
with each other. For all experiments, we use a 49-51 bipartitioning balance
constraint by setting r to 0.02. Next, we pass the same initial partition, result
of initial partitioning phase, to BTS and BKL algorithms in every
comparison that guarantees a fair evaluation. Furthermore, we set the
number of vertices of the current level graph as the value of parameter k and
5% as the value of parameter t.

Table 3. Min-cut bipartitioning results with up to 2% deviation from exact bisection

benchmark -

ibmOl
ibm02
ibm03
ibm04
ibm05
ibm06
ibm07
ibm08
ibm09
ibmlO
ibmll
ibml2
ibml3
ibml4
ibml5
ibml6
ibml7
ibml8

average

]

Mincut
517

4268
10190
2273
12093
7408
3219
11980
2888
10066
2452
12911
6395
8142

22525
11534
16146
15470

—

Metis
AveCut

1091
11076
12353
5716
15058
13586
4140
38180
4772
17747
5095

27691
13469
12903
46187
22156
26202
20018

—

Mincut
506

4184
7548
2336
12074
2470
2867
12845
2917
6359
2406
12383
4582
7608
12112
10111
14792
14903

—

BTS
AveCut

1081
8410
10299
2789
14597
11692
3449
18470
3982
9743
3593
19301
8702
10359
36590
14787
20620
19199

—

BTS/Metis
Mincut
0.979
0.980
0.741
1.028
0.998
0.333
0.891
1.072
1.010
0.632
0.981
0.959
0.716
0.934
0.538
0.877
0.916
0.963
0.863

AveCut
0.991
0.759
0.834
0.488
0.969
0.861
0.833
0.484
0.834
0.549
0.705
0.697
0.646
0.803
0.792
0.667
0.787
0.959
0.758

Table 3 presents min-cut bipartitioning results allowing up to 2%
deviation from exact bisection and Fig. 1 illustrates the Mincut and AveCut
comparisons of two refinement algorithms on 18 graphs. As expected, the
BTS refinement algorithm reduces the AveCut by 1% to 52% and reaches
24% average AveCut improvement. Although the BTS refinement algorithm
produces partition whose Mincut is up to 7.2% worse than that of MeTiS on
some benchmarks, we still obtain 14% average Mincut improvement and
between -7% and 67% improvement in Mincut. All evaluations that twenty
runs of two algorithms on 18 graphs are run on an 1800MHz AMD
Athlon2200 with 512M memory and can be done in half an hour.

302 Ming Leng, Songnian Yu, Yang Chen

1.1

^ 0-9 r
c
O
s 0.8 ^

CO

cJ5

0.7

0.6 [

0.5 [

0.4 [

0.3

1 ' ® ' .

r~o "
r
L\

\
1 \ /I/
r ^ • t

' •'
L ^ 1
1 ^ '

/
1 ^ '

\ /
1 \f
r *

— 1 1 1 —

9

1.;.^ O
n O.

^
/ \
1 •

/ .
/ ;
/ -
/

\
^ ^

" * . ' ? •?

\ '\
- \ ' \ • :

^ ^ ' ^ B

^ ' ! > -̂ '
V ' \ • • ,

. / , * '
, / , '
. ; ^
\ '
i

6
1 1

1 1 1 1

• • -o i

.© ' j
/ I

o '

• - • - f

: • ^-"^ -• p i
\-' / • \ ; /
6 / \ /

" " • ' - ; : ' ' ^ ^ -
1

-
o

• • • ©•

— H»

- I

— b id i i ud iu me 1 l o
• mincut BTS
- avecut BTS

1 1

J

6 8 10 12 14 16 18
benchmark (ibmXX)

Figure L The Mincut and AveCut comparisons of two refinement algorithms on 18 graphs

