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Abstract. Given ordered classes, one is not only concerned to maximize the 
classification accuracy, but also to minimize the distances between the actual 
and the predicted classes. This paper offers an organized study on the various 
methodologies that have tried to handle this problem and presents an 
experimental study of these methodologies with the proposed local ordinal 
technique, which locally converts the original ordinal class problem into a set 
of binary class problems that encode the ordering of the original classes. The 
paper concludes that the proposed technique can be a more robust solution to 
the problem because it minimizes the distances between the actual and the 
predicted classes as well as improves the classification accuracy. 

1 Introduction 

Ordinal classification can be viewed as a bridging problem between the two standard 
machine-learning tasks of classification and regression. In ordinal classification, the 
target values are in a finite set (like in classification) but there is an ordering among 
the elements (like in regression, but unlike classification). 

Although Machine Learning (ML) algorithms for ordinal classification are rare, 
there are a number of statistical approaches to this problem. However, they all rely 
on specific distributional assumptions for modeling the class variable and also 
assume a stochastic ordering of the input space [9]. The ML community has mainly 
addressed the issue of ordinal classification in two ways. One is to apply 
classification algorithms by discarding the ordering information in the class attribute 
[2]. The other is to apply regression algorithms by transforming class values to real 
numbers [9]. This paper proposes a local ordinal technique that locally converts the 
original ordinal problem into a set of binary problems encoding the ordering of the 
original classes. Experimental results show that this technique minimizes the 
distances between the actual and the predicted class, as well as improves the 
prediction accuracy. 
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This paper is organized as follows: the next section discusses the different 
techniques that have been presented for handling ordinal classification problems. In 
section 3, we describe the proposed technique. In Section 4, we present the 
experimental results of our methodology using different distribution algorithms and 
compare these results with those of other approaches. In the fmal section of the paper 
we discuss further work and some conclusions. 

2 Techniques for Dealing with Ordinal Problems 

Classification algorithms can be applied to ordinal prediction problems by discarding 
the ordering information in the class attribute. However, some information that could 
improve the performance of a classifier is lost when this is done. 

The use of regression algorithms to solve ordinal problems has been examined in 
[9]. In this case each class needs to be mapped to a numeric value. However, if the 
class attribute represents a truly ordinal quantity, which, by definition, cannot be 
represented as a number in a meaningful way, there is no upright way of devising an 
appropriate mapping and this procedure is ad hoc. 

Another approach is to reduce the multi-class ordinal problem to a set of binary 
problems using the one-against-all approach [2]. In the one-against-all approach, a 
classifier is trained for each of the classes using as positive examples the training 
examples that belong to that class, and as negatives all the other training examples. 
The estimates given by each binary classifier are then coupled in order to obtain 
class probability membership estimates for the multi-class problem [2]. 

A more sophisticated approach that enables classification algorithms to make use 
of ordering information in ordinal class attributes is presented in [7]. Similarly with 
previous method, this method converts the original ordinal class problem into a set of 
binary class problems that encode the ordering of the original classes. However, to 
predict the class value of an unseen instance this algorithm needs to estimate the 
probabilities of the m original ordinal classes using m - 1 models. For example, for a 
three class ordinal problem, estimation of the probability for the first ordinal class 
value depends on a single classifier: ?r{Target < first value) as well as for the last 
ordinal class: Vx{Target > second value). Whereas, for class value in the middle of 
the range, the probability depends on a pair of classifiers and is given by 

Vx(Target > first value) * (1 - ?v{Target > second value)). 

3 Proposed Technique 

The proposed technique is based on the previous referred sophisticated technique 
[7]; however, we do not apply this technique globally but locally. If all training 
instances are taken into account when classifying a new test case, the classifier 
works as a global method, while when the nearest training instances are taken into 
account, the classifier works as a local method, since only data local to the area 
around the testing instance contribute to the classification. 
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Generally, local methods have significant advantages when the probability 
measure defined on the space of symbolic features for each class is very complex, 
but can still be described by a collection of less complex local approximations [1]. 
The proposed algorithm builds the required number of classifiers for each point to be 
estimated, taking into account only a subset of the training points. This subset is 
chosen on the basis of the preferable distance metric between the testing point and 
the training point in the input space. 

In other words, the proposed technique consists of the four steps in Fig. 1. 

1. Determine a suitable distance metric. 
2. Find the k nearest neighbors using the selected distance metric. 
3. Estimate the probabilities of the m original ordinal classes with m - 1 models using as 

training instances these k instances 
4. The estimates given by each binary classifier are then coupled in order to obtain class 

probability membership estimates ^ _ _ 
Fig. 1. Local Ordinal Technique 

The proposed ensemble has some free parameters such as the distance metric. In 
our experiments, we used the most well known -Euclidean similarity function- as 
distance metric. We also used k=50 since about this size of instances is appropriate 
for a simple algorithm to built a precise model [6]. 
A key feature of our method is that it does not require any modification of the 
underlying learning algorithm; it is applicable as long as the classifier produces class 
probability estimates. In the following section, we empirically evaluate the 
performance of our approach with the other well known techniques. 

