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Abstract We consider the problem of modeling dynamic thin shells with thermal effects 
based on the intrinsic geometry methods of Michel Delfour and Jean-Paul Zolesio. 
This model relies on the oriented distance function which describes the geome
try. Here we further develop the Kirchhoff-based shell model introduced in our 
previous work by subjecting the elastically and thermally isotropic shell to an 
unknown temperature distribution. This yields a fully-coupled system of four 
linear equations whose variables are the displacement of the shell mid-surface 
and the thermal stress resultants. 

keywords: Intrinsic shell model, dynamic thermoelasticity 

1. Introduction 

In this paper we continue the development of a Kirchhoff-based shell model 
using the intrinsic-geometric methods introduced by Michel Delfour and Jean-
Paul Zolesio [6, 5]. The aim of this method is to produce a coordinate-free 
version of the shell equations, in contrast to the classical equations which re
quire explicit representation of the nonconstant coefficients. With the intrinsic 
approach, one can exploit the underlying geometry of the shell to derive equa
tions in which the nonconstant coefficients are written in the form of tangential 
operators. This enables us to better modify and apply known techniques that 
were developed for use in the constant-coefficient case (flat plate models). 

In our previous work [ 2 ^ ] we have developed a linear dynamic model of the 
thin shell and shown several interesting stability/controllability results. How
ever, as thermal effects are very important in many applications of engineering, 
we wish to include them in our shell model. We proceed in the development 
of a (linear) thermoelastic shell model based essentially on similar assump
tions to those which are used in the derivation of classical linear thermoelastic 
plate models (see, e.g. [7]). As such, we subject the elastically and thermally 
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isotropic shell to an unknown temperature distribution. Eventually this yields a 
fully-coupled system of four linear equations whose variables are the displace
ment of the shell mid-surface and the thermal stress resultants. The form of 
these equations is familiar - in fact it looks very similar to a 'linear' version 
of the well-known Von Karman system [7]. However, it must be noted that all 
the operators are tangential operators and thus the curvature of the shell is very 
much in evidence. 

2. Preliminary Considerations 

In this section we present a brief overview of the oriented distance function 
and the intrinsic tangential calculus that forms the basis of our shell model. In 
addition, we introduce the set of hypotheses on the shell that will be in force 
for the rest of this paper. 

2.1 Overview of the intrinsic geometry 

In order to improve readability we here include a brief discussion of the 
oriented distance function and the intrinsic geometric methods of Delfour and 
Zolesio. Since by necessity this overview will lack detail, the reader is referred 
to [5, 6] for a definitive exposition on this topic. 

Consider a domain O C R^ whose nonempty boundary dO is a C^ two-
dimensional submanifold of E?. Define the oriented (or signed) distance func
tion to O as h{x) = do{x) ~ dj(i\p{x) where d is the Euclidean distance from 
the point x to the domain O. In other words, 6(a;) is simply the positive or nega
tive distance to the boundary dO. It can be shown that for every x G dO, there 
exists a neighborhood where the function V6 = v, the unit outward external 
normal to dO [6]. 

Consider a subset F C dO which will eventually become the mid-surface 
of our shell. We define the projection 'p{x) of a point x onto F as 'p(x) = 
X — b{x)Wb{x). Then, we define a shell Sh of thickness h as 

Sh{T) = [xeR': p{x) e F, i6(x)| < h/2} . (!) 

When F 7̂  dO, the shell Sh has a lateral boundary S/j(F) = {x e R^ : p{x) e 
T, \b{x)\ < h/2} where T = 5F denotes the boundary of F. A natural curvi
linear coordinate system (X, z) is thus induced on the shell Sh, where the 
coordinate vector X gives the position of a point on the mid-surface F, and 
z € ( ^ | i I ) gives the vertical (normal) distance from the mid-surface. We 
also define the "flow mapping" T^{X) as T^{X) = X + zVb{X) for all X and 
z'mSh- The curvatures of the shell will be denoted H and K. These can be 
reconstructed from the boundary distance function b{x) by noting that at any 
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point {X,z), the matrix D'^b has eigenvalues 0, Ai, A2. The curvatures are 
then given by ii{D'^b) = 2H = Xi + X2 and K = A1A2 . 

