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Abstract The argument of Razumikhin-type has been well developed and showed signif
icant advantage for the stability of stochastic functional differential equations 
in finite dimensions. However, so far there have been almost no results of 
Razumikhin-type on the stability of mild solutions of stochastic functional differ
ential equations in infinite dimensions. The main aim of this paper is to establish 
Razumikhin-type stability theorems for stochastic functional differential equa
tions in infinite dimensions. By virtue of these new criteria, we can establish 
the exponential stability of stochastic delay differential equations and stochastic 
delay partial differential equations. 
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1. Introduction 

Stochastic functional differential equations in infinite dimensional spaces are 
motivated by the development of analysis and the theory of stochastic processes 
itself such as stochastic partial differential equations with some hereditary char
acteristics on the one hand, and by such topics as wave propagation in random 
media, turbulence, population biology and stochastic control in applications on 
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the other. The analysis and control of such systems then involve investigating 
their stability, which is often regarded as the first characteristic of dynamical 
systems (or models) studied. 

The purpose of this paper is to investigate stability of mild solutions for cer
tain infinite dimensional stochastic functional differential equations. Roughly 
speaking, we shall consider the following stochastic functional differential 
equations in a certain Hilbert space H with norm ||-||^ : 

du (t) = Au (t) dt + F (i, u (t), ut) dt + G (t, u (t), ut) dW (t), t> 0, 

uo = ^ e C ^ „ ( [ - r , 0 ] ; J f ) , (1) 

where A is the infinitesimal generator of a certain Co-semigroup {T (t), i > 0} 
of bounded linear operators on H and F : R+ x H x C ([—r, 0];H)"^H 
and G : R+ x H x C ( [-r , 0];H) -* £ {K, H) are two measurable non
linear mappings. Here K is some real separable Hilbert space and ut = 
{u{t + 6) : —r <9 <Qi} is regarded as a C ([—r, 0]; if )-valued stochastic 
process. The family of all bounded, JTQ-measurable, C ([—r, 0]; iJ)-valued ran
dom variables is denoted C^jr^ {[—r, 0]; H). The process {W (0}i>o î  some 
given ii'-valued, Q-Wiener process with tr (Q) < oo and ^{t) : fix [—r, 0] -^ 
H, r > 0, is a given initial datum such that S, (t) is Jx)-measurable and 

SUP-r<t<oE\\Ht)\\'H < °°-
Stochastic evolution equations in Hilbert spaces have been studied by many 

authors over the last several years. For instance. Da Prato and Zabczyk [3] 
and Pardoux [4] (amongst others) have established results on the existence and 
uniqueness of solutions for a certain class of infinite dimensional stochastic 
evolution equations. For variable delay case, the similar problems have been 
studied by Real [5] for stochastic linear evolution equations and by Caraballo 
and Liu [6] and Caraballo, Liu and Truman [7] for nonlinear cases. On the 
other hand, under various circumstances there exists an extensive literature on 
stability of infinite dimensional stochastic differential equations. In particular, 
we like to refer to [2,8] on the stability of mild solutions for infinite dimensional 
stochastic functional differential equations. 

In infinite dimensional setting, for the purpose of deriving stability results, 
a suitable construction of Lyapunov functionals rather than functions is a natu
ral generalization of the Lyapunov direct method in finite dimensional spaces. 
We present below a Lyapunov functional type of argument of stability to show 
that the situation in treating (1) by this approach could become very com-
pUcated. Suppose u {t; ^) is the solution of (1) tiirough (0, ̂ ) and ut {0 = 
{u (t + 6; ̂ ) : —r < 9 < 0}. Let us study a typical stability result which is a 
direct stochastic version of Theorem 2.1 in Chapter 5 in [9]. The reader is 
referred to [9] for more details. 

PROPOSITION 1 Let p > 2 and the standard hypothesis (HI) imposed in 
Section 2 hold. Suppose v {•), I {•) : R"*" —> R"*" are two continuous nonde-
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creasing functions, v (s) and I (s) are positive for s > G, v (s) is convex and 
I (s) (5 concave with v (0) — I {0) — 0. If there is a continuous functional 
F : R X Cd-r, 0]; iJ) -^ R such that 

viW^mi'n) < V{t,^)<l{M\l), V ^ e C ( [ - r , 0 ] ; F ) 

EV{t,ut{0) < EV{s,Us{0), V t > s > 0 . 

Then the (mild) solution of(l) is p-th moment stable. 

