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Abstract. This paper addresses the problem of automatic learning of scenar­
ios. A ubiquitous computing environment must have the ability to perceive its 
occupants and their activities in order to recognize a context and to provide 
appropriate services. A context (a scenario) can be modeled as a temporal se­
quence of situations. Hard coding contexts by hand is a complex task. Our 
goal is to learn these context models based on a set of videos showing actors 
playing predefined scenarios. Once these models are learned, we can use them 
to classify new scenarios. Hidden Markov Models (HMMs) are particularly 
well suited for problems with a strong temporal structure; they are easily 
adaptable to variability of input and robust to noise. But two problems need to 
be addressed: how many HMMs do we need for all possible scenarios and how 
many states for each HMM. We propose in this paper an approach based on an 
incremental algorithm addressing these two problems. Under the best condi­
tions we obtained the minimal error rate of 1.96% (2 errors in 102 validation 
entries). 

1 Introduction 

The goal of Ubiquitous computing is to build a computerized space serving hu­
man activities. This computerized space has to take into account the multiplicity of 
the platforms and to perceive the context for a better comprehension and anticipa­
tion of the user's needs. 

A context can be defined as a temporal sequence of situations [2]. A situation is 
a set of entities pla3dng roles. For example, a lecture scenario can be defined as a set 
of four situations: persons entering a room followed by an alternation of lecturer 
speaking and someone in the audience asking a question, followed by attendees 
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leaving the room. Specifying a context manually can be a difficult task. The goal 
here is to let the system automatically learn the context model from a training set of 
videos. 

The contexts we want to learn are: walking, browsing, fainting, leaving bags 
behind, meeting, walking together and splitting up, two people fighting. The videos 
are part of the CAVIAR project and can be found on the project web site ^ 

The Caviar project defines a hierarchy of perceptual components (see Fig. 1). It 
goes from low level images analysis to high level context interpretation. Each video 
is associated with an XML file describing for each frame the entities with their posi­
tion, movement, role and situation. Groups of entities are detected as well, and de­
scribed by the same elements (movement, role and situation). These files (called 
Ground Truth) have been created manually. They can be used to validate low level 
perceptual components or, in our case, to replace them as they were not available at 
the beginning of the project. 

Recognition of the 
context 

i V 

Recognitbn of Kioveinents, 
roles and situation? 

t 
Detection and tracking of 

persons and groups 

Fig. 1. Hierarchy of components for the perception of context 

2 Related Work 

The problem of recognizing human activities from videos using machine learn­
ing techniques is widely addressed. We can distinguish probabilistic approaches 
from deterministic ones. Most of the existing works in the probabilistic area use 
Hidden Markov Models (HMMs) because of their adequacy for temporally corre­
lated sequential data. The study undertaken by [7] relates to the modeling of interac­
tions for the automatic analysis of multimodal group actions in meetings. They first 
deal with individual actions and then model the interactions by HMMs. Group ac­
tions in meeting were as well studied by [14] who proposed a two layer HMM 
framework. A lot of work has been done to detect usual and unusual activities [1], 
[4], [5], [6], [13], [15]. Other probabilistic methods have been undertaken: [12] 
models sequential activities by Propagation Networks which can take into account 
parallel activities. An alternative to HMM methods are Context-free Grammars used 
W [3], [8], [9]. There is no learning in this case and the model is predefined. 

^ European CAVIAR project/IST 2001 37540: http://homepages.inf ed.ac.uk/rbf^CAVIAR/ 
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All these methods, as they are presented, are not quite appropriate for our prob­
lem because we do not deal directly with videos but we have higher level informa­
tion like the movement or the role of entities at every frame. For instance, we know 
that at a particular frame, a person is ''walking'' (her movement) and is a ''fighter'' 
(her r o l e ) . 

However, our activities have a temporal structure and we need the model to in­
tegrate variability of input. We also need robustness to noise because of the percep­
tion algorithms providing our input. These constraints point us to probabilistic 
methods, and precisely to HMMs. 