Next, we mention briefly some useful aspects of the tangential differential 
calculus. Given / G C^(r), we define the tangential gradient Vr of the scalar 
function / by means of the projection as 

V r / - V ( / o p ) ( x ) | r . (2) 

This notion of the tangential gradient is equivalent to the classical definition 
using an extension F of / in the neighborhood of F, i.e. V r / = VF|p — ^u 
[6]. Following the same idea we can define the tangential Jacobian matrix of a 
vector function w G C^{T)^ as D^v = D{vop)\^ 01 {Drv)ij = (VrWj)j ,the 
tangential divergence as divrw = div(u op)|p , the Hessian i>p/of/ G C^(F) 
as D^f = I ? r ( V r / ) , the Laplace-Beltrami operator of / G C^iT) as A r / = 
divr ( V r / ) = A ( / o p)\^ , the tangential linear strain tensor of elasticity 
as er{v) = \ {Drv + *Drij) — e (f op) |p , and the tangential vectorial 
divergence of a second-order tensor A as divpA = div(^ °p)\r ~ divrAj . 
Using these definitions one can derive Green's formula in the tangential calculus 
[6]: 

/divr?;dF+ [{Vrf,v)dr^ f {fv,u)dT + 2 f fH{v,Vh)dT (3) 
r JT JT JT 

where v is the outward unit normal to the curve T. From [6, 5] we have that 
(Vrw, V6) = 0 and DrvVb = 0 by definition for any scalar w and vector v. 
In addition, if we consider a purely tangent vector v = vr, i.e. ( IT , V5) = 0, 
we can take the tangential gradient of both sides of this expression and derive 
that D^bvf + *DrfrV6 = 0. Finally, throughout this paper we will use 
(•, •) to denote the scalar product of two vectors and A..B to denote the double 
contraction of two matrices - i.e. A..B — tr{AB). 

2.2 Model hypotheses 
ASSUMPTION 1 We impose the following assumptions on the shell. 

(i) The shell is assumed to be made of an isotropic and homogeneous material, 
so that the Lame coefficients A > 0 and ^ > 0 are constant. 

(ii) The thickness h of the shell is small enough to accommodate the curva
tures H and K, i.e. the product of the thickness by the curvatures is small as 
compared to 1. Asa consequence we shall drop terms of order equal or greater 
than 2 in the series expansions. 

(Hi) (Kirchhoff Hypothesis) Let T be a transformation of the shell Sh, and 
let e = (er,w) be the corresponding transformation of the mid-surface. In 
the classical thin plate theory named after Kirchhoff, the displacement vectors 
T and e o p are related by the hypothesis that the filaments of the plate ini
tially perpendicular to the middle surface remain straight and perpendicular 
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to the deformed surface, and undergo neither contraction nor extension. In the 
intrinsic geometry we have T = e o p — 6( *£'ro^ V6) o p . 

(iv) We will assume the boundary T consists of two open connected regions 
To and Tj , with T = TQ U Ti and 0 = To n Ti. We will clamp the shell on 
To, and allow Tito be free. 

(v) The shell is assumed to be subject to an unknown temperature distribution 
T(X, t) which is measured from a reference temperature. The shell is assumed 
to be thermally isotropic, the change in r is small compared to the reference 
temperature TQ of the shell, and the thermal strain is assumed to be linear Thus 
the thermal strains of the shell are given by £^{T) = arl, where a is the 
coefficient of thermal expansion. 