In spite of the formal simplicity of the above result, it is hard to apply this 
proposition directly to practical problems even though H is finite dimensional, 
e.g., H = R". The reason is twofold. On the one hand, instead of the usual 
Lyapunov functions in finite dimensional spaces, a Lyapunov functional as 
above must be constructed properly, a case which is usually not easy to handle. 
On the other hand, the conditions as above are difficult to justify because of the 
inclusion of the solution itself which is not known explicitly in most situations. 
This proposition certainly loses the advantage of the Lyapunov direct method 
in the sense that it is unnecessary to solve the equations explicitly in order to 
determine the stability of solutions. 

One of the most effective ways to deal with these problems is a method orig
inated by Razumikhin [10, 11]. The argument of Razumikhin-type has been 
well developed and showed significant advantage for the stability of (stochas
tic) functional differential equations in finite dimensions (see [9, 12,13]). The 
Lyapunov functions of Razumikhin-type have been shown to be rather powerful 
to treat functional differential equations, and as a consequence, that they really 
bring forth the advantage of Lyapunov direct method. In [13] Mao has shown 
a smart argument of Razumikhin-type to exponential stability of finite dimen
sional stochastic functional differential equations. However by virtue of Mao's 
argument, it is not trivial to treat the case in infinite dimensions, because there 
is not Ito's formula applicable to mild solutions of stochastic functional differ
ential equations in infinite dimensions. So far there have been almost no results 
of Razumikhin-type on the stability of mild solutions of infinite dimensional 
stochastic functional differential equations. To the best of our knowledge this 
is the first time the possibility of using Lyapunov functions of Razumikhin-type 
to determine sufficient conditions of stability for stochastic functional differen
tial equations in infinite dimensions has been explored. By virtue of the new 
criteria derived later on, we can show the exponential stability of stochastic de
lay differential equations and stochastic delay partial differential equations. In 
particular, by using the results derived in this paper we may essentially improve 
some stability results in [1,2]. 
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2. Preliminary results 

Let (fi, J^, {J^t}t>o ! -P) be a complete probability space with a filtration 
{^t}t>o satisfying the usual conditions (i.e., it is right continuous and J^Q con
tains all P-null sets). Let i^ be a real separable Hilbert space. With the symbol 
{W (t) ,t> 0} we denote a i^-valued {jF^jj-^g-Wiener process defined on the 
probability space (fi, J^, {^t}t>o > ^) ^i^b covariance operator Q, i.e., 

E (W (t), x)^ {W {s), y)^ = (i A s) {Qx, y)^ Vx, y e K, 

where Q is a nonnegative finite trace class operator from K into itself. In 
particular, we call {W (i)}t>o ^ -f̂ -̂valued Q-Wiener process with respect to 

{•^t}t>o-
Let H be a real Hilbert space and we denote by (•, •) its inner product and 

ll'll^ its norm, respectively. Assume r is a given positive constant. In the 
present paper, we shall consider the following infinite dimensional stochastic 
functional differential equation on J = [—r, T], (here T > 0 and t e [0, T]) 

du{t) = Auit)dt + F{t,u{t),ut)dt + G{t,u{t),ut)dW{t), 

uo = ^ e ( 7 ^ „ ( [ - r , 0 ] ; i f ) . (2) 

Throughout this paper, we shall impose the following assumptions: 

(HI) A is the infinitesimal generator of a Co-semigroup {T(t) , i > 0} of 
bounded linear operators on H satisfying | | r ( t ) | | < M • e'̂ * for some 
M > 1, A e R ^ The coefficients F : R+ x if x C ([-r , 0];H)-^H 
and G : R+ X iJ X C {[~r, 0];H) ^ £ {K, H) are two measurable 
nonlinear mappings satisfying the following Lipschitz condition 

| | F ( t , x , y ) - F {t,x',y')\\^ + | | G ( t , x , y ) - G {t,x',y')\\^ 

<k[\\x-x'\\jj + \\y-y'\\^) , (3) 

for some constant fc > 0 and arbitrary x, x', e H,y,y' e C ([—r, 0]; H) and 
t e R+.Here ||-||2 denotes the Hilbert-Schmidt norm of anuclear operator, i.e., 
\\Git,x,y)g = triG{t,x,y)QGit,x,y)*),x e H, y e Ci[-r,0];H). 
Denote by C^^ {[—f, 0]; H) the family of all bounded, JFQ-measurable, 
C([—r, 0] ;ii)-valued random variables. For p > 2 and i > 0, denote by 
Lyr^ ([—r, 0]; H) the family of all .Ft-measurable C ( [-r , 0]; iJ)-valued ran
dom variables (j) = {(j) (9) : —r < 9 < 0} such that 

sup E\\(f>{9)fjj<oo. 
-r<e<o 

We introduce two kinds of solutions of (2) as follows similarly to [14]: 
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DEFINITION 2 A stochastic process u (t), t e I, is called a strong solution of 
(2) if(i) u (t) is adapted to J-'t; 

(ii) u (t) is continuous in t almost surely; 
(Hi) u{t) e V (A) on I X Q, with /Q \\AU {t)\\jf dt < co almost surely and 

u{t) = i{<d)+ I {Au{s) + F{s,u{s),Us))ds + 
Jo 

'G{s,uis),Us)dW{s), 
0 

u{t) = ^{t), te[~r,0], 

for allt e I with probability one. 

