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Abstract: The min-cut bipartitioning problem is a fundamental partitioning problem and 
is NP-Complete. It is also NP-Hard to find good approximate solutions for this 
problem. In this paper, we present a new effective refinement algorithm based 
on multilevel paradigm for graph bipartitioning. The success of our algorithm 
relies on exploiting both new Tabu search strategy and boundary refinement 
policy. Our experimental evaluations on 18 different graphs show that our 
algorithm produces excellent solutions compared with those produced by 
MeTiS that is a state-of-the-art partitioner in the literature. 
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1. INTRODUCTION 

Partitioning is a fundamental problem with extensive applications to 
many areas, including VLSI design [1], information retrieval [2], parallel 
processing [3], computational grids [4] and data mining [5]. The min-cut 
bipartitioning problem is a fundamental partitioning problem and is NP-
Complete [6]. It is also NP-Hard [7] to find good approximate solutions for 
this problem. Because of its importance, the problem has attracted a 
considerable amount of research interest and a variety of algorithms have 
been developed over the last thirty years [8],[9]. The survey by Alpert and 
Kahng [1] provides a detailed description and comparison of various such 
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schemes which include move-based approaches, geometric representations, 
combinatorial formulations, and clustering approaches. 

As problem sizes reach new levels of complexity recently, a new class of 
graph partitioning algorithms have been developed that are based on the 
multilevel paradigm. The multilevel graph partitioning schemes include 
three phases [10], [11],[12], [13]. The coarsening phase is to reduce the size 
of the graph by collapsing vertex and edge until its size is smaller than a 
given threshold. The initial partitioning phase is to compute initial partition 
of the coarsest graph. The uncoarsening phase is to successively project the 
partition of the smaller graph back to the next level finer graph while 
applying an iterative refinement algorithm. In this paper, we present a new 
effective refinement algorithm based on multilevel paradigm which is 
integrated with Tabu search [14] for refining the partition. Our work is 
motivated by the multilevel partitioners of Saab [13] who promotes locked 
vertex to free by introducing two buckets for per side of the partition and 
Karypis [10], [11],[12] who proposes a boundary refinement algorithm and 
supplies MeTiS [10], distributed as open source software package for 
partitioning unstructured graphs. We test our algorithm on 18 graphs that are 
converted from the hypergraphs of the ISPD98 benchmark suite [15]. Our 
experiments show that our algorithm produces partitions that are better than 
those produced by MeTiS in a reasonable time. 

The rest of the paper is organized as follows. Section 2 provides some 
definitions, describes the notation that is used throughout the paper and the 
min-cut bipartitioning problem. Section 3 briefly describes the motivation 
behind our algorithm. Section 4 presents an effective refinement algorithm 
based on multilevel paradigm for graph bipartitioning. Section 5 
experimentally evaluates the algorithm and compares it with MeTiS. Finally, 
Section 6 provides some concluding remarks and indicates the directions for 
fiirther research. 

2. MATHEMATICAL DESCRIPTION 

A graph G = (V,E) consists of a set of vertices V and a set of edges E such 
that each edge is a subset of two vertices in V. Throughout this paper, n and 
m denote the number of vertices and edges respectively. The vertices are 
numbered from I ton and each vertex v e v has an integer weight S{v) . The 
edges are numbered from I to m and each edge eeE has an integer weight 
w{e) .A decomposition of a graph V into two disjoint subsets Vi and V2, 
such that v^[jV2 = v and v;n\/2 = 0 , is called a bipartitioning of V. Let 
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s(A) = 2^^^s(v) denote the size of a subset A^v . Let /D(v) be denoted as v's 

internal degree and is equal to the sum of the edge-weights of the adjacent 
vertices of v that are in the same side of the partition as v, and v's external 
degree denoted by ED{\/) is equal to the sum of edge-weights of the adjacent 
vertices of v that are in the different side of the partition. The cut of a 
bipartitioning P = ^^y2} is the sum of weights of edges which contain two 
vertices in Vi and V2 respectively, such that cut(P) = ^^^^^^^^^^^^w{e) . 
Naturally, vertex v belongs at boundary if and only if ED{v) > 0 and the cut of 
P is also equal to 0.5^,^^^ ED(V) . 

