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Abstract In this work we discuss the development of fast algorithms for the inelastic 
Boltzmann equation describing the coUisional motion of a granular gas. In such 
systems the collisions between particles occur in an inelastic way and are char­
acterized by a coefficient of restitution which in the general case depends on the 
relative velocity of the collision. In the quasi-elastic approximation the granular 
operator is replaced by the sum of an elastic Boltzmann operator and a nonlinear 
friction term. Fast numerical methods based on a suitable spectral representation 
of the approximated model are then presented. 
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1. Introduction 

The inelastic Boltzmann equation describes the evolution of materials com­
posed of many small discrete grains, in which the mean free path of the grains is 
much larger than the typical particle size. Similar as molecular gases, granular 
gases can in fact be described at a mesoscopic level within the concepts of classi­
cal statistical mechanics. Many recent papers (see for example [1,2,5,12] and 
the references therein), consider Boltzmann-like equations for partially inelas­
tic rigid spheres. Once initialized with a certain velocity distribution, granular 
gases cool down due to inelastic collisions of their particles. The dissipation of 
kinetic energy causes a series of non-trivial effects, as formation of clusters and 
other spatial structures [11], non-Maxwellian velocity distributions, anomalous 
diffusion, and others. 
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In a granular gas, the microscopic dynamics of grains is governed by the 
restitution coefficient h which relates the normal components of the particle 
velocities before and after a collision. If one assumes that the grains are identical 
perfect spheres of diameter a > 0,{x,v) and {x~an, w) are their states before 
a collision, where n G S^ is the unit vector along the center of both spheres, 
the post collisional velocities {v*,w*) are such that 

{v* — w*) • n = ~h{{v — w) • n). (1) 

Thanks to (1), and assuming the conservation of momentum, one finds the 
change of velocity for the colliding particles as 

V* = V —-{1-\-h){{v — w) • n)n, w* =^ w+-{l+h){{v— w) •n)n. (2) 

For elastic collisions one has h — 1, while for inelastic collisions h decreases 
with increasing degree of inelasticity. In the first part of this note we briefly 
review the basic ideas behind the kinetic modelling of dissipative collisions. 

From a numerical viewpoint, similarly to the classical rarefied gas dynamics 
case, the solution of the inelastic Boltzmann equation represents a real chal­
lenge. This is mostly due to the high dimensionality of the equation but also to 
the inelastic collision dynamics which preclude the use of the fast Boltzmann 
solvers recently presented in [2] for elastic collisions. We will see in the last 
part of this note, how in the quasi-elastic approximation we can recover fast 
algorithms also in the inelastic case. 

2. Modelling dissipative collisions 

The main difference between the classical Boltzmann equation for elastic 
rigid spheres and its dissipative version is contained in the binary collision 
among particles. In (2) the only parameter which can contain the description 
of the inelastic collision is the coefficient of restitution. 

In the literature, essentially for simplicity, the restitution coefficient is fre­
quently assumed to be a physical constant. A constant restitution coefficient 
however does not describe realistic situations. In fact, the restitution coeffi­
cient may depend on the relative velocity in such a way that collisions with 
small relative velocity are close to be elastic. The simplest physically correct 
description of dissipative collisions is based on the assumption that the spheres 
are composed by viscoelastic material, which is in good agreement with ex­
perimental data. The velocity-dependent restitution coefficient for viscoelastic 
spheres of diameter a > 0 and mass m reads 

h=l- CiAa^/^v - w) • np/5 + C2A^a^/^\{v - w) • n^/^ ± . . . (3) 
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with 

2 m(l — v^) 

where Y is the Young modulus, u is the Poisson ratio, and A depends on 
dissipative parameters of the material. The constant Ci and C2 can be explicitly 
computed. The impact velocity dependence (3) of the restitution coefficient 
h = h{{v — w) • n) has been recently obtained by generalizing Hertz's contact 
problem to viscoelastic spheres. We skip here details that can be found in 
the literature (see [5] and the references therein). What is important in what 
follows, is that real situations of microscopic collisions between grains can be 
described in general assuming that the coefficient of restitution satisfies 

l-^h = 2p-i{\{v-w)-n\), (5) 

where 7( •) is a given function and ^ is a parameter which is small in presence of 
small inelasticity. For example, for small values of a, the velocity dependence of 
the restitution coefficient in a collision of viscoelastic spheres can be expressed 
at the leading order as in (5), choosing 7(r) = r^/^. 