We denote by e the transformation of the shell mid-surface and by ep and e„ 
the tangential and normal components of e in local coordinates. We define w 
to be the magnitude of the normal displacement. As such, we have that 

w={e,SJb), en=u)Vb, er = e - e„ . (4) 

The variable r denotes the temperature in the shell body, as measured from 
a reference temperature TQ, taken to be the absolute temperature of the body. 
Because of the assumptions of thinness of the shell and linearity of the ther
mal strains (Hypothesis 1 (ii) and (v)), it is reasonable to suppose that the 
temperature varies linearly with respect the thickness of the shell, 

T = Tl O p + 6 T2 O p , (5) 

with Ti, T2 variables defined on the mid-surface of the shell F. Note that n 
corresponds physically to the thermal energy of stretching (membrane energy), 
whereas T2 corresponds to the thermal effect of shell bending. The final form of 
the equations of the shell will not involve n, but instead will naturally involve 
the thermal stress resultants 0 and (/?, defined as 

ip = an, e = aT2, (6) 

where a is the coefficient of thermal expansion. 
Here we list the following definitions and properties derived in [2]: 

LEMMA 2 The following strain-displacement relation holds for a shell mod
eled in the intrinsic geometry under Hypothesis 1 (i)-(iii). 

e{T) = (er(er) + wD^b + Vper) ° P (7) 

- 6 (-er{D'^ber) + Cper + Srw + Grw + w{D'^bf) o p, 

where er is the tangential linear strain tensor of elasticity and 

Cru = ^{D'^b *Dru + DruD%) 
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VyU 

Grw 

{{DH u)<S)Vb + Vb® {D% u)) 

((V5 (g) VTW)D% + DH{VTW ® Vb)) 

2 , . . I * n 2 „ S^W = -{Df^W+ *D^W). (8) 

Cr and VT are Ist-order and 0-order operators, respectively, that in practice 
operate on a tangential vector u. Gp is a Ist-order operator, and Sr is the 
symmetrization of the Hessian matrix of a scalar function w (the Hessian matrix 
is not symmetric in the tangential calculus [6]). Define the space V 

V e e [H\T)\^ ^ H'^{V) ep = ID = TT-w = 0 on To 
ov 

(9) 

3. Thermoelastic shell model 

THEOREM 3 Define the following operator C acting on a matrix A: 

C{A) ^ Xti{A) I + 2^1 A, 

the expression x 
X = C'rer ~ £r{D 6er) 

(10) 

(11) 

^ , and 77 = ,ctro the parameters (5 = {X + ^ji)"'^, C, — /3{-r^fi + X), K ~ pcaii' 
Here p is shell density, c is specific heat, and AQ is thermal conductivity. 

Then, the displacement e S C([0, oo); V) and thermal variables 9, (p E 
C([0, oo); L2{T)) satisfy the following system of shell equations which holds 
onT X (0, oo); 

dttw - jArdttw + Apw + -divr(D^69tter) (12) 

-CAr6i - C(4ij2 - 2K)e - 2(1''^Hp + Pi(er) + Qtiw) = 0 

{I + j{D%f)dtter - Ph'^divrC{er{er)) + D^divrCix) (13) 
~diYr{D'^bC{x))] + C(divr(I?^66') - DHVrO) + C7"^Vr<^ 

P2{'w) + Q2ier) = 0 -^D^Wrdttw 

where P\ denotes coupling terms and Qi denotes lower order terms in the plate 
equation; and P2, Q2 in the wave equation: 

Pi(er) = /3[2Ai/7-Mivrer + 2/L<7~Hr(Z326er(er)) 

-2fj,{{D'^bf..D^b, er) + 2/Lidivrdivr(x) + 4:ijHtr{D%er D%) 

- A A r ( 2 V r i / , er) - A(4if2 - 2K){2VrH, er) 
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Qi{w) = PlkjW + 4ijdwr{{DHfVrw) + XAr{{4H'^ - 2K)w) 

+2ijdwrdivr{iDHfw)+2fidivr{KVrw)+X{AH^-2K)Arw] 

+2fitr{Srw{DHf) + A^iHti{{DHfw) 

-P2H = /3[-2A7-^Vr(Ftw)+2/i7-idivr(wD^6) 

+A2Vri?(Arw - (4ff2 _ 2K)w) - 2ii{D'^bf ..D^bw] 

~-2fidivr{D'^bSrw) + 2fiD'^bdivr{Srw) 

Q2{er) = ^2f]fij-\Ker + 2{D^bfer) 

The thermal variables ip and 9 satisfy the following coupled heat-like equations: 

1 
— I 

K 

1 

'-dt^ - Ar¥5 - 2He + r]{2HdtW + divr^ter) = / i (14) 