Given a balance constraint r, the min-cut bipartitioning problem seeks a 
solution P = ^v^2} that minimizes cut{P) subject to 
(i-r)S(\/)/2<S(v;),S(\/2)<(l + A')S(\/)/2. A bipartitioning is bisection if r is as 
small as possible. If the edges are ignored, the problem is the set partitioning 
problem which is NP-Complete [6]. Therefore, unless all vertices have unit 
sizes, it is NP-Hard to find just a bisection of arbitrary cost of graph. Most 
existing partitioning algorithms are heuristics in nature and they seek to 
obtain reasonably good solutions in a reasonable amount of time. Kernighan 
and Lin (KL) [8] proposed a heuristic algorithm for partitioning graphs, 
which requires o[n'^\oq{n)) computation time. The KL algorithm is an 

iterative improvement algorithm that consists of making several 
improvement passes. It starts with an initial bipartition {A,B} and tries to 
improve it by every pass. A pass consists of the identification of two subsets 
of vertices A a A and Ei aB of equal size such that can lead to an improved 
partition if the vertices in the two subsets switch sides, that is to say, 
{ ( ^ - A ) U 6 ' , ( B - B ) U A } is a better bipartition than {A,B) . Fiduccia and 

Mattheyses (FM) [9] proposed a fast heuristic algorithm for bisecting a 
weighted graph by introducing the concept of cell gain into KL algorithm. 
The previously unmoved vertex veA (or veB ) with highest gain that 
computed by cut ([A, B}) -cu t ({/\ - \/, B+v]) is moved from A to B. 

3. MOTIVATION 

Tabu search has its antecedents in methods designed to cross boundaries 
of feasibility or local optimality standardly treated as barriers, and to 
systematically impose and release constraints to permit exploration of 
otherwise forbidden regions. Tabu search is a "higher level" heuristic 
procedure for solving optimization problems, designed to guide to other 
methods to escape the trap of local optimality [14]. 
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During each pass of KL and FM, they have the same restriction that each 
vertex can move only once and the restriction may prevent the exploration of 
certain promising region of the search space. In the terminology of Tabu 
Search, the KL and FM strategy is a simple form of Tabu search without 
aspiration criterion whose prohibition period is fixed at n. In [13], Saab 
introduces the concept of forward move step and restore balance step for 
refining the partition and adopts aspiration criterion to allow a locked vertex 
to become free in the same passes of ALG2 algorithm. As a consequence of 
allowing locked vertices to move in an iterative pass, ALG2 algorithm can 
explore a certain promising regions of the search space. However, Saab 
limits the vertices move-direction of two kinds of steps in A-*^B and B-*A 
respectively and is obliged to adopt two different aspiration criterions for 
two kinds of steps respectively to avoid cycling issue. 

In both FM and ALG2 refinement algorithms, we have to assume that all 
vertices are free and insert the gain of all vertices in free bucket. However, 
most of gain computations are wasted since most of vertices moved by FM 
and ALG2 refinement algorithms are boundary vertices that straddle two 
sides of the partition. As opposed to the non-boundary refinement algorithms, 
the cost of performing multiple passes of the boundary refinement 
algorithms is small since only boundary vertices are inserted into the bucket 
as needed and no work is wasted. In [11], the boundary KL (BKL) 
refinement algorithm presented by Karypis swaps only boundary vertices 
and is much faster variation of the KL algorithm. 

In this paper, we present a boundary Tabu search (BTS) refinement 
algorithm that combines the Tabu search theory with boundary refinement 
policy. It has three distinguishing features which are different from ALG2 
algorithm. First, we initially insert into the free bucket the gains for only 
boundary vertices. Second, we remove the above limitation by introducing 
the conception of step-status and move-direction. Finally, we derive 
aspiration criterion from lots of experiments that is simpler than that of 
ALG2 algorithm. 