In general, this concept is rather strong and a weaker one described below is 
more appropriate for practical purposes. 

DEFINITION 3 A stochastic process u (t), t Q I, is called a mild solution of 
(2) if(i) u (t) is adapted to J^t; 

(ii) u (t) is measurable with Jg \\u (t) | |^ dt < co almost surely and 

u{t) = T(t)C (0) + / T{t-s)F(s,u (s),Us)ds 
Jo 

+ f Tit-s)Gis,u{s),Us)dW{s), 
Jo 

u(t) = e W , i e h r , 0 ] , 

for alltGl with probability one. 

Note that if {u (t) ,t e 1} is a strong solution of (2), then it is also a mild 
solution. The following existence and uniquness theorem can be obtained sim
ilarly by an adapted argument from [6] or [15]. The reader is referred to them 
for further details on this aspect. 

THEOREM 4 Let {^ (t) ,t E [—r, 0]} be a given J^Q-measurable initial datum 
with sup_r<t<o E \\£, {t)\\^ < OD. Suppose the hypothesis (HI) holds, then (2) 
has a unique mild solutionu {t; ^), or simply u (t), inC (0, T; L^ (O, J^, P; H)). 

For ourpurposes, we can introduce Ito's formula which will play an important 
role in our stability analysis as follows. 

Let C^ (iZ X H) denote the space of all real-valued functions V on'R. x H 
with properties: 

(i) V (t, x) £ C^ (R X H) is twice (Frechet) differentiable in x and once 
differentiable in t; 
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(ii) Vx {t, x) and Vxx {t, x) are both continuous in H and £ (H) = £ {H, H), 
respectively. 

T H E O R E M 5 (ltd'sformula)Suppose F G C^ (R x F ) and {u {t) ,t > 0} is 

a strong solution of (2), then 

V (t, u (t)) = F (0, C (0)) + f CV (s, u (s) , Us) ds 
Jo 

+ f (K {s,u is)) ,G{s,u (s),Us) dW (s)) , 
Jo 

whereVxeViA), y e C{[-r,0];H), i > 0, 

CV{t,x,y) = Vt{t,x) + {Vx{t,x),Ax + F(t,x,y)) 

+ ltr {Vxx {t, x) G {t, X, y) QG* (t, x, y)). (4) 

Since Ito's formula is only applicable to strong solutions, we introduce the 
following approximating systems of (2), for i > 0, 

du{t) = Au{t)dt + R{n)F{t,u{t),ut)dt 

+Rin)G{t,u{t) ,ut)dW{t), 

u{t) = R (n) £,{t)eV{A), te l-r, 0] (5) 

where no <n e p (A), the resolvent set of yl and R (n) = nR (n, A), R {n, A) 
is the resolvent of A. A similar operator £„ to (4) in correspondence with this 
equation is 

LnV{t,x,y) = Vt(t,x) + {Vx{t,x),Ax + R{n)F{t,x,y)} 

+ ltr {Vxx {t, x) R (n) G {t, x, y) Q {R (n) G {t, x, y))*), 

Wx e r»(A), yeC{[-r,0];H), t>0. 

THEOREM 6 ([15]) Under the hypotheses of Theorem 4, (5) has a unique 
strong solution u" (t) in G (0, T; L^ (Q, J", P ; H)) for all T > 0. Moreover, 
u^ {t) converges to the mild solution u (i) of (2) in G (0, T; L^ (O, T, P; H)) 
as n ^> oo, i.e.. 

\\mE\ sup | | M " m - z i ( i ) | | i = 0 . 
"-*°° \te[o,T\ ) 

3. The main results 
In this section, we shall carry out an argument of Razumikhin type to study 

the stability of the mild solutions of (2) in the sense of p-th moment and pathwise 
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with probability one. Based on the ideas of constructing Lyapunov functions 
rather than functionals, we study the stability of the equation (2) in the spirit of 
Razumikhin in finite dimensions. 