-dtO - Ar6i - vi^rdtw + tx{Crdter) - divriD^bdter) (15) 
K 

+ (4^2 ~ 2K)dtw) = /2 

where fi and f^ represent heat sources or sinks. We have the following free 
boundary conditions on Tj x (0, co); 

(C{w D% + £r(er)) - Cv' / ) • ^̂  = 0 

((A/3Vr, ti{Dher)) + A^i|3{DHfVTW + 2HI3KVTW - Vr(Arw;)j^ 

+{-f{DHdtteT-2Vrdttw)+2p,pBl{Crer - eT{D%er) + {D'^bf w),v) 

-(/3AVr((4if2 - 2K)w) ~ CVT9, V) + 2[iBlw = 0 

A/?tr(L>36er) + A / 3 ( 4 F 2 - 2K)w - Ari« - C6' 

+2/i/3((Crer - er(^^&er) + {DHf)v,v) + 2^i3B\w = 0 

(^,i/) = - A 2 ( 0 - ^ ) , (</?,z.) = A2(v?~<^) 

clamped boundary conditions on To x (0,00); 

a 
w = —w; = 0, er = 0, 6* = w = 0 (16) 

Here A2 is the coefficient from Newton's law of cooling, and 9 = afi , ip = af2, 
where f is the temperature of the external medium of the shell. 

Proof: Elastic Equations. We begin with tlie stress-strain relationships for a 
general shell body. Let T be a transformation of the body Sh- We have that the 
stress 

(J = es{T) - Ce''{T), (17) 

where e'^ denotes the thermal strain. By Hypothesis 1 (v), we can write that 
e'^ = oiT I, where r is the temperature and a is the coefficient of thermal 
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expansion. Next, we note that the body is assumed to be isotropic, so that 
C{A) = Atr(A) + 2^A where A and ji are the Lame coefficients. Finally, we 
use all this information to compute the potential energy 

~v [ t r(£(r))aT 
JSh 

JSh JSh I Sh JSh 

where A + | / i 

REMARK 4 At this point in the computation of the elastic energy, it is custom
ary to impose the hypothesis of plane stresses: a..{Vb (S> V&) — 0 (which in 
local coordinates is denoted CT33 = Oj. As is well understood (see, e.g. [1]), 
this assumption implies a change of Lame coefficient A to jz^' while ji re
mains unchanged. The same situation arises in the case of plates, we refer to 
[7] for further details. This modified expression for A is more in line with both 
experimental evidence and asymptotic models. This does not affect any of the 
mathematical arguments to follow, so the imposition of this hypothesis is left to 
the discretion of the reader. 

Let us denote £p — £p_e + £p,t^ with the elastic contribution to the potential 
energy £p^e given as calculated in [2] using Lemma 2 as 

Sp^e = h- \2Hw + divrerli^(r) + h/j J ti [(er(er) + D^bw + Vter) 

+ / i - ^ Arto + tr(Crer) - dWriD'^ber) + (4iJ^ - 2K) KJ 
2 \ V ^ W XV w V y l ^ ^ ^ j , ^ 

dT 'jji^h I tr STW + Crer - eriD'-ber) + Grw + w{D%f' ^ 

where 7 = f j ' ^ ^ compute the thermal contribution Sp^t explicitly from 
Lemma 2, the expansion of r (5), and the definition of ^p and 0 (6): 

h 

£p,t^'^ f ^<£{T))aT='^ (\ f t r ( e ( r ) ) a ( r i o p + 2T2op) (18) 

- 2 / _ ! lii^<siT))Oi op) o T,)Jiz) + {{ztx{e{T))e2op) o n)j{z). 

after using the Federer decomposition and a change of variable. Now, Hypoth
esis 1 (a) allows us to say j{z) « 1; and noting that the functions p and Tz are 
inverses by definition and evaluating the 2-integral, we have 

£p,t ^ ~ j (divrer + 2Hw)<p (19) 

+ ~ f (Arw + tr(Crer) - divr{D^ber + (4//^ _ 2K)w)9. 
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Thus, collecting (17) and (19) gives the desired expression for the potential 
energy of the shell. For the kinetic energy of the shell we have, from [2] and 
the Kirchhoff hypothesis: 

£k = Y ^ | a t e r | 2 + |atw;|2 (20) 

phi 
2 Jr 

The kinetic energy of the thermal variables will be discussed later. 
Among all kinematically admissible displacements, the actual motion of the 

shell will make stationary the Lagrangian 

£(e) = / 4 ( e ) - £p,e{e) + £p,t{e) • 
Jo 

Note that we take the variation with respect to e only: ^C{e + ipe)\ = 0 . 