When using HMMs, well-defined training algorithms, such as Baum-Welch 
[10], do exist, however the number of states of each HMM must be given "by hand". 
Some work has been done to optimize the number of states of each HMM in a clas­
sification system: [16] propose for instance to set the length of the model to a frac­
tion of the average number of observations of the sequences used to learn the HMM. 
This fraction is chosen by measuring the recognition rate with different values. A 
classical model selection criterion is the Bayesian Information Criterion [11] (BIQ, 
which maximizes the likelihood of the data while penalizing large-size models. Our 
method as well tries different numbers of states of each HMM. However our method 
is exhaustive: we keep several HMMs with different numbers of states (see section 
3.3.1). 

3 An Incremental Algorithm to Learn Models of Scenarios 

3.1. An Approach to Learn Models of Human Activity 

Our training set is composed of videos where main actors are playing a predefined 
scenario. However, secondary actors may be present and play a different scenario. 
Thus we separate different individuals for each video and label their activity. 

To learn the context models, we first classically split the video set into two sepa­
rate sets: the training and the validation set. To learn the training set, we have con­
sidered two approaches: a supervised one and an unsupervised one. In the first case, 
we identify five different scenarios and we assign a number of individuals to each 
scenario. A model is then learned for each scenario in order to represent the as­
signed individuals. This manual method was tested but, as it will be clear in section 
4, results obtained are not as good as with the unsupervised method. Thus, only this 
last method will be detailed in the following. 

In the second case, we use an automatic and incremental algorithm (see section 
3.3 below) to learn the necessary number of models. We consider each person and 
compute a "score" of the person's activity on each existing model and compare it to 
a fixed threshold in order to see if we already have a model that describes this activ­
ity. If so, we re-learn that model including this activity. Else, we create a new model 
learned with the person's activity. 
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3.2. Feature Extraction from the Ground Truth 

The input of an HMM is a sequence of observations. These observations are triplets 
per frame and entity. They are given by the Ground Truth (see Fig. 2). For practical 
reasons, we transform these triplets into numbers with no information loss ̂ . 

<movement evaluat,i,on="l. 0">walking</movement> 

<role evaluation="l.0">walker</role> 

<situation eva].uat.i.on="l. 0">moving</situatiori> 

Fig. 2. A quote from the XML description of a video. 

Table 1. Numbering of all existing values of movements, roles and situations 

- "movement": 4 different - "role": 7 different - "situation": 4 different 
values values values 

walking 

inactive 

active 

running 

1 

2 

3 

4 

walker 

browser 

none 

fighter 

leaving group 

leaving 

victim 

leaving object 

1 

2 

3 

4 

5 

6 

7 

moving 

browsing 

inactive 

none 

1 

2 

3 

4 

Each symbol is first transformed into a number (Table 1). By enumeration, the 
3-vector is then transformed into a unique number: the HMM observation. For in­
stance the triplet [ w a l k i n g , b r o w s e r , moving] becomes [ 1 , 2 , 1] and 
then it becomes the code 5. 

3.2.1. Normalizing the Sequences 
An observation sequence is the series of observation codes of one entity through all 
video frames. These sequences are the inputs of our system. 

The "score" of a sequence for an HMM is computed using the Viterbi algorithm. 
This "score" corresponds to the probability for a sequence to be generated by this 
HMM. The order of magnitude of this probability varies with the length of the se­
quence. If we add an observation to a sequence (for instance, an entity walking dur­
ing 20 frames instead of 19), the context might not change, however probabilities on 
the various HMMs will. 

As explained in section 3.3, we need to compare the absolute value (the "score") 
of different sequences on a same HMM. To be able to make this comparison, we 
must normalize the length of all the sequences. We have chosen a size of 100 obser­
vations, which seemed reasonable and much less than the original size of se-

In particular, it is easier with the Java HMM library we are using, called Jahmnr. 
http://www.mn.montefiore.ulg.ac.be/~francois/software/jahnim/ 
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quences^ Here is an example on a schematic sequence of the activity "browsing", 
which consists of alternating the punctual actions "walking" and "browsing" (the 
punctual action "browsing" means consulting an information desk): 
168 X "walking 

" 
^ 

33X "walking" 

_!_ 

+ 

174 X "brows­
ing" 

^ 

34X "browsing" 

-j-

+ 

168 X "walk­
ing" 

^ 

33 X "walking" = 

510 observa­
tions 

^ 
100 observa­

tions 
We change the scale of the sequence without changing its aspect and the propor­

tions of the different observations. 

