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Abstract: To solve the product robust design problems involving a mixture of random 
and interval factors, a novel approach is proposed which combines an 
integrated metamodeling method with a percentile-based robust optimization 
model. The integrated metamodeling method embodies the integration of 
Response Surface Methodology (RSM) and Support Vector Regression (SVR), 
which is used to construct the metamodels of product performance efficiently. 
The percentile-based robust optimization model could bring both the design 
objective robustness and the feasibility robustness of the design constraint into 
account, which assures a product's reliability and quality robustness to the 
noise. A case study of a diaphragm spring in automobile clutch is described to 
show the effectiveness and practicability of the proposed approach. 
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1. INTRODUCTION 

Robust design is a method for improving the quality of a product through 
minimizing the effect of the causes of variation without ehminating the 
causes ̂  Under the concept of robust design, there are two broad categories 
of the causes of product performance variations: noise factors and control 
factors. In traditional robust design^, uncertainties associated with noise 
factors and control factors usually imply for randomness and 
nondeterministic factors are assumed to follow certain distributions. 
However, in reality, some of the distributions related to random factors are 
often not precisely known. Moreover, uncertainties associated with other 
uncertain factors may not be the result of randomness^. Therefore, when 
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nondeterministic factors are only known within intervals, robust design 
approach should treat them as interval factors. So far, there is still no method 
to deal with the robust design problems involving the combination of 
random and interval factors. 

The purpose of this paper is to describe an efficient method for robust 
design to deal with problems under the mixture of random and interval 
factors. In the proposed approach, an integrated metamodeling method based 
on Response Surface Methodology (RSM) and Support Vector Regression 
(SVR) is combined with a percentile-based robust optimization model in 
which both robustness of the design objective and feasibility robustness of 
the design constraint are simultaneously assured. 

2. A THREE-STEP ROBUST DESIGN APPROACH 

A three-step robust design approach is proposed (see Figure 1) to deal 
with the problems under the mixture of random and interval factors: 

Step 1 Build approximation models to associate each product 
performance with control and noise factors by using an integrated 
metamodeling method based on RSM and SVR. 

Step 2 Model the robustness of the design objective and feasibility 
robustness of the design constraint by using percentile-based formulations. 

Step 3 Use a percentile-based robust optimization model to find the 
robust design solution. 
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Figure 1. Flowchart of the three-step robust design approach 

2,1 Integration of RSM and SVR 

To take advantages of RSM"̂  and SVR^ and overcome their limitations, 
an integration strategy (as shown in Figure 2) is presented to build efficient 
surrogate models of product performance. 
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This strategy first employs the RSM techniques to generate a number of 
design experiments and create response surface models to represent the 
performance behaviors under study. If the models are not accurate enough, 
the SVR technique is implemented. Here, support vectors are trained on a set 
of data points which correspond to the design experiments generated 
previously based on RSM techniques. Additional points would be added to 
achieve the desired accuracy. When the results from either RSM or SVR 
techniques are accurate enough, they can be used as approximation models 
in robust optimization programs to determine the optimal values. 

With the integration strategy, it is anticipated that the limitation of RSM 
in modeling highly nonlinear behaviors could be overcome by the SVR 
techniques. In the situation when the Response Surface Model is accurate 
enough, the complicated training process of the SVR can be avoided. 
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Figure 2. Flowchart of the integrated metamodeling method 

2.2 Percentile-based robust optimization model 

Under the mixture of random and interval factors, the percentile-based 
formulations are presented to model the robustness of design objective and 
the feasibility robustness of design constraint. 

1) Modeling the robustness of design objective 
Under the mixture of random and interval factors, the control factors x 

and noise factors z are classified into two types of factors: random factors r 
characterized by probability distributions; interval factors d within specified 
intervals [di, du]. As a result, the design objective y = y(x, z) = y(d, r) is 
characterized by the mixture of distribution and interval as well. y\d is a 

random variable which is the function of random variables r and can be 
described by a marginal distribution, as rf varies within the interval [dt, du], y 
performs as a sequence of probability distributions In this distribution 
sequence, there exists a maximum y^^, denoted as y^^l^, and a minimum 
y^^, denoted as y^^,, where pi is a left-tail cumulative distribution functions 
(CDF), for example, 0.05 or 0.1, representing the product performance at the 
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left tail of its probability distribution and y^^ is a right-tail CDF, for 

example, 0.95 or 0.99. The percentile difference i^y^A =>̂ max~>̂ min 
P^ I max 

reflects the variation range of a design objective, y^'^ is used to represent 
the variation location of a design objective. 

Under the mixture of random and interval factors, for smaller-the-better 
type robust design, the robustness of design objective can be modeled as 

minimize b ° ^ A y ^ ^ ] (1) 
^ ' 'max 

2) Modeling the feasibility robustness of design constraint 
Similarly, under the mixture of random factors r and interval factors d, 

the constraint function gj{x, z) = gj{d, r) performs as a sequence of 
probability distributions. The feasibility robustness of design constraint 
under the mixture of random and noise factors can be modeled as 

gf <0 y = l,2,--.,m (2) 
I max 

Where py is the user specified reliability. 
In summary, through using the concept of percentile, under the mixture 

of random and interval factors, the unified robust optimization model for 
integrated design objective robustness and feasibility robustness of design 
constraint can be given as 

min [y'\^y'A ] 
*' I max 

s.t. g f I <0 y=l,2,...,w (3) 

p\ 

I max 

Xf S: X Si Xfj 

3. A CASE STUDY 

The design of a diaphragm spring in automobile clutch is used as a case 
study to verify the approach described in this paper. The purpose of this 
design is to find the dimensions of the spring as shown in Figure 3, which 
can meet the following design requirements: 

1) Minimize the maximum stress a in the diaphragm spring. 
2) Produce sufficient load when the diaphragm spring clamps the pressure 

plate. 
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Figure 3. A diaphragm spring 

3) Transmit the engine's power stably even when the clutch disc is worn. 

g2 - hA, -1.2) - P(4 )| - 0.05/>(A,) < 0 

Factors that are related to the requirements above are classified into eight 
control factors and three noise factors. In this case, the control factors are 
random variables and noise factors are interval variables (listed in Table 1). 

