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Abstract. In this paper, we discuss the visuaHzation of multidimensional data. 
A well-known procedure for mapping data from a high-dimensional space 
onto a lower-dimensional one is Sammon's mapping. The algorithm is 
oriented to minimize the projection error. We investigate an unsupervised 
backpropagation algorithm to train a multilayer feed-forward neural network 
(SAMANN) to perform the Sammon's nonlinear projection. Sammon mapping 
has a disadvantage. It lacks generalization, which means that new points 
cannot be added to the obtained map without recalculating it. The SAMANN 
network offers the generalization ability of projecting new data, which is not 
present in the original Sammon's projection algorithm. Retraining of the 
network when the new data points appear has been analyzed in this paper. 

1 Introduction 

Feature extraction is the process of mapping the original features into fewer features, 
v^hich preserve the main information of the data structure. Feature extraction for 
exploratory data projection enables high-dimensional data visualization for better 
data structure understanding and for cluster analysis [4]. Furthermore, when the 
dimensionality of the projection space is two-dimensional the structure of the 
original dataset can be inspected visually and conclusions on clustering tendencies 
can be straightforwardly drawn. 

The problem of data projection is defined as follows: given a set of high 
dimensional data points, project them to a low-dimensional space so that the result 
configuration would perform better than the original data in further processing such 
as clustering, classification, indexing and searching [3, 5]. Data projection has 
important applications in pattern analysis, data mining, and neural science. The 
visual inspection of the data can provide a deeper insight into the data, since 
clustering tendencies or a low intrinsic dimensionality in the data may become 
apparent from the projection. In general, this projection problem can be formulated 
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as mapping a set of n vectors from an J-dimensional space onto an w-dimensional 
space, with m<d. 

A large number of approaches for data projection are available in pattern 
recognition literature [2, 3]. A well-known method to project data is Principal 
Component Analysis (PCA) which provides mean-square optimized linear projection 
of data. Another classic method is the Multi-Dimensional Scaling (MDS) that works 
with inter-point distances and gives a low-dimensional configuration that represents 
the given distances best. One of the popular MDS-type projection algorithms is 
Sammon's method [9]. It is a simple but useful nonlinear projection technique that 
attempts to create a two-dimensional configuration of points in which interpattern 
distances are preserved. Sammon's mapping is an iterative nonlinear procedure. 

The problem of finding the right configuration in a low-dimensional space is an 
optimization problem: we are interested in obtaining such a configuration that some 
stress function yields minimum. In general, this optimization problem is difficult 
because of the very high dimensionality of the parameter space. The stress function 
is optimal when all the original distances d.. are equal to the distances of the 
projected points d... However, this is not likely to happen exactly. 

The finding a projected map usually starts from the initial configuration of points 
(e.g. randomly chosen), and then the stress is calculated. Next, the configuration is 
improved by shifting around all points in small steps to approximate better and better 
the original distances (thus decreasing the stress). This process is reiterated, until the 
map corresponding to a (local) minimum of the stress is found. 

Mao and Jain [7] have suggested a neural network implementation of Sammon's 
mapping. A specific backpropagation-like learning rule has been developed to allow 
a normal feedforward artificial neural network to learn Sammon's mapping in an 
unsupervised way, called SAM ANN. As an alternative to SAMANN's unsupervised 
learning rule, one could also train a standard feedforward artificial neural network, 
using supervised backpropagation on a previously calculated Sammon's mapping. 
Although it requires much more computation, as it involves two learning phases (one 
for Sammon's mapping, one for the neural network), it should perform at least as 
well as SAMANN [8]. 

In Mao and Jain's implementation the network is able to project new patterns 
after training - a property Sammon's mapping does not have. A drawback of using 
SAMANN is that the original dataset has to be scaled for the artificial neural 
network to be able to find a correct mapping, since the neural network can only map 
to points in the sigmoid's output interval, (0,1). This scaling is dependent on the 
maximum distance in the original dataset. It is therefore possible that a new pattern, 
shown to the neural network, will be mapped incorrectly, when its distance to a 
pattern in the original dataset is larger than any of the original interpattern distances. 
Another drawback of using SAMANN is that it is rather difficult to train and it is 
extremely slow. 

In this paper, we proposed two strategies for retraining the neural network that 
realizes multidimensional data visualization. 
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2 A Neural Network for Sammon's Projection 

Sammon's nonlinear mapping is an iterative procedure to project high-dimensional 
data into low-dimensional configurations. Sammon used a steepest descent method 
(diagonal Newton method) for optimization. 