3. The Boltzmann equation 

Following the standard procedures of kinetic theory [8], the evolution of the 
distribution function can be described by the Boltzmann-Enskog equation for 
inelastic hard spheres, which for the force-free case reads [4] 

df 
-~ + v-S7J = G{p)Q{fJ){x,v,t), (6) 

where Q is the so-called granular collision operator, which describes the change 
in the density function due to creation and annihilation of particles in binary 
collisions 

Q(/,/)(«) = 4^2 [ f_^{q-n){xf{vnf{^n-fMf{w)}dwdn. (7) 

In (6) 

R3 JS2_ 

p{x,t) = / f{x,v,t)dv 

is the density, and the function G{p) is the statistical correlation function be­
tween particles, which accounts for the increasing collision frequency due to 
the excluded volume effects. We refer to [7] for a detailed discussion of the 
meaning of the function G. 

In(7),(/ = (v — w), and S^ is the hemisphere corresponding tog-n > 0. The 
velocities {v**,w**) are the pre-collisional velocities of the so-called inverse 
collision, which results with (v, w) as post-colhsional velocities. The factor x 
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in the gain term appears respectively from the Jacobian of the transformation 
dv**dw** into dvdw and from the lengths of the collisional cyhnders h\q**-n\ — 
\q-n\. For a constant restitution coefficient, X = h""^. This enlightens a second 
remarkable difference between the elastic and the inelastic collision operators. 
While the Jacobian of the elastic collision is equal to unity, allowing for the 
exchangeability of the rule of the pre- and post-coUisional velocities, in the 
inelastic case the Jacobian is different from unity, and this implies a different 
role of pre- and post-coUisional quantities. 

To avoid the presence of the function x, and to study approximations to the 
granular operator (7) it is extremely convenient to write the operator (7) in weak 
form. More precisely, let us define with < •, • > the inner product in L i (R^). 
For all smooth functions ip{v), it holds 

<^,Q{f,f)>=4a^ f v{v)QifJ){v)dv = 

2a'^ / / / \q • n\{ip(v*) — ip(v)) f(v)f(w)dvdwdn. 
JR3 J R 3 JS^ 

(8) 

The last equality follows since the integral over the hemisphere S^ can be 
extended to the entire sphere S^, provided the factor 1/2 is inserted in front of 
the integral itself. In fact changing n into —n does not change the integrand. 

Let (v', w') be the post collisional velocities in a elastic collision with {v, w) 
as incoming velocities, 

v' = V — [q • n)n, w' = w + {q • n)n. (9) 

Following [18], we rewrite the inelastic collision (2) in terms of the elastic 
collision (9) obtaining 

V* = v' + hl-h){q-71)71, w* = w'~Ul-h){q-n)n. (10) 

If we assume that the coefficient of restitution can be described at the leading 
order by (5), 

V* — v'— (3 ^ [\q • n\) [q • n)n. (11) 

Let us consider a Taylor expansion of Lp{v*) around i^{v'). Thanks to (11) we 
get 

(^(y*) - ^{v') + ^V^{v') •^{\q-n\){q-n)n + 0(0^) (12) 

If the collisions are nearly elastic, /? < < 1, and we can cut the expansion (12) 
after the first-order term. Inserting (12) into (20) gives 

<ip,Q{f,f)>=<<P,Q{f,f)> +P<ip,I{f,f)> . (13) 
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It is a simple matter to recognize that in (13) Q{f, / ) is the classical Boltzmann 
collision operator for elastic hard spheres molecules [8], 

Q{f, f){v) = 2a^ j ^ ^ j ^ ^ \q • n\ {f{v')f{w') - f{v)f{w)} dwdn. (14) 

In fact, the velocity v' into (13) is obtained from {v,w) through the elastic 
collision (9). 

Let us now study in more detail the second contribution to the inner product 
(13). Using the properties of the transformation (9), we obtain 

<^,I{f,f)> = 

2(7^ / dvip{v)diVy / / n(q • n)\q • nh {\q • n\) f(v')f{w')dw dn. 
JR3 J R 3 JS2 

(15) 
In fact, the transformation dv dw into dv' dw' given by (9) is such that q' •n = 
—q • n, while its Jacobian is equal to unity. The last equality follows from the 
divergence theorem. This shows that the granular correction is the nonlinear 
friction operator /3 / ( / , f){v), where 

I{fJ){v)=2a^dwJ f n{q-n)\q-n\j{\q-n\)f{v')f{w')dwdn. (16) 

Finally, for nearly elastic granular collisions, with a restitution coefficient satis­
fying (5), the Enskog-Boltzmann equation can be modelled at the leading order 
as 

df 
^ + f • V , / - G{p)Q{f, f){x, V, t) + G{p) /31{f, f){x, V, t), (17) 

where Q is the classical elastic Boltzmann collision operator, and / is a dissi-
pative nonlinear friction operator which is based on elastic collisions between 
particles. 