Let C^'^ {[—r, oo) x H; R+) denote the family of all nonnegative functions 
V (t, x) on [—r, oo) x H which are continuously twice Frechet differentiable 
in X and once differentiable in t. Then for V G C^'^ {[—i', oo) x H; R"*"), we 
can introduce, similarly to (4), an operator C on C^'^ ([—'', oo) x H; R+) by 

CV{t,^(0) ,ip) = Vt {t,<p(0)) + ( K {t, V(0)), A^(0) 

+ ltr [V,, {t, ^ (0)) G {t, if (0), ^) QG* {t, ^ (0), <^)], (̂  (0) eV{A). 

Here i > 0. We furthermore assume that F {t, 0,0) s 0 and G {t, 0,0) = 0, 
we can assert the following the exponential stability for (2). 

T H E O R E M 7 Let the standard hypothesis (HI) hold and p > 2, X, c, ci all 
be positive numbers and q > 1. If there exists a continuous function V & 
(71,2 ([-r^ 00) X H] R+) satisfying 

c\\xfH > V{t,x) + \\x\\j^\\V^{t,x)\\jj + \\x\\]j\\V^:,{t,x)\\H 

ci\\x\fH < y{t,x), V{t,x) e[-r,oo)x H, (6) 

and for arbitrary i > 0 

ECV{t,<l){t),ct>)<^XEV{t,ct>{0)), (7) 

whenever cp = {4){e) :-r <e <0) & L ,̂̂  ( [-r , 0]; V {A)) satisfies 

EV{t + e,4>{6)) <qEV{t,(t>{0)),forall ~ r < 6 < 0. 

Herefor(f)eLP^^{[-r,0];V{A)), </> (0) S P (yl), t > 0 

£V (t, 4> (t) A) = Vt {t, cf> (0)) + {V, {t, 4, (0)), A4> (0) + F (i, </) (0), </-)) 

+\tr[V^. {t, 4> (0)) G {t, (f> (0), 0) QG* {t, (f> (0), <!>)]. 

Then the mild solution u (t) of (2) is p-th moment exponentially stable, i.e., for 
aineC'jr^{{-r,0];H) 

E\\u{t;OrH<-EUrc^~'''' ^t>0, 
Cl 

where 7 = min I A, "̂J*̂ -̂  >. 
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Proof. Fix the initial data ,̂  e C^^ ([-r , 0]; H) arbitrarily and write n (t; S,) — 
u (t) simply. Let e £ (0,7) be arbitrary and set 7 = 7 ~ e. Define 

U (t) = max [e'^(*+^)£;^ (t + 9,u(t + 8))] , for t > 0. 
-r<e<o L " ' J 

Obviously U (t) is well defined and continuous. We can claim that 

D+f/(t) = l i m B u p ^ ^ ^ ^ ± % - ^ < 0 , V t > 0 . (8) 
h-*o+ n 

To show this, for each fixed to > 0, define 

^ = max {0 e [-r, 0] : [/ (to) = e'f^^^+^^EV {to + ^,«(to + ^))} • 

Obviously, 9 is well defined, 0 e [—r, 0] and 

U (to) = e^(*o+^")£;y (to + 0,u {to + e)) , a.s.. 

If ^ < 0, for all ^ < 6* < 0 one has 

^m+0)EV (to + 0,u {to + 9)) < e^(*"+^")Ey (to ^9,u {to + 9)) . 

It is therefore easy to observe that for any h > 0 small enough 

eJito+h)EY (̂ ^ ^ f^^ ^ (̂ ^ _,_ /j)) < ^i{to+o)Ev {to + 9,u{to + 9)). 

Hence 
U{to + h)<U (to) and D+U {to) < 0. 

If ^ = 0, then 

e7(*o+e)^y (to + 9,u {to + 9)) < e^^'EV {to, u (to)), V^ G [-r, 0]. 

So 

EV{to + 9,u{to + 9)) < e-^'^EV{to,u{to)) 

< e^''EV{to,u{to)), V 0 e [ - r , O ] . (9) 

Note that either EV {to, u (to)) == 0 or EV {to, u (to)) > 0. In the case 
of EV {to, u (to)) = 0, (6) and (9) imply that u (to + e*) = 0 a.s. for all 
9 G [-r, 0]. Recalling the fact that F {to, 0,0) EE 0 and G {to, 0,0) EE 0, it 
follows that u{to + h) = 0 a.s. for all h > 0, hence U {to + h) = 0 and 
D+U (to) = 0. On the other hand, in the case of EV {to,u{to)) > 0, (9) 
implies 

EV{to + 9,u{to + 9)) < e^^EV{to,u{to)) 

< qEV{to,u{to)), V 9 G [ - r , 0 ] , 
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since ê ** < q. Let P = q — e^"^ > 0. It follows from the continuity of 
EV {to, u (to)) and (6) that for some h > 0 sufficiently small 

EV (to + 0,u (to + 9)) < (e^' + 0 EV (to, u (to)), VO e [0, h]. 