4 Experiments 

To test the hypothesis that the above method improves the generalization 
performance on ordinal prediction problems, we performed experiments on real-
world ordinal datasets donated by Dr. Arie Ben David 
(http://www.cs.waikato.ac.nz/ml/weka/). We also used well-known datasets from 
many domains from the UCI repository [3]. However, the used UCI datasets 
represented numeric prediction problems and for this reason we converted the 
numeric target values into ordinal quantities using equal-size binning. This 
unsupervised discretization method divides the range of observed values into three 
equal size intervals. The resulting class values are ordered, representing variable-size 
intervals of the original numeric quantity. This method was chosen because of the 
lack of numerous benchmark datasets involving ordinal class values. 

All accuracy estimates were obtained by averaging the results from 10 separate 
runs of stratified 10-fold cross-vaHdation. It must be mentioned that we used the free 
available source code for most algorithms by the book [11]. In the following we 
present the empirical results obtained using Decision Stump (DS) [8], RepTree [11] 
and Naive Bayes (NB) [5] algorithms as base learners. All of them produce class 
probability estimates. 
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Table 1 shows the results for the DS algorithm applied (a) without any 
modification of DS, (b) in conjunction with the ordinal classification method 
presented in Section 2 (Ordinal DS), (c) in conjunction with the multiclass 
classification method presented in Section 2 (Multiclass DS) and (d) using the 
proposed technique (Local Ordinal DS). 

In Table 1, for each data set the algorithms are compared according to 
classification accuracy (the rate of correct predictions) and to mean absolute error: 

| A - ^ I | + | ; ^ 2 - ^ 2 | + - + K - ^ . | 
n 

where p: predicted values and a: actual values. Moreover, in Table 1, we represent as 
"v" that the specific algorithm performed statistically better than the proposed 
method according to t-test with p<0.05. Throughout, we speak of two results for a 
dataset as being "significant different" if the difference is statistical significant at the 
5% level according to the corrected resampled t-test [10], with each pair of data 
points consisting of the estimates obtained in one of the 100 folds for the two 
learning methods being compared. On the other hand, "*" indicates that proposed 
method performed statistically better than the specific algorithm according to t-test 
withp<0.05. 

As one can observe from the aggregated results in Table 1, the proposed 
technique is more accurate than the remaining approaches from 2% to 5%. 
Moreover, it manages to minimize the distances between the actual and the predicted 
classes. The reduction of the mean absolute error is about 27% compared to the 
Ordinal DS and 30% compared to the simple DS, while it exceeds the 138% 
compared to the Multiclass DS. It must be also mentioned that the proposed method 
is statistically more accurate and has statistically less mean absolute error than the 
remaining methods in numerous datasets. 

Similarly, Table 2 shows the results for the NB algorithm applied (a) without any 
modification of NB, (b) in conjunction with the ordinal classification method 
presented in Section 2 (Ordinal NB), (c) in conjunction with the multiclass 
classification method presented in Section 2 (Multiclass NB) and (d) using the 
proposed technique (Local Ordinal NB). 

As one can see from the aggregated results in Table 2, the proposed technique is 
more accurate in classification accuracy than the remaining techniques from 2% to 
5%. Furthermore, it minimizes the distances between the actual and the predicted 
classes. In detail, the reduction of the mean absolute error is about 25% compared to 
the Ordinal NB and 17% compared to simple NB, while it overcomes the 158% 
compared to Multiclass NB. It must be also stated that the proposed method is 
statistically more accurate and has statistically less mean absolute error than the 
remaining methods in a lot of datasets. 

Similarly, Table 3 shows the results for the RepTree algorithm applied (a) 
without any modification of RepTree, (b) in conjunction with the ordinal 
classification method presented in Section 2 (Ordinal RepTree), (c) in conjunction 
with the multiclass classification method presented in Section 2 (Multiclass 
RepTree) and (d) using the proposed technique (Local Ordinal RepTree). 
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As one can notice from the aggregated results in Table 3, the proposed technique 
is more accurate in classification accuracy than the remaining techniques from 1% to 
2%. What is more, it minimizes the distances between the actual and the predicted 
classes since the reduction of the mean absolute error is about 15% compared to the 
Ordinal RepTree and simple RepTree, while it overcomes the 138% compared to 
Multiclass RepTree. The proposed method is also statistically more accurate and has 
statistically less mean absolute error than the remaining methods in many datasets. 

