
Reusable Parser Generation from Open Source 
Compilers 

Kazuaki Maeda 

Chubu University 
1200 Matsumoto, Kasugai, Aichi 487-8501, JAPAN 

kcLzQacm. org 

Many Open Source Software (called OSS) projects have been proposed and 
many software developers have contributed to develop software by OSS style. In 
the OSS development style, the source code is opened to the public and checked 
by the distributed software developers to improve the quality. The source code 
is, however, not effectively used to improve the productivity of other software 
development. This paper describes reusable parser generation from the source 
code of popular open source compilers. 

In construction of code analyzers or reverse engineering tools, the parser de­
velopment is a time-consuming task. To improve the productivity of the task, 
a renewal parser generator MJay was developed. MJay generates grammar def­
initions and some utility programs. It is useful to construct software tools to 
analyze source code. 

Based on my experiences to construct software tools to generate UML dia­
grams from source code, there are three approaches to develop the parser. 

1. To develop a parser from scratch by reading the programming language 
specification. 
It takes about one week to develop the parser from scratch to the best of 
my knowledge. There are some cases where it takes more than one week 
to develop it with high quality because the specification of recently pop­
ular programming languages is very complex. It is too long to catch up 
with the short-term development in the current situation as agile software 
development grows in popularity. 

2. To get grammar definitions from major web sites, or find them using web 
search engines. 
There are some web sites including collections of public grammar definitions [1]. 
The collections in the web sites are very useful, but many public grammars 
contain errors and they provide no sufficient guarantee that they are strictly 
correct. As a result of this, we must debug them to improve the quality by 
ourselves with spending much time. 

3. To extract source code of the parser from open source compilers. 
There are free open source compilers available with high quality. One of 
the famous compilers is GNU compiler collection[2], The other is Mono C # 
compiler which is an open source implementation of .NET development 
environment available on major operating systems (e.g. Linux, Mac OS X, 

Please use the following format when citing this chapter: 
Maeda, K., 2006, in IFIP International Federation for Information Processing, Volume 
203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., 
Succi, G., (Boston: Springer), pp. 343-344 



344 Kazuaki Maeda 

Solaris and Windows) [3]. These compilers, however, were developed with 
only consideration for generating object code from source code. It is difficult 
to extract only the parser to reuse for another purpose because it is tightly 
coupled with other modules in the compiler. 

This paper proposes the other approach, that is, to replace the parser gen­
erator with a renewal parser generator MJay. If we develop a parser for C # , we 
can reuse Mono C # compiler[3]. The parser in Mono C # compiler is developed 
using a parser generator Jay. After the replacement of Jay with MJay, MJay 
generates grammar definitions for a reusable parser in addition with a com­
monly used LALR parser. As a result of this, the parser in Mono C # compiler 
is opened and we can construct software tools quickly. 

The development process is the following; 

1. MJay reads the grammar definition G, and it generates the parser PI of 
the usual C # compiler written in C # , the grammar definition H and some 
utility programs for the reusable parser. 

2. PI and the related files are compiled, and the special Mono C # compiler 
is built. The compiler reads C # source code and generates parser behavior 
in addition with the object code. The parser behavior consists of primitive 
actions for a typical LALR parser, for instance, shift, reduce, et al. 

3. Jay reads the grammar definition H and generates the reusable parser P2 
written in C # . 

4. P2 and the related files are compiled by the usual Mono C # compiler, and 
a software tool is built. The reusable parser P2 reads the parser behavior 
and it takes the same sequence of actions as the parser PI does. 

In summary, this paper describes the motivation and the idea about reusable 
parser generation from the source code of popular open source compilers us­
ing the renewal parser generator MJay. It is based on my hard experiences of 
constructing reverse engineering tools, by oneself, which extract design infor­
mation and draw diagrams (e.g. class diagram, communication diagram, et al.) 
from source code. It took a few weeks to construct it according to traditional 
parser development. MJay was developed to help me build the parser as soon 
as possible. 

Now another reverse engineering tool for Visual Basic is under construction. 
It took just only two hours to develop the parser using MJay. I believe that MJay 
becomes an important tool to construct programming tools using open source 
compilers. 

References 

1. Grammar List, http://www.antlr.org/grammar/list 
2. Free Software Foundation, GCC Home Page, http://gcc.gnu.org/. 
3. Main Page - Mono, http://www.mono-project.com/Main-Page . 
4. jay Homepage, http://www.informatik.uni-osnabrueck.de/alumni/bernd/jay/ . 