3.3. Automatic Choice of the Models to Learn 

Persons with the same activity can produce very different observation series. Having 
just one HMM for each scenario means that this single HMM must be able to learn 
all those differ-ent observation series. At the same time, there are videos where the 
activity of a person is not very clear (for instance, someone coming near an informa­
tion desk and slowing down in front of it: is it a browsing or just a walking by sce­
nario?). 

To overcome those problems, we have decided to let the system auto-organize 
the number of HMMs that are needed and how the videos will be grouped in terms 
of activities. 

The incremental algorithm is described by Fig. 3 and is composed of the follow­
ing steps: 
1) Initialization: We create an initial HMM learned on one sequence randomly 

chosen. This first model is the starting point of the following loop. 
2) Loop on the sequences of the learning set: We consider every sequence from 

the learning set at a time and apply the following steps: 
a) We evaluate the current sequence on each existing HMM using the Viterbi 

algorithm. We choose the HMM with the highest probability to have gener­
ated the sequence. 

b) If this maximal probability of "generation" is greater than a threshold" ,̂ we 
assign the current sequence to the chosen HMM and we learn it again on the 
sequences it already had, plus the newly added sequence. 

c) If this maximal probability is less than the threshold, this means that there is 
no HMM that describes well enough the activity of the current sequence. 
This sequence represents a new scenario. We create a new HMM and learn 
it with the current sequence only. This new HMM is then integrated into the 
learning loop on the same basis as the other HMMs. 

This algorithm lets the machine decide which and how many models to create. 
In the section 4.1 we will compare this method with the manual one. 

^ The average length of sequences is near 500. Sequences are that long because of numerous 
repetitions of attributes (movements or roles of entities do not change very often, they are 
stable). 

"̂  This threshold is set by hand, but we tested the influence of this choice in section Error! 
Reference source not found.. 
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Learning loop 

Initialization 

( W v T ^ 

Sequence 
assigned to 
tiieHNM 

Recognition 
(Viterbi) 

probability < threshold 

se% 

probability > threshoid 

/Li}\ 
seq/ seq^ seqj seq,. 

/ = / + ! 

Fig. 3. Schema of the learning algorithm 

3.3.1. Automatic Choice of the Number of States 
One limitation of the HMMs is that we have to choose the number of states for each 
model. To avoid under fitting or over-fitting problems if the number of states is too 
low or too high, we learn several HMMs with different numbers of states for the 
same scenario. This method lets the machine decide and spares us a decision we 
might not be able to make correctly. We call this set of HMMs learned on the same 
sequences but with different numbers of states, a class. 

In our experiments a class is composed of HMMs whose number of states varies 
between 1 and 8. We can count the number of sequences choosing each particular 
HMM and notice that some of them are never chosen and some are chosen more 
frequently then others. We could a posteriori decide to delete the unused HMMs and 
even to keep only the most popular one of each class. This would be similar to [16] 
where the authors choose the number of states of each HMM in order to maximize 
the global recognition rate. In our case there is no limitation in us-ing the exhaustive 
method. 

3.3.2. Cross-Validation 
In order to evaluate the quality of our models, we use cross-validation. We sepa­

rate randomly our 147 sequences into two subsets: 
- A training set composed of 30% of the sequences and used only to learn the 

models; 
- A validation set composed of 70% of the sequences and used only to validate the 

models. 
Because this partition has a huge influence on the resulting models, we repeat 

the whole process n times with a different random partition of the Ground Truth 
sequences each time. 
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3.3.3. Smoothing the Emission Probabilities 
An HMM is defined with a vector of emission probabilities of every symbol of 

its vocabulary in each state. In our case the vocabulary is composed of all possible 
codes (see section 3.2), that is to say M = ||F|| = 112 symbols, and 

F = {l, 2, 3, " •, 111,112}. So the emission vector in each state has 112 compo­
nents, but in practice only a few of them are not zero. If the emission probability for 
a symbol, say the code 5, is zero in all states, a sequence which contains the code 5 
will have a zero probability with that HMM. This makes the system very sensitive to 
noise and we need to avoid that. 

