
Authenticated Query Flooding in Sensor Networks

Zinaida Benensonl, Felix C. Freiling2, Ernest Hammerschmidtl
Stefan ~ucks ' , and Lexi Pimenidis'

Department of Computer Science, RWTH Aachen University, Germany
{zina,ernest,lexi)@i4.informatik.rwth-aachen.de

Department of Computer Science, University of Mannheim, Germany
{freiling, lucks)@uni-mannheim.de

Abstract. We propose a novel mechanism for authentication of queries in a sen-
sor network in case these queries are flooded. In our protocol, the base station
appends an authenticator to every query, such that each sensor can verify with
certain probability that the query is sent by the base station. Implicit cooperation
between sensor nodes during the flooding process ensures that legitimate queries
propagate quickly in the network, whereas the propagation of illegitimate queries
is limited to only a small part of the network.

1 Introduction

Wireless sensor networks consist of a large amount of sensor nodes, which are small
low