4. BTS: A NEW EFFECTIVE REFINEMENT 
ALGORITHM 

BTS introduces the conception of move-direction and step-status that 
consists of both forward-move and restore-balance. Given an input partition 
Q and balance tolerance t, if the input partition Q satisfies the balance 
tolerance t, current step-status is forward-move and we initially choose to 
move a vertex from the side whose bucket contains a highest gain vertex 
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among all boundary vertices. Otherwise current step-status is restore-
balance and we choose to move a vertex from the larger side of the partition. 
As BTS enters into the next step, if new partition satisfies the balance 
tolerance t, current step-status is forward-move and we choose the last move-
direction to apply the current step, else current step-status is restore-balance 
and the move-direction of current step starts from the larger side of the 
partition. The strategy of BTS eliminates the limitation oi move-direction of 
steps and its goal is to increase the chances of vertices that are closely 
connected migrating together from one side of the partition to the other by 
allowing moving sequences of vertices at one pass from one side of the 
partition to the other, although the highest gain maybe negative in a 
sequences of steps. 

BTS uses free and tabu buckets to fast storage and retrieval the gains of 
free and tabu vertices respectively. At the beginning of a pass, all vertices 
are free and the internal and external degrees of all vertices are computed 
and two free buckets are inserted the gains of boundary vertices of two sides 
respectively that are computed by ED{v)-iD{y). After we move a vertex v, 
the gains of itself and its neighboring vertices should be changed. First, we 
must lock the vertex v by deleting its original gain from bucket and insert its 
new gain (negative value of original gain) into the tabu bucket of the other 
side. Second, we update the gains of the neighboring vertices of vertex v. If 
any of these neighboring vertices becomes a boundary vertex due to the 
move of vertex v , we insert its gain into the free bucket of side in which it 
locates. If any of these neighboring vertices becomes a non-boundary vertex 
due to the move of vertex v, we delete its original gain from bucket that 
maybe free or tabu. If any of these neighboring vertices is already a 
boundary free vertex, we only update its gain in free bucket. If any of these 
neighboring vertices is a boundary locked vertex, we must delete its original 
gain from tabu bucket and insert its new gain into the free bucket of side in 
which it locates. In the terminology of Tabu Search, the tabu restriction 
forbids moving vertices which are designated as tabu status and the 
prohibition period of tabu vertex can be changed dynamically and decided 
by the above promotion rule. The purpose of promotion rule is to increase 
their chances of following neighbors to the other side of the partition and to 
allow the chance for the movement of a cluster from one side of the partition 
to the other. 

The remains problem in BTS is how to select a vertex to move in current 
step. The vertex to move must be selected from free bucket or tabu bucket of 
the side that is start point of the move-direction of current step. When the 
current step-status is forward-move, the next vertex to move is the highest 
gain vertex in the free bucket if it is not empty. Otherwise, the highest gain 
vertex in tabu bucket is chosen to move. If the current step-status is restore-
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balance, the next vertex to move is the highest gain vertex in both free and 
tabu buckets. It is not possible to run out of moves as long as tolerance / 
satisfies o < t < 1. The choice rule of Tabu search is to select the highest gain 
vertex in free bucket and the aspiration criterion we have selected to override 
the tabu restriction is simple criterion that allows tabu vertex as candidate of 
vertex to move in the current step if current step-status is restore-balance or 
the free bucket is empty. 

Table 1. The pseudocode of the BTS algorithm 

BTS (initial partition Q, balance tolerance t, Total Moves k){ 
1 BEST=P; 
2 COUNTER=0; 
3 compute the internal and external degrees of all vertices; 
4 compute the gains of boundary vertices of two sides; 
5 insert the gains of boundary vertices in free bucket respectively; 
6 i/\/Me COUNTER <= k do { 
7 decide the step-status and move-direction of the current step; 
8 select the vertex to move by choice rule and aspiration criterion; 
9 move the vertex and lock it; 
10 original cut minus its original gain as the cut of new partition; 
11 update the internal and external degrees of its neighboring vertices; 
12 update the gains of its neighboring vertices by promotion rule; 
13 //(the cut is minimum and satisfies balance constraints) then 
14 BEST=P; 
15 end if 
16 COUNTER = COUNTER +1; 
17 }end while 
18 } 