Table 1. Information of random and interval factors 
Random factors 

Factor 
R/mm 
A'/mm 
///mm 
h/mm 
L /mm 
e/mm 
rp /mm 
J/mm 

Standard deviation 
0.04 
0.04 
0.05 
0.05 
0.02 
0.02 
0.02 
0.02 

Distribution 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 

Interval factors 
Factor 

r^ax /N*m 
D /mm 
d /mm 

Lower Bound 
178.2 
239.6 
158.6 

Upper Bound 
192.2 
240.4 
160.4 

In this design problem, a is treated as the design objective, while gi and 
g2 are treated as the design constraint. To relieve the computational burden, 
the approximate models of cr , gi and g2 are constructed by using the 
integrated metamodeling method aforementioned. Three metrics, named as, 
Max. Absolute Error (MAE), Average Absolute Error (AAE) and Root 
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Mean Square Error (RMSE) are used to measure the accuracy of metamodels. 
To be as a contrast, Artificial Neural Networks (ANN) models for the 
product performance on the same sample data are also built and tested. The 
accuracy of RSM, SVR and ANN models is shown in Table 2. 

It could be noted from Table 2 that, for a, which is highly nonlinear, the 
accuracy of SVR is the best while ANN is better than RSM. For g\ and g2, 
which are also nonlinear but not as much as a, three methods have achieved 
a good accuracy - the accuracy of RSM is close to that of SVR while ANN 
is the worst. This indicates that, in most cases, SVR is better than RSM and 
ANN. The limitations of RSM and ANN, i.e., the defect of RSM in 
modeling highly nonlinear behaviors, and the necessity of a large set of 
training data for ANN, could be eliminated by SVR techniques. In the case 
of modeling lowly nonlinear behaviors, the use of RSM makes the 
complicated training process of SVR and ANN avoided. 

Error 

MAE 
AAE 
RMSE 

<J 

2.739 
0.457 
0.965 

RSM 

^ 1 

0.485 
0.098 
0.199 

Table 2. 

gi 
0.178 
0.029 
0.061 

Accuracy of metamodels 

SVR 
o- j?i Ri 

0.524 0.473 0.165 
0.073 0.095 0.026 
0.145 0.193 0.055 

(7 

1.724 
0.287 
0.586 

ANN 

^1 

0.959 
0.161 
0.342 

g2 

0.175 
0.028 
0.059 

After constructing the metamodels of the design objective and design 
constraint, the percentile-based robust optimization model is given as 

mm [o- ,Ao-o,oi J 
I max 

s.t. g ^ l ^0 / = I,2 
I max 

Compromise Programming method^ is used to solve this multi-objective 
model which allows the designer assign a weight factor w representing the 
relative importance of the two objectives. The optimal solutions under three 
different values of the weight factor are listed in Table 3. 

For comparison, we also solve the problem by using the traditional 
deterministic optimization model ignoring the uncertainty in control and 
noise factors. The optimal solution is given in Table 4. To compare the 
effectiveness of the different methods, the variation range of stress, 

AcToof 5 ̂ ^d ĥe probability of constraint satisfaction at the optimum 
I max 

point from the conventional deterministic model are also calculated. 
It can be noted from Table 3 and Table 4, the variation range of stress of 

the robust design solution is much less than that of the traditional 
deterministic optimization model, which means that the robust design 
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solution is less sensitive to the variations in design conditions or operating 
conditions. Meanwhile, as predicted, the conventional deterministic model 
generates a low probability for constraint satisfaction, while the robust 
design solution produces the satisfying constraint feasibility. 

Table 3. Robust design solutions of the diaphragm spring design 

w 

0.3 
0.5 
0.7 

R 
/mm 

113 
116 
121 

r 
/mm 

85 
90.1 
95.8 

H 
/mm 

4.29 
4.32 
4.38 

h 
/mm 

2.67 
2.70 
2.77 

L 
/mm 

110 
112 
119 

e 
/mm 

89.0 
92.4 
98.7 

/mm 

31 
30 
32 

S 
/mm 

10 
9 
9 

Imax 

/MPa /MPa 
1439 21.01 
1384 26.61 
1341 33.34 

Table 4. Optimal solution from the deterministic optimization method 

Probability of 
R r H h L e r^ S ^^ooT^^ constraint 

/mm /mm /mm /mm /mm /mm /mm /mm /MPa satisfaction 

123 100 4.19 2.66 121 103 30 11 61.21 0.58 0.791 

4. CONCLUSION 

When both the random factors and interval factors present in a product 
robust design problem, the product performance is also characterized with 
the mixture of randomness and interval. An integrated metamodeling method 
is combined with a percentile-based robust optimization model to solve this 
problem. The future work will target at how to improve the efficiency of 
solving the optimization model. 
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