Suppose that we have n data points, Xj = (%,-x:/2---5^/j), / = ! , . . . , « , in a J-
space and, respectively, we define n points, Y^ = (y^^^ya-'-^yim)> ?' = 1?• • •,'^, in a w-
space {m<d). The pending problem is to visualize these (i-dimensional vectors 
Z^,/ = !,...,c/ onto the planei?^. Let d.. denote the distance between X. and 
X. in the input space, and d^. denote the distance between the corresponding points 
Y. andy. in the projected space. The Euclidean distance is fi-equently used. The 
projection error measure E is as follows: 

E is commonly referred to as Sammon's stress. It is a measure of how well the 
interpattem distances are preserved when the patterns are projected from a higher-
dimensional space to a lower-dimensional space. The stress equal to 0 indicates a 
lossless mapping. The steepest descent procedure may be used to search for a 
minimum of E. Sammon's stress is designed so that short distances contribute more 
to the value of E. In the process of minimizing E, therefore, the mapping gives a 
greeter priority to the preservation of short distances rather than the long ones. That 
is why the mapping is capable of unfolding high dimensional data manifolds. 
Though the algorithm also considers long distances, however, it may fail to unfold 
strongly twisted patterns. 

Sammon's algorithm involves a large amount of computations. Since, n{n-\)/2 
distances have to be computed for every step within an iteration, the algorithm soon 
becomes impractical for a large number of patterns. Sammon's algorithm does not 
provide an explicit function governing the relationship between patterns in the 
original space and in the configuration (projected) space. Therefore, it is impossible 
to decide where to place the new J-dimensional data in the final w-dimensional 
configuration created by Sammon's algorithm. Sammon's algorithm has no 
generalization capability. In order to project new data, one has to run the program 
again on pooled data (old data and new data) [4]. 

SAM ANN network for two-dimensional projection is given in Figure 1. It is a 
feedforward neural network where the number of input units is set to be the feature 
space dimension d, and the number of output units is specified as the extracted 
feature space dimension m. They have derived a weight updating rule for the 
multilayer perceptron neural network that minimizes Sammon's stress, based on the 
gradient descent method. The general updadng rule for all the hidden layers, 
/ = 1,..., L - 1 and for the output layer (/ = L ) is: 
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where cOjj^ is the weight between the unit j in the layer / - 1 and the unit k in the 
layer /, ri is the learning rate, y^"^ is the output of the yth unit in the layer /, and ju 
and V are two patterns. The Â ^̂  are the errors accumulated in each layer and 
backpropagated to a preceding layer, similarly to the standard backpropagation. The 
sigmoid activation function whose range is (0.0,1.0) is used for each unit. However, 
in the neural network implementation of Sammon's mapping the errors in the output 
layer are functions of the interpattem distances. In each learning step, the artificial 
neural network is shown by two points. The outputs of each neuron are stored for 
both points. The distance between the neural network output vectors can be 
calculated and an error measure can be defined in terms of this distance and the 
distance between the points in the input space. From this error measure a weight 
update rule can be derived. Since no output examples are necessary, this is an 
unsupervised algorithm. 

Hidden layers 
Input layer Output layer 

Fig. 1. SAM ANN network for two-dimensional projection 

The SAMANN Unsupervised Backpropagation Algorithm [7] is as follows: 
1. Initialize the weights randomly in the SAMANN network. 
2. Select a pair of patterns randomly, present them to the network one at a time, and 

evaluate the network in a feedforward fashion. 
3. Update the weights in the backpropagation fashion starting from the output layer. 
4. Repeat steps 2-3 a number of times. 
5. Present all the patterns and evaluate the outputs of the network; compute 

Sammon's stress; if the value of Sammon's stress is below a prespecified 
threshold or the number of iterations (from steps 2-5) exceeds the prespecified 
maximum number, then stop; otherwise, go to step 2. 

The rate, at which artificial neural networks learns, depends upon several 
controllable factors. Obviously, a slower rate means that a lot more time is spent in 
accomplishing the learning to produce an adequately trained system. At the faster 
learning rates, however, the network may not be able to make the fine 
discriminations possible with a system that learns more slowly. When the learning 
rate is very small, the weight adjustments tend to be very small. Thus, if rj is small 
when the algorithm is initialized, the network will probably take an unacceptably 
long time to converge. 
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3 Strategies for Retraining of the SAMANN Network 

After training the SAMANN network, a set of weights of the neural network are 
fixed. A new vector shown to the network is mapped into the plane very fast and 
quite exactly without any additional calculations. However, while working with large 
data amounts there may appear a lot of new vectors, which entails retraining of the 
SAMANN network after some time. That is why two strategies for retraining the 
neural network that realizes multidimensional data visualization have been proposed 
and then analysis made. Retraining of the network has to be efficient and the training 
algorithm has to converge rapidly. It has been established that training of the 
SAMANN neural network requires much calculations, therefore we strive to obtain 
new weights and a precise data projection as soon as possible. 