4. Fast methods 

In this section we restrict ourselves to the study of the space homogeneous 
case 

§ [ = G{p)Q{f, f){v, t) + G{p)pl{f, f){v, t). (18) 

This is motivated by the use of a splitting argument in the numerical solution 
of the kinetic equation. It is clear that all the main numerical difficulties are 
contained in the right hand side of (18). Here we will use a Carleman-like 
representation of the operators Q{f, f) and / ( / , / ) , together with a suitable 
angular approximation, in order to derive spectral methods that can be evaluated 
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through fast algorithms. We refer to [2,10,15] and references therein for further 
details on fast spectral methods. 

For the sake of simplicity we will first derive the method for the classical 
operator Q{f, / ) and then we briefly describe how to extend it to the nonlinear 
friction term / ( / , / ) . 

4.1 A Carlemann-like representation 

Let us use the identity 

'u — \u\n 
/ [u • n)+ (f [niu • n)) an= — / ^p \ an, 

JS2 4 is2 \ 2 / 

in order to write collision operator Q{f, f) in the form 

Q{f,f){v) 

"e now 

v' = 

= TL/SJ'̂ " 

1. ^ 1, 

{/(̂  

\\n, 

'')fin 

w' = 

>')-

-V 

- f{v)f 

V + w) 

(19) 

(20) 

lk\n- (21) 

Then we use a Carlemann-like representation which conserves more symmetries 
of the coUision operator when one truncates it in a bounded domain. 

As explained in [2] the basic identity we shall need is 

- [ F(\u\n - u) dn ^ — [ 6(2x • u + \xf) F{x) dx. (22) 
2 Js2 \u\ Jn.3 

Using (22) with u = q = v — w and performing the change of variables 
X -^ x/2 and w-^y = w — v — xv/e can write 

Q{f,f){v)= 2^2 / / 6ix-y) 

[f{v + y) f{v + x)- f{v + x + y) f{v)] dx dy. 

Now let us consider the bounded domain VT = [-T,T]^ (0 < T < +oo). 
Next we have to truncate the integration in x and y without affecting the action 
of the operator for compactly supported functions. Thus we set them to vary 
in Bs, the ball of center 0 and radius S. For a compactly supported function / 
with support BR, we take S = 2i? in order to obtain all possible collisions. In 
fact we have 

|x|2 < |x|2 + |yj2 := |x + y\^ = |g|2 < {2Rf, 

thus |x| < 2R and similarly we get \y\ < 2R. 
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The operator now reads 

JxeBon •'V&Bjn 'x€B2R JyeB2R (23) 

[fiv + y)f{v + x)- f{v + x + y)f{v)] dx dy, 

with V G ̂ J2R- '̂ '̂ ^ interest of this representation is to preserve the real 
collision kernel and its invariance properties. The next step consist in a suitable 
periodization of the operator on VT which prevents intersections of the regions 
where / is different from zero. Note that in (23) the arguments of the integrands 
are contained into .63^2^- In fact we have that \x\ < 2R and \y\ < 2R imply 
|x + yp = |a;p + | l /P< 8i?^ (thanks to the orthogonality condition x • j / = 0 
consequence of the 5 function) and then |x + j/j < 2\/2R. From this we get 
\v + x + y\ < \v\ + \x + y\ < V^R + 2\/2R = 3\/2i?. Thus we need to take 
T > (3 + \f2)Rl\f2 as a bound for the periodization. 

4.2 Spectral methods and fast algorithms 

Now we use the representation Q^ to derive the spectral methods. In the rest 
of the paragraph, for simplicity, we take G{p) = \ and we neglect the friction 
correction setting / ( / , / ) = 0 into (18). Following the same computation as in 
the classical spectral method [15] but using representation (23) we obtain the 
following set of ordinary differential equations on the Fourier coefficients 

^ ^ = Y. klm)fifm, k = -N,...,N (24) 

where now /3(^, m) = P{1, m) - /3(m, m) with 

I3{l,m) = 2a'^ f f 5{x • y)e'^''e'^^y dxdy. (25) 
JxeB2R Jy€B2R 

In the sequel we shall focus on /?, and one easily checks that /3(Z, m) depends 
only on \l\, \m\ and \l • m\. 