The pseudocode of the BTS algorithm is given in Table. 1. The while 
loop (lines 6-17) of BTS is iterated as long as improvements can be made 
and it is necessary in BTS that setting an upper limit on the parameter k. 
Because Tabu search aggressively selects the best admissible vertex based 
on the tabu restriction and aspiration criterion, it must examine and compare 
a number of boundary vertices by the bucket that allows to storage, retrieval 
and update the gains of vertices very quickly. It is important to obtain the 
efficiency of BTS by using the bucket with the last-in first-out (LIFO) 
scheme, as Tabu search memory structure, can enforce the "locality" in the 
choice of vertices to move. The internal and external degrees of all vertices, 
as complementary Tabu search memory structures, help BTS to facilitate 
computation of vertex gam and judgement of boundary vertex. 

5. EXPERIMENTAL RESULTS 

We use the 18 graphs in our experiments that are converted from the 
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hypergraphs of the ISPD98 benchmark suite [15] and rang from 13,000 to 
210,000 vertices. Each benchmark comes with 3 files, a .net file, a .are file 
and a .netD file. We convert hyperedges of .netD file into edges by the rule 
that every subset of two vertices in hyperedge can be seemed as edge. We 
create the edge with unit weight if the edge that connects two vertices didn't 
exist, else add unit weight to the weight of the edge. Next, we get the 
weights of vertices from .are file. Finally, we store 18 edge-weighted and 
vertex-weighted graphs in graph format of MeTiS [10]. The characteristics 
of these graphs are shown in Table 2. 

Table 2. The characteristics of 18 graphs to evaluate our algorithm 

benchmark 

ibmOl 
ibm02 
ibm03 
ibm04 
ibm05 
ibm06 
ibm07 
ibm08 
ibm09 
ibmlO 
ibmll 
ibml2 

ibml3 
ibml4 
ibml5 
ibml6 
ibml7 
ibmlS 

vertices 

12752 
19601 
23136 
27507 
29347 
32498 
45926 
51309 
53395 
69429 
70558 
71076 
84199 
147605 
161570 
183484 
185495 

210613 

hyperedges 

14111 
19584 
27401 
31970 
28446 
34826 
48117 
50513 
60902 
75196 
81454 
77240 
99666 
152772 
186608 
190048 
189581 
201920 

edges 

109183 
343409 
206069 
220423 
349676 
321308 
373328 
732550 
478777 
707969 
508442 
748371 
744500 
1125147 
1751474 
1923995 
2235716 

2221860 

We implement the BTS refinement algorithm in ANSI C and integrate it 
with the leading edge partitioner MeTiS. In the evaluation of BTS 
refinement algorithm, we must make sure that the results produced by BTS 
refinement algorithm can be easily compared against those produced by 
MeTiS. First, we use the same balance constraint r and random seed in every 
comparison. Second, we select the sorted heavy-edge matching (SHEM) 
algorithm during coarsening phase because of its consistently good behavior 
in MeTiS. Third, we adopt the greedy graph growing partition (GGGP) 
algorithm during initial partitioning phase that consistently finds smaller 
edge-cuts than others algorithms. Finally, we select the BKL algorithm to 
compare with BTS algorithm during uncoarsening and refinement phase 
because BKL can produce smaller edge-cuts when coupled with SHEM 
algorithm. These measures are sufficient to guarantee that our experimental 
evaluations are not biased in any way. 
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The quality of partitions produced by our BTS refinement algorithm and 
those produced by MeTiS are evaluated by looking at two different quality 
measures, which are the minimum cut (Mincut) and the average cut 
(AveCut). To ensure the statistical significance of our experimental result, 
two measures are obtained in twenty runs whose random seed is different 
with each other. For all experiments, we use a 49-51 bipartitioning balance 
constraint by setting r to 0.02. Next, we pass the same initial partition, result 
of initial partitioning phase, to BTS and BKL algorithms in every 
comparison that guarantees a fair evaluation. Furthermore, we set the 
number of vertices of the current level graph as the value of parameter k and 
5% as the value of parameter t. 