Table 1. Results for DS algorithm 

Dataset 

auto93 

autoHorse 

autoMpg 

autoPrice 

bodyfat 

Cleveland 

Cloud 

Cpu 

Era 

Esl 

fishcatch 

housing 

hungarian 

Lev 

lowbwt 

pharj^x 

servo 

Strike 

swd 

accuracy 
MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 

Local 
Ordinal DS 

80.90 
0.14 

95.24 
0.04 

79.67 
0.14 

88.11 
0.09 

97.57 
0.02 

70.32 
0.21 

84.69 
0.11 

98.09 
0.01 

25.69 
0.18 

65.53 
0,09 

97.35 
0.03 

79.58 
0.15 

79.06 
0.15 

61.79 
0.20 

57.25 
0.30 

68.98 
0.25 

89.72 
0.09 

98.85 
0.01 

56.11 
0.26 

Multiclass 
DS 

80.57 
0.34* 
91.17 
0.30* 
79.76 
0.35* 
89.80 
0.31* 
99.12 
0.29* 
71.63 
0.37* 
87.72 
0.32* 
97.76 
0.28* 

22.08* 
0.20* 

44.48* 
0.20* 

92.37* 
0.30* 
74.81 
0.36* 
81.78 
0.34* 

43.86* 
0.31* 
61.80 
0.39* 
73.85 
0.37* 

83.36* 
0.31* 
99.06 
0.27* 

51.38* 
0.36* 

Ordinal 
DS 

79.59 
0.18 

89.63* 
0.09* 
78.01 
0.20* 
89.80 
0.10 

99.12 
0.01 

71.14 
0.26* 
83.43 
0.13 

97.76 
0.02 

24.13 
0.18* 

53.72* 
0.13* 

92.37* 
0.07* 
75.77 
0.23* 
81.78 
0.20* 

49.03* 
0.25* 
61.90 
0.31 

73.85 
0.25 

83.24* 
0.13* 
99.06 
0.01 

54.56 
0.29* 

DS 

81.32 
0.18 

91.17 
0.09* 
79.61 
0.21* 
86.05 
0.13* 

91.98* 
0.10* 
71.93 
0.26* 
84.51 
0.14* 
98.24 
0.02 

21.81* 
0.19* 

43.03* j 
0.16* 
90.56* 
0.10* 

70.39* 
0.28* 
81.78 
0.20* 

42.40* 
0.26* 
61.90 
0.31 

73.85 
0.25 

83.36* 
0.12* 
99.06 
0.01 

51.80* 
0.30* 
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Veteran 

AVERAGE 

accuracy 
MeanError 
accuracy 

MeanError 

90.45 
0.10 

78.25 
0.13 

91.26 
0.31* 
75.88 
0.31 

90.80 
0.11 

76.43 
0.16 

91.26 
0.11 

74.80 
0.17 

Fable 2. Results forNB algorith 

Dataset 

auto93 

autoHorse 

autoMpg 

autoPrice 

bodyfat 

Cleveland 

Coud 

Cpu 

Era 

Esl 

fishcatch 

housing 

hungarian 

Lev 

lowbwt 

pharynx 

servo 

Strike 

swd 

Veteran 

AVERAGE 

accuracy 
MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 

m 
Local Ordinal 

NB 
84.36 
0.10 

95.14 
0.03 
82.56 
0.12 

90.31 
0.07 
88.96 
0.08 

72.45 
0.19 

90.30 
0.07 

97.81 
0.01 

23.25 
0.18 

67.37 
0.09 
97.42 
0.02 
81.44 
0.13 
81.17 
0.13 
59.95 
0.20 

60.10 
0.29 

70.17 
0.24 
87.59 
0.10 

99.19 
0.01 
50.17 
0.27 
89.31 
0.09 

78.45 
0.12 

Multiclass 
NB 

76.28 
0.33* 
91.06 
0.29* 
80.65 
0.32* 
91.51 
0.30* 

79.64* 
0.32* 
74.82 
0.34* 
91.70 
0.30* 
97.56 
0.28* 
24.73 
0.20* 
66.84 
0.19* 
89.92* 
0.30* 

74.76* 
0.34* 
83.95 
0.31* 

56.24* 
0.31* 
58.79 
0.39* 
71.09 
0.36* 
87.24 
0.31* 
99.06 
0.27* 

57.31V 
0.35* 
88.48 
0.32* 
77.08 
0.31 

Ordinal 
NB 

74.01 
0.17* 
90.87 
0.06* 

70.11* 
0.20* 
91.45 
0.06 

77.22* 
0.16* 
75.51 
0.18 
92.04 
0.07 
94.87 
0.04* 
25.07 
0.18 

54.65* 
0.12* 
88.13* 
0.08* 

56.15* 
0.29* 
83.95 
0.12v 
57.95 
0.23* 
58.52 
0.30 

71.13 
0.25 
86.48 
0.12* 
99.06 
0.02* 

56.01V 
0.26v 
88.70 
0.12* 
74.59 
0.15 

NB 

76.18 
0.16 

90.67* 
0.06* 
78.89 
0.15* 
90.25 
0.07 

81.34* 
0.13* 
73.31 
0.19 
89.95 
0.08 
97.56 
0.02 
24.88 
0.18 
67.52 
0.10* i 
90.10* 
0.07* 