This results in the following weak form of the equations: 

/ \D^bdter\^ + \VTdtw\'^ + \D%dter - Vr9tw;|^ 

j [^p[2{dteT, dtev)T + 2ji{D^)dter, iD^b)dter)r 

-j(Vrdtw, {D%)dter)T 

-j{{D'^b)dteY, Vrdt'w)r + 2{dt'w, dtw)v + 2'y{\/rdtw, Vrdtw)r] 

2A7(Arw, Aru;)r + 4/^7 / tr((5rw + Grw){Srw + Grw)) 

+2A(divrer ,d ivrer ) r+ 4/Li / tr(£r(er)er(er)) 

-2/i(D^6 er, D'^b er)r + 4X{Hw, divrer)r 

+4A(divrer, Hw)r + 4/i(w, tr(er(er) D'^b))r + 4^(tr(er(er) D'^b),w)r 

+2Lfk^w, \ft^u))r + 2A7(divr(I?26er),divr(I?^6er))r 

+4/^7 / tr(£r(i>'^6er)£r(-D ^'e'r)) -2A7(divr(I?-^&er),tr(Crer))r 

^2A7(tr(Crer),divr(I?^6er))r + 2A7(tr(Crer), tr(Crer))r 

+4/Lt7 / tr(Crer Crer) - A^i-y / t r (Cre r£ r (^^^e r ) ) 

-4/^7 j t r (£r(D^6er)Crer) - 2A7(tr(£»^&er), Ari())r 

-2A7(Arw,tr(D35er))r (21) 

+4^7 / tr(Crer Syw) + 4^7 / t r (5rw Crer) 

-4/Li7 j t r(5rw£r(i5^^er)) - 4/i7 j tr(£r(D^6er)S'rW') 
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-2A7((4i:/2 _ 2K)w,tx{D^beT))r 

-2Xj{tr{D^ber), [AH"^ - 2K)w)r 

+2A7((4i?2 - 2K)w, Arw)r + 2Xj{Arw, [AH'^ - 2K)W)T 

+4/^7(w, tx{STw{DHf))T + Aii-i{ix{STw{DHf), W)T 

+2i'{tp, divrer)r + 4 '̂((/3, H w)r + 29^(9, Aru))r 

+2z?7(^, t r (Crer)r - 2i77(6i,divr(D^6er))r 

+2Dj{{AH'^ - 2K)0,w)r] dt = 0 

We integrate the expression (20) in order to derive the equations (12) and (13) 
of Theorem 3. These calculations are presented explicitly in [3], so we omit 
the details. We note that the regularity of the weak solution e is high enough 
to permit the necessary integration by parts to derive the strong form - this is 
proved in Proposition 4.2 of [3]. After this, inspection of (20) reveals that there 
are two fourth-order terms in w. The first, (Apw, A^w), will yield the required 
tangential biharmonic operator Ap in the strong form. However, the next term 
is also fourth-order, and we would Uke to combine the two in analogy to the 
case of plates, where the second term becomes the biharmonic plus a boundary 
integral. In fact, in [3] we show that 

I tT{{Srw + Grw){Srw + Grw))dT = f ArwArwdT 

+ [ {KWrw, Vrw) dT + 2 f {DHVTW, oHVyw) dT 

f d 
+ / (B}^w~w - Blww) dT 

Jr ov 

with BY and B^ being defined as 

B^w = -~{T ® T)..{Srw + Grw) 

Blw = {VT{{.T®V)..{STW + GTW)),T). (22) 

The operators B^ and By are simply the tangential versions of the same oper
ators which appear in the modeling of Kirchhoff plates [7]. One can show this 
explicitly by choosing a local basis v = (^i, 1̂ 2); ''" = {—1^2,1^1) and substitut
ing appropriately. The additional boundary operator B^ which appears in the 
free boundary conditions of Theorem 3 is given by 

BIA = dt{T, Av) + (divrA, v) = (Vr(T eg) v..A), r ) + (divr>l, v). (23) 

This operator comes from integration of cross-terms involving SYW. 