6. CONCLUSIONS

In this paper, we have presented a new refinement algorithm based on
multilevel paradigm. The success of our BTS algorithm relies on exploiting
both new Tabu search strategy and boundary refinement policy. We obtain
excellent bipartitioning result compared with those produced by MeTiS.
Although it has the ability to find cuts that are lower than the result of
MeTiS in a reasonable time, there are several ways in which this algorithm
can be improved. We raise three questions about possible improvement
below. The first question is how to find an optimal value for balance
tolerance t. The second question, how to find an optimal value for k, is
similar with Saab's question about r [13] because we observe that larger
values of k lead to better partitions at the expense of a proportional increase
in running time and the improvement in the quality of partitions in not
linearly related to k. In the Mincut evaluation of benchmark ibm04, ibm08
and ibm09, the BTS refinement algorithm is 2.8%, 7.2%, \% worse than
MeTiS respectively. This shows that a good initial partition has been lost in
the uncoarsening phase before it can yield a good bisection for the original

An Effective Refinement Algorithm Based on Multilevel Paradigm for 303
Graph Bipartitioning

graph. Therefore, the third question is how to guarantee find good
approximate solutions by setting appropriate value for k and t.

7. ACKNOWLEDGMENTS

This work was supported by the Science Foundation of Shanghai
Municipal Commission of Science and Technology, grant No. OOJC14052,
and by "SEC E-Institute: Shanghai High Institutions Grid" project.

8. REFERENCES

1. Alpert, C.J., Kahng, A.B.: Recent Directions in Netlist Partitioning. Integration, the VLSI
Journal, Yol 19(1995)1-18

2. Zha, H., He, X., Ding, C, Simon, H., Gu, M.: Bipartite graph partitioning and data
clustering. Proc. ACM Conf Information and Knowledge Management (2001)

3. Hendrickson, B., Leland, R.: An Improved Spectral Graph Partitioning Algorithm for
Mapping Parallel Computations. SIAM Journal on Scientific Computing, Vol. 16 (1995)
452-469

4. Wanschoor, R., Aubanel, E.: Mesh Partitioning for Computational Grids. Proc. 2nd Annual
Conf on Communication Networks and Services Research (2004)

5. Ding, C, Xiaofeng, H., Hongyuan, Z., Ming, G., Simon, H.: A Min-Max Cut Algorithm for
Graph Partitioning and Data Clustering. Proc. IEEE Conf Data Mining (2001) 107-114

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory ofNP-
Completeness. WH Freeman New York (1979)

7. Bui, T., Leland, C: Finding Good Approximate Vertex and Edge Partitions Is NP-Hard.
Information Processing Letters, Vol. 42 (1992) 153-159

8. Kemighan, B.W., Lin, S.: An Efficient Heuristic Procedure for Partitioning Graphs. Bell
System Technical Journal, Vol. 49 (1970) 291-307

9. Fiduccia, C, Mattheyses, R.: A Linear-Time Heuristics for Improving Network Partitions.
Proc. 19th Design Automation Conf (19S2) 175-181

10. Karypis, G., Kumar, V.: MeTiS 4.0: Unstructured Graphs partitioning and sparse matrix
ordering system. Technical Report, Department of Computer Science, University of
Minnesota (1998) Available on the WWW at URL http://www.cs.umn.edu/~metis

11. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, Vol. 20 (1999) 12.

12. Selvakkumaran, N., Karypis, G.: Multi-Objective Hypergraph Partitioning Algorithms for
Cut and Maximum Subdomain Degree Minimization. IEEE Trans. Computer Aided
Design, Vol. 25 (2006) 504-517

13. Saab, Y.G.: An Effective Multilevel Algorithm for Bisecting Graphs and Hypergraphs.
IEEE Trans. Computers, Vol. 53 (2004) 641-653

14. Glover, F., Manuel, L.: Tabu search: Modern heuristic Techniques for Combinatorial
Problems. Blackwell Scientific Publications Oxford (1993) 70-150

15. Alpert, C.J.: The ISPD98 Circuit benchmark suite. Proc. Intel Symposium of Physical
Design (199S) S0'S5