We will apply the same principle as in "Laplace Smoothing": what was never 
seen is not impossible. We reduce the non-zero values to 90% and we equally dis­
tribute the collected 
value on the zeros. For 
instance with a vocabu­
lary of M = 7 symbols 
we would perform the transformation opposite. 

With this modification, a noisy sequence will still have a chance to be correctly 
classified. This also means that we will never have the probability 0, but the order of 
the probabilities for one sequence on all the HMMs will not change because of this 
smoothing. 

3.3.4. Adding Information about Groups of Persons 
The Ground Truth contains labels about groups of persons at each frame. These 

groups are labeled like the objects, with movement, role and situation attributes. We 
also have the infor-mation about who are the group members. We tested two meth­
ods taking this into account. 

The first method consists in adding a boolean attribute of membership to each 
object at each frame. The codes are now based on the vector of attributes [move­
ment, role, situa-tion, group], for instance [walking, browser, moving, 0]. 

But the Ground Truth contains hand made labels . A real tracker will not always 
be able to distinguish persons who are too close, within a group. When the tracker 
gets confused between persons, it will assign the attributes of the group to each 
member. We also made this substitu-tion in order to test this case and compare the 
results with the first method (see section 4.1). 

3.3.5. Consequence of the Incremental Algorithm: the Labeling of the Models 

Using the learned models for classification 
Once the models learned, to classify a new entry the system will compare it to 

every model. Each model will compute a "score" as response to the entry. The out­
put of the classification is the model or the class which had the best score and which 
correspond the best to the entry. 

Evaluation of the classification output 
To evaluate the results of our method we need a quality criterion: the percentage 

of misclassified validation sequences. Our output is a class of HMMs. To know if 
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the activity represented by this class corresponds to the activity of the sequence, we 
need a label for the sequence and one for the class. We already have labels of se­
quences, but how to label a class which was automatically created? 

We get the label, which represents the scenario or activity modeled by the class, 
by looking at the labels of the sequences used to learn its HMMs. These labels are 
composed of key words like "walking", "waiting" or "fighting". A label can contain 
several key words when the activity is not clear or if there are two activities in the 
sequence. We count the number of times each key word appears in the labels and we 
keep the most frequent ones. So the labels of classes are also composed of several 
key words, which imply that the created classes may overlap. 

Fig. 4. A frame from the testing scenarios 

4. Tests and Results 

To realize the following tests we used the validation set described in section 3.3.2. 
Fig. 4 shows a frame from the CAVIAR scenarios used in this work where a person 
is reading an information desk. His role is therefore "browser". 

4.1 Evaluation of the Incremental Algorithm and of the Additional Group In­

formation 

We tested 6 combinations of possibilities to compare the reference method 
where we define 5 classes by hand, and the incremental algorithm where classes are 
automatically created. In both cases we tested the two methods described in section 
3.3.4 taking into account the information about groups of persons. 

The results in Table 3 show that the automatic method where the machine organ­
izes itself produces better results than when we choose the scenarios to learn by 
hand. Besides, the infor-mation about groups of individuals seems not to improve 
the results. 
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We can notice that the standard deviation of the results on different random par­
titions is quite high. For instance in the test number 5, executed on 20 random parti­
tions, the average er-ror percentage is 10.44%, and the standard deviation is 5.40% 
(over 102 validation sequences). This is explained by the dependence of our method 
on the ordering of the training data. 

Table 2. The tests executed on 20 random partitions (for tests 4, 5 and 6). 

; Test number 

1 

2 

3 

4 

5 

6 

; Methodtocreate'thb. vV-
': - ":;"̂ ' classes.:. • r / ' 

Supervised 

X 

X 

X 

Unsuper­

vised 

X 

X 

X 

>• • , r.'- \ '-y Groups-ofinciividuais- '•/ ->„.-;; ,'"- , 

Ignored 

X 

X 

Boolean attr. 

X 

X 

Replace by group attrs. 