Now we need to introduce the strong solutions M" (t) of (5). By virtue of (HI), 
(6) and Theorem 6, there exists a sub-sequence of {n} in p (A) (still denote 
by {n} ) such that M" (t) -^ u (t) almost surely as n —> oo in C (0, T; H) 
uniformly with respect to t e [0, T]. Consequently, for some positive constant 
5 e (0, j ^ - E ^ (^0,"" {to))), there are a sufficiently small constant h> 0 and 
a large number N > Q such that for n> N, one has that for any s e [to, to + h] 

EV{s,u{s)) > EV{tQ,u{to))-S>0, 

EV{s + e,u{s + e)) < EV{to + e,u{to + 0)) + 5, V0G[- r ,O] , 

e^''EV{to,u{to)) < e"'''EV{s,u{s)) + 5, 

£^y(s ,u"(s)) > EV{s,u{s))~-S>0, 

e'^''EV{s,u{s)) < e^ ' '^F (s, w" (s)) + (5, 

EV{s + 9,u'^{s + 0)) < EV{s + 9,u{s + 0))+S, V 6 ' e [ - r , 0 ] , 

which immediately imply 

EV{s + e,u''{s + 9))<qEV{s,u''{s)), V6 i e [ - r , 0 ] . (10) 

By the condition (7), (10) implies that 

£;/:y(s,u"(s),o <-A£;F(S,U"(S)), Vse [to,to + /i]. (ii) 
Applying Ito's formula to the function e^*F(t,M) along the strong solutions 
u" (t) of (5), one can derive that for any h e [0, h], 

e^" [jEV (s, u" (s)) + ECnV (s, u" (s) , < ) ] ds 

e^^ [jEV {s, -u" (s)) + ECV (s, w" (s), < ) ] ds 
'to 
rto+ft 

e^^E (K (s, ti" (s)) , {R (n) - I) F (s, ^" (s) , < ) ) ds 
/«o 

+- / e^^£;tr [y, , {s, u^ {s)) R (n) G {s, u" (s) , < ) 
^ -'to 

Q ( i ? ( n ) G ( s , n " ( s ) , 0 ) * ] d s 

- - / e^^Etr [V,, (s, n" (s)) G (s, w" (s), < ) QG* (s, w" (s) , < ) ] ds. 
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By virtue of (11), one can deduce 

e^i^°+'^)EV [to + h,u'' {to + h)) 
fto+h 

< e^^°EV {to, u" (to)) + (7 - A) / e'^'EV {s, ti" (s)) ds 
Jto 

fto+h 
/ e'^'E {V, (s, u"^ (s)) , {R (n) - I) F (s, u^ (s) , < ) ) ds 

Jtn 

e^'Etr[V,^ {s, u^ (s)) R (n) G (s, u" (s) , < ) 

'to 
I rto+h 

Q(i?(n)G(s,M"(s) ,0)*]ds 
1 fto+h 

- - / e^^i?tr[T4,(s,w"(s))G(s,w"(s),0QG*(s,w"(s),0]ds, 
^ Jto 

which, letting n ^ oo, immediately yields 

e'fito+h)EV{to + h,u{tQ + h)) < e^'''EV{to,u{to)) 
fto+h 

+ {^'-X)e'^'EV{s,u{s))ds 
Jto 

< e^'°EV{to,u{to)). 

Then it follows that 

e^'EV (s, u (s)) < e^^^EV {h, u (to)), Vs e [to, to + h]. 
So it must hold that EU (to + /i) = £^0' (to) for any /i > 0 sufficiently small, 
and hence D+C/ (to) = 0. Since to is arbitrary, the inequality (8) is shown to 
hold for any t > 0. It now follows immediately from (8) that U (t) < U (0), 
for any t > 0. Also, (6) implies that 

e'^^EV {t, u (t)) <U{t)<U (0) < cE ||^||^ , Vt > 0. 

Note that e is arbitrary, it thus follows that 

EV{t,u{t))<cE\\£,\\le''<\ Vt > 0, 

which, by virtue of (6), immediately yields that 

E\\u{t)\\l<-Emle-<\ Vt>0 . 
c\ 

Therefore the desired result is obtained. The proof is complete. 

By virtue of the above theorem we can give the almost sure exponential 
stability for stochastic functional differential equations, similarly to Theorem 
2.2 in [13]. We thus omit it at the moment. 
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