73.14* 
0.19* 
83.95 
0.12v 
56.12* 
0.23* 
59.53 
0.30 
70.52 
0.25* 
87.12 
0.12* 
99.05 
0.02* 

56.77V 
0.26v 
86.88 
0.13* 
76.69 
0.14 1 
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Table 3. Results for RepTree algorithm 

Dataset 

auto93 

autoHorse 

autoMpg 

autoPrice 

bodyfat 

Cleveland 

Cloud 

Cpu 

Era 

Esl 

fishcatch 

housing 

hungarian 

Lev 

lowbwt 

pharynx 

servo 

Strike 

swd 

Veteran 

AVERAGE 

accuracy 
MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 
accuracy 

MeanError 

Local 
Ordinal 
RepTree 

82.41 
0.14 

94.45 
0.05 

81.68 
0.14 
88.86 
0.09 
96.78 
0.03 

71.08 
0.21 

86.32 
0.12 

98.04 
0.01 

25.68 
0.18 

66.08 
0.10 

96.71 
0.03 

80.43 
0.16 

78.62 
0.17 

63.16 
0.20 

56.87 
0.32 

69.79 
0.28 

93.31 
0.06 

98.97 
0.01 

56.99 
0.27 

89.20 
0.11 

78.77 
0.13 

Multiclass 
RepTree 

79.73 
0.35* 
92.34 
0.29* 
81.34 
0.34* 
87.99 
0.31* 
98.88 
0.27* 
71.73 
0.36* 
88.54 
0.31* 
97.00 
0.28* 
19.24* 
0.20* 

60.59* 
0.19* 
94.88 
0.28* 
79.51 
0.34* 
78.70 
0.34* 

60.43* 
0.31* 
58.89 
0.40* 

65.06* 
0.40* 
91.42 
0.30* 
99.21 
0.27* 
57.45 
0.35* 
91.26 
0.31* 
77.71 
0.31 

Ordinal 
RepTree 

80.14 
0.20* 
94.01 
0.07 
80.66 
0.17* 
88.35 
0.10 
98.88 
O.Olv 
68.39 
0.26* 
87.78 
0.11 
96.95 
0.04* 
26.20 
0.18 
62.65 
0.11 

94.05 
0.05 

79.03 
0.18 
78.46 
0.19 
60.79 
0.20 
58.47 
0.34 

65.01 * 
0.34* 
92.71 
0.07 
99.21 
0.01 
57.68 
0.26 

91.19 
0.11 

78.03 
0.15 

RepTree 

80.06 
0.19* 
93.17 
0.07 
80.41 
0.17* 
87.81 
0.11 
98.80 
O.Olv 
71.36 
0.24* 
88.70 
0.10 
97.29 
0.03* 
26.60 
0.18 
62.37 
0.11* 
94.70 
0.04 
78.65 
0.18 
78.46 
0.19 

59.87* 
0.21* 
58.63 
0.33 

65.31* 
0.34* 
90.72 
0.08* 
99.21 
0.01 
56.46 
0.27 
90.90 
0.12 
77.97 
0.15 
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5 Conclusion 

This paper is devoted to the problem of learning to predict ordinal (i.e., ordered 
discrete) classes. The local ordinal classification method discussed in this paper is 
applicable in conjunction with any learning algorithm that can output class 
probability estimates. According to our experiments in synthetic and real ordinal data 
sets, it manages to minimize the distances between the actual and the predicted 
classes, without harming but actually improving the classification accuracy in 
conjunction with DS, RepTree and NB algorithms. Drawing more general 
conclusions from these experimental data seems unwarranted. Our results so far 
show that the proposed methodology for predicting ordinal classes can be naturally 
derived from classification algorithms, but more extensive experiments will be 
needed to establish the precise capabilities and relative advantages of this 
methodology. 

For large datasets, the benefit of local ordinal models is somewhat offset by the 
cost of storing and querying the training dataset for each test set instance. For this 
reason, in a following project we will focus on the problem of reducing the size of 
the stored set of instances while trying to maintain or even improve generalization 
performance by avoiding noise and over-fitting. In [4], numerous instance selection 
methods that can be combined with the proposed technique can be found. 
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