X 

X 

Table 3. The results obtained on different tests 

Type of result 

Minimal PE on validation sequences 

Minimal PE on learning sequences 

Average PE on validation sequences 

Average PE on learning sequences 

SD^of errors on validation sequences 

SD of errors on learning sequences 

Testl 

11,65%^ 

0,00% 

11,65% 

0,00% 

11,65% 

0,00% 

Test 2 

13,40% 

0,00% 

13,40% 

0,00% 

13,40% 

0,00% 

Tests 
12,12% 

0,00% 

12,12% 

0,00% 

12,12% 

0,00% 

Test 4 

1,96% 

0,00% 

8,77% 

3,89%, 

4,50% 

3,29% 

Test 5 

1,96% 

0,00% 

10,44% 

4,11% 

5,40% 

2,63% 

Test 6 

1,96% 

0,00% 

10,44% 

4,00% 

4,10% 

2,94% 

4.2. Robustness to Noise 

The labels of the Ground Truth are made by hand; therefore they do not contain 
noise. But in the real application of the system, the sensors and perception algo­
rithms below our context recognition tool (Fig. 1) will add noise to the data. For the 
moment, we do not have the possibility to test our approach on real data, thus we 
measured the robustness to noise by adding simulated random noise ̂ . 

The results on Fig. 5 below show that when the models are learned on clean 
data, the system can recognize validation sequences with noise. But when the learn­
ing set contains more than 30% of noise, the system cannot recognize clean data. 
When the percentage of noise is over 30%, the sequences do not have a consistent 

' percentage of errors 
' Tests 1, 2 and 3 have been executed only once, thus the minimal and average percentages, as 

well as the standard deviation, have no meaning here. They only do for tests 4, 5 and 6, 
executed on 20 random partitions of the data set. 

Standard deviation 
^ Random noise is not the same as problems that are to face with real low level features, but it 

gives us an estimation of our method's robustness. 
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structure anymore and the HMMs memorize sequence more than learn a generalized 
model. In fact, the number of classes increases extensively (Fig. 6). However, the 
system is robust up to 30% of noise. 

Table 4. The tests executed to measure the robustness to noise 

Validation , Clean 
Noisy 

Learning , , | 
Clean 
Test CC 
Test CN 

Noisy 
TestNC 
Test NN 1 

~Test CN -«iif~-.Tesf NC -
40% 50% 

"•TestNNl % of noise 

• • • • > 

20% 30% 40S 

Fig. 1. The number of errors on vahdation se- Fig. 2. The number of classes created with 
quences with 10% to 50% of noise. 10% to 50% of noise. 

4.3. Tuning the Threshold 

Tuning the threshold is a way to influence the number of created classes. When 
the threshold grows, the number of classes grows (Fig. 8). These classes are more 
specialized and bring out sHght differences between scenarios. When the threshold 
decreases, the added classes are scarcer and each class is more general and explains 
different sequences. We measured the variations of the number of errors and the 
number of classes with the variation of the threshold. The results below (Fig. 7 and 
Fig. 8) admit to choose the value of the threshold depending on error rate and num­
ber of classes. 

2 
10 30 50 70 

- T e s t s 

-Test 2 

110 130 150 170 190 

Threshold (lO") 

fe 
"-•s 

-Tes t 5 
-Tes t 2 

• 130 150 170 190 

Threshold ( lO") 

Fig. 3. The number of errors on validation Fig. 4. The number of classes created when 
sequences when the threshold varies. the threshold varies. 
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5. Conclusions and Future Work 

We proposed a method capable to automatically acquire the needed number of 
models representing scenarios of a given training set. The strong point of our 
method is its degree of automatism. Not only the number of HMMs and the se­
quences attributed to them are determined automatically. The number of states of 
each HMM does not need to be specified by hand either. It is easy to add more data 
and to learn new scenarios. 

This approach can be categorized as a semi-supervised method. Model creation 
is completely automatic, the only parameter being a threshold controlling the num­
ber of models to create. However, labeling of sequences, that is to say the attribution 
of a scenario to each individual from a video, is supervised as it is done by a human 
operator. This step consists in attaching symbols, semantics, to numeric data. In 
order to avoid that, we could add an "interactive feedback". 

In the end we obtained a complete and automatic method, comprising all the 
necessary steps, from XML conversion into observations to recognition and classifi­
cation of sequences, while passing by automatic learning of HMMs. Under the best 
conditions, our tests resulted in 2 errors on 102 validation sequences, that is to say 
an error rate of 1.96%. 
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