The strategies of the neural network retraining data are as follows: 
1. The SAMANN network is trained by Â ; initial vectors, a set of weights Q\ is 

obtained, then the visualization error E(Ni) is calculated and vector projections are 
localized on the plane. After the emergence of Â2 new vectors, the neural network 
is retrained with all the N1+N2 vectors, and after each iteration the visualization 
error E(Nj-^N2) is calculated and the computing time is measured. The new set of 
SAMANN network weights CD2 is found. 

2. The SAMANN network is trained by Nj initial vectors, a set of weights co^ is 
obtained, and the visualization error E(Nj) is calculated. Since in order to renew 
the weights co, a pair of vectors // and v is simultaneously provided for the 
neural network, the neural network is retrained with 2*N2 vectors at each 
iteration: at each step of training one vector is taken from the primary dataset and 
the other from the new one. After each iteration the visualization error E'fTVy+Ay 
is calculated and the computing time is measured. The new set of network weights 
6>2 is found. 

Two datasets have been used in the experiments: 
1. Iris Dataset (Fisher's iris dataset) [10]. A real dataset with 150 random samples of 

flowers from iris species setosa, versicolor, and virginica. From each species there 
are 50 observations of sepal length, sepal width, petal length, and petal width in 
cm. The iris flowers are described by 4 attributes. 

2. 300 randomly generated vectors X^ =(x,i,...,x^„)Gi^" (three spherical clusters 

with 100 vectors each, n=5): 

x^.G[0,0.2],/=l,...,100;7=l,...,5, l^iOA-Xyf <0.1 

jc^.G[0.4,0.6],/=101,...,200;7=1,...,5, 2 ] (0 .5 -x^ )^ <0.1 

x^.G [0.8,1],/=201,...,300;7=1,...,5, 1^(0.9-x^)^ <0.1 
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These two datasets were divided into two parts: the primary dataset and the set of 
new vectors. The first part is used for primary training of the SAM ANN network, 
while the new part together with the primary dataset - for retraining the network. 

In the analysis of strategies for the network retraining, a particular case of the 
SAMANN network was considered: a feedforward artificial neural network with one 
hidden layer and two outputs {d=2). In each case, the same number {n2=20) of 
neurons of the hidden layer was taken and the set of initial weights was fixed in 
advance. To visualize the initial dataset, the following parameters were employed: 
the number of iterations M= 10000, the training parameter ;; = 10; to visualize the set 
of new vectors: the training parameter was rj = \, and the number of iterations 
depended on the strategy chosen. One iteration in our research means showing all 
pairs of samples to the neural network once. 

In the Iris dataset, 50 vectors were used for retraining. In the randomly generated 
set, 90 vectors were used for retraining: 30 vectors for the different clusters. 

When calculating, the time of algorithm performance was measured. Figure 2 
and Figure 3 demonstrate the results of calculation. Only the results of retraining the 
SAMANN network with the new vectors are indicated in the figures. The first 
strategy 3aeld good results, however retraining of the network is slow. The best 
visualization results are obtained by taking points for network retraining from the 
primary dataset and the new dataset (second strategy). The second strategy enables 
us to attain good visualization results in a very short time as well as to get smaller 
visualization errors and to improve the accuracy of projection as compared to other 
strategies (Figure 3 illustrates this fact best in the experiment with the dataset of 
random numbers). The proposed second strategy makes it possible to reduce the 
duration of calculation a great deal in case there are considerably less new vectors 
than the initial ones. 

Figures 4a and 4b illustrate mapping results of the iris dataset in two different 
cases: (1) the network has been trained by 150 vectors (Figure 4a); (2) the network 
has been trained by 100 vectors and retrained using the second strategy (Figure 4b). 
The interlocation of points is similar in the figures. This indicates a good quality of 
the retraining. Very high similarity of Figures 4a and 4b leads to the idea of 
possibility to minimize the training time consumption via dividing the training 
process into two subprocesses: (1) training of the network by a part of the data 
vectors; (2) retraining of the network by the remaining part of the dataset. 

0,014 

Fig. 2. Dependence of the projection error on the computing time for the Iris dataset 
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Fig. 3. Dependence of the projection error on the computing time for randomly generated 
vectors 
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Fig. 4. Mapping results of the Iris dataset: a) training by 150 vectors; b) training by 100 
vectors and retraining by 50 vectors 

4 Conclusions 

Mapping problem usually is formulated as an optimization one. The experiments 
were carried out both on artificial and real data. Retraining of the SAMANN network 
when the new data points appear and the ability of network generalization to 
visualize new data have been analyzed. 

Two strategies for retraining the neural network that visualizes multidimensional 
data have been proposed and investigated. It is important that retraining of the neural 
network were efficient and the training algorithm were faster convergent, therefore 
effort was put to obtain a new set of weights in a shorter time. The experiments have 
shown that it is expedient to take one vector from the primary dataset and the other 
from the new one at every step of training. This strategy yields smaller visualization 
errors faster. 
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