Table 3. Min-cut bipartitioning results with up to 2% deviation from exact bisection 

benchmark -

ibmOl 
ibm02 
ibm03 
ibm04 
ibm05 
ibm06 
ibm07 
ibm08 
ibm09 
ibmlO 
ibmll 
ibml2 
ibml3 
ibml4 
ibml5 
ibml6 
ibml7 
ibml8 

average 

] 

Mincut 
517 

4268 
10190 
2273 
12093 
7408 
3219 
11980 
2888 
10066 
2452 
12911 
6395 
8142 

22525 
11534 
16146 
15470 

— 

Metis 
AveCut 

1091 
11076 
12353 
5716 
15058 
13586 
4140 
38180 
4772 
17747 
5095 

27691 
13469 
12903 
46187 
22156 
26202 
20018 

— 

Mincut 
506 

4184 
7548 
2336 
12074 
2470 
2867 
12845 
2917 
6359 
2406 
12383 
4582 
7608 
12112 
10111 
14792 
14903 

— 

BTS 
AveCut 

1081 
8410 
10299 
2789 
14597 
11692 
3449 
18470 
3982 
9743 
3593 
19301 
8702 
10359 
36590 
14787 
20620 
19199 

— 

BTS/Metis 
Mincut 
0.979 
0.980 
0.741 
1.028 
0.998 
0.333 
0.891 
1.072 
1.010 
0.632 
0.981 
0.959 
0.716 
0.934 
0.538 
0.877 
0.916 
0.963 
0.863 

AveCut 
0.991 
0.759 
0.834 
0.488 
0.969 
0.861 
0.833 
0.484 
0.834 
0.549 
0.705 
0.697 
0.646 
0.803 
0.792 
0.667 
0.787 
0.959 
0.758 

Table 3 presents min-cut bipartitioning results allowing up to 2% 
deviation from exact bisection and Fig. 1 illustrates the Mincut and AveCut 
comparisons of two refinement algorithms on 18 graphs. As expected, the 
BTS refinement algorithm reduces the AveCut by 1% to 52% and reaches 
24% average AveCut improvement. Although the BTS refinement algorithm 
produces partition whose Mincut is up to 7.2% worse than that of MeTiS on 
some benchmarks, we still obtain 14% average Mincut improvement and 
between -7% and 67% improvement in Mincut. All evaluations that twenty 
runs of two algorithms on 18 graphs are run on an 1800MHz AMD 
Athlon2200 with 512M memory and can be done in half an hour. 
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Figure L The Mincut and AveCut comparisons of two refinement algorithms on 18 graphs 

6. CONCLUSIONS 

In this paper, we have presented a new refinement algorithm based on 
multilevel paradigm. The success of our BTS algorithm relies on exploiting 
both new Tabu search strategy and boundary refinement policy. We obtain 
excellent bipartitioning result compared with those produced by MeTiS. 
Although it has the ability to find cuts that are lower than the result of 
MeTiS in a reasonable time, there are several ways in which this algorithm 
can be improved. We raise three questions about possible improvement 
below. The first question is how to find an optimal value for balance 
tolerance t. The second question, how to find an optimal value for k, is 
similar with Saab's question about r [13] because we observe that larger 
values of k lead to better partitions at the expense of a proportional increase 
in running time and the improvement in the quality of partitions in not 
linearly related to k. In the Mincut evaluation of benchmark ibm04, ibm08 
and ibm09, the BTS refinement algorithm is 2.8%, 7.2%, \% worse than 
MeTiS respectively. This shows that a good initial partition has been lost in 
the uncoarsening phase before it can yield a good bisection for the original 
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graph. Therefore, the third question is how to guarantee find good 
approximate solutions by setting appropriate value for k and t. 
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