A T - -dtT -
K 

Ao 
cp 

a AQ 

^ = l ' + 5 ^ j Ao ' 
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Thermal Equations. Next, we must obtain the equations of motion for the ther
mal variables ip and 9. Recall that r is the temperature of the body, measured 
from a reference temperature TQ. By combining Fourier's law of heat conduc
tion, the entropy balance law, the second law of thermodynamics for irreversible 
processes, and using the fact that the change of temperature is small to linearize, 
we have the following equation for heat transfer in a three-dimensional isotropic, 
elastic body (see [7], p. 29, and [8], Chapter 1): 

(24) 
K a AQ 

with 

(25) 

where AQ > 0 is the coefficient of thermal conductivity (assumed to be constant), 
c is the specific heat, p is the density of the material, and H are heat sources 
and sinks inside the body. 

Recalling the definition (5), the equality (2), re-writing the thermal loads as 
H = Til o p + b'H2 ° p (justified again by the assumption that the change in 
temperature is small), and substituting gives 

A ( T I OP) + A ( 6 T 2 op) 9i(ri op + 5T2 op) 

- - 9 t ( d i v r e r + 2Hw) op + ^dt{b(Arw + t r (Crer) 
a a 

-dxyriDh er) + {4:H^ - 2K)w) o p) = - ^ ^ ^ - 5 ^ ^ . 
Ao Ao 

Expanding A ( 6 T 2 ° p) = bA{T2 o p) + T2 o pAb + 2(V5, V ( T 2 op)) and 

multiplying by a gives 

A{ip op) + bA{0op) + 2H9op + 2(V&, VO op) (26) 

dtif op-\-bO op) ~ ?y5t(divrer -h 2Hw) op + ridt{b (Arui 
K 

-htr(C'rer) - dWr{D^ber) + {iH'^ - 2K)w)op) = fiop + bf2op 

after defining / , = ^ ^ ^ - Notice that equation (26) is of the form Ap o p + 
bAs op = fi op + bf2 op where Ap denotes the thermal change due to the 
flexure of the shell, and AB the change due to bending of the shell. This gives 
us two coupled equations on the three-dimensional body: 

[(A - ~dt)bip + 2He]op + 2(V6, V9 o p) 

~rjdt{d\vr^T + 2Hw) o p = fi o p 
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(A dt)0 o p + T]dt{{Arw + t r (Crer) 

-divriD'^b ep) + (477^ _ 2K)w) o p) = /s o p . 

Restricting these to tlie midsurface gives immediately that 

ArVJ + 2H8 dtip - r7at(divrer + 2Hw) = / i 
K 

Are--dte-r]dt{Arw + t r (Crer ) -d iv r (D^6er ) + (4i72 ^ 2K)w)=f2 
K 

as desired, since (V&, Vr^) = 0. Finally, the boundary conditions on (/? and 9 
are given by Newton's law of cooling. 

T H E O R E M 5 (WELL-POSEDNESS) The thermoelastic shell model presented 

in Theorem 3 generates a CQ semigroup of contractions \ e > on the space 

n = H'^{V) X H]{T) X [H\T)f X [L2{r)f x L2(r) X L2{T) 

Therefore for initial data x° = [w^, w^,e^, e\, 6^, (j)^] G H, the solution 
x(t) = [w, dfW, er, dtCr, 9, 0] is given by x(f) = e^^'xP. 

Proof: Straightforward calculations show that A is maximal dissipative - that 
is, (AX, X)-H < 0 and (A*X, X)-H < 0 for all X GH. Thus, by the Lumer-
Phillips theorem, the system of equations (12)-(16) is well-posed. 
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