The search for fast deterministic algorithms for a collision operator in R"', i.e. 
algorithms with a cost lower than 0{N'^'^^'^) (with typically K ~ 1), consists 
mainly in identifying some convolution structure in the operator. If this is trivial 
for the loss part of the operator, for the gain part this is rather contradictory with 
the search for a conservative scheme in a bounded domain, since the boundary 
condition needed to prevent for the outgoing or ingoing collisions breaks the 
invariance. 
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The aim is to approximate each /3(/, m) by a sum 

A 

/3{l, m) ~ ^ ap{l)a'p{m). (26) 
p=i 

This gives a sum of A discrete convolutions and so the algorithm can be com­
puted in 0{A N"^ log2 A'') operations by means of standard FFT techniques. To 
this purpose we shall use a further approximated collision operator where the 
number of possible directions of collision is reduced to a finite set. 

We start from representation (23) and write x and y in spherical coordinates 

U / ) W = V / / S{e-e')dede' 

/ / PP' [f{v + p'e')f{v + pe)~f{v + pe + p'e')fiv)] dp dp' 
J-RJ-R 

Let us denote with A a discrete set of orthogonal couples of unit vectors (e, e'), 
which is even, i.e. (e, e') e A implies that (—e, e'), (e, —e') and (—e, -e') 
belong to A (this property on the set A is required to preserve the conservation 
properties of the operator). Now we define Q^'-^ to be 

[f{v + p'e')f{v + pe) - f{v + pe + p'e')f{v)] dp dp' \ dA 

R rR 

Pp' 
^ (27) 

where dA denotes a discrete measure on A which is also even in the sense that 
dA{e,e') = dA{~e,e') = dA{e,~e') — dA{—e,—e'). It is easy to check 
that Q^'-^ has the same conservation properties as Q^. 

By taking a spherical parametrization {6, Lp) oie G S^ and uniform grids of 
respective size M\ and Ma for 6 and ip, we get 

2 ^ 2 ^ 2 Mi,M2 

p,q=0 

where 

ap,g(0 ='J^'IJ 0 • e(0 )) , « ; (m) ^ V l (n^J- (m)) , 

(^\{s)= I pe'P'dp, i^%{s)= r sine (t)%{s cose) de 

J-R Jo 
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and 

Typically we shall consider this expansion with M = Mi = M2 to avoid 
anisotropy in the computational grid. The computational cost of the algorithm 
is then 0{M'^N^ log2 N), compared to 0{N^) of the usual spectral method. 
Thus one requires M^ log N <C N^ in order to speed up the schemes. 

4.3 Extension to the nonlinear friction 

Finally, by applying an analogous procedure, it's possible to approximate 
the friction operator / ( / , / ) in (17) by its truncated version / ^ ( / , / ) and to 
extend the above spectral method to the full problem (18). The computations 
are similar and hereafter are shortly summarized. The idea is that one just 
applies the same representation and truncation as for Q, inside the divergence 
of / . The result has exactly the same form with another kernel. More precisely 
using identity (19) we can write 

(28) 
Next the Carlemann-like representation is obtained through (22) and yields 

/ ( / , f){v) = 2a2div, / f xj{\x\) 5{x • y)f{v + x)f{v + y)dx dy. (29) 

Periodization on VT then gives 

I\f. f){v) = 2a^ j [ 5{x • y)7 (|x|) x • V,{f{v + x)f{v + y))dx dy, 
JB2R JB2R 

(30) 
where now the arguments of the integrand are supported into ^(2+J2)R-

The major difference is that the resulting kernel is characterized by the vector 

xi{\x\). (31) 

This kernel clearly decouples since it does not depend on y and so the resulting 
spectral scheme, similarly to the previous section, can be computed with fast 
algorithms. 

Thus, for the full model (18) we obtain the Fourier coefficients 

^Ml^G{p) J2 0{l,m)+mil,m))fifm, k=~N,...,N (32) 
l,m=~N 



160 PROCEEDINGS, 1FIP-TC7, TURIN 2005 

where (3{l, m) are given by (25) and the nonlinear friction coefficients are 

Pi{l,m) = 2a'^ik- f f x-y{\x\)5{x • y)e'^-''e'^'-y dxdy. (33) 
JxeB2R JyeB2R 

We omit the details of the fast solver which follows the lines of the one described 
for the elastic Boltzmann equation [9, 10, 2]. 

5. Conclusions 
In this note we have summarized some recent results related to the modelling 

of granular gases and the development of fast algorithms. In particular we have 
seen how the method recently developed in [2] can be extended to nonlinear 
friction equations and to the quasi-elastic approximation even for non constant 
coefficient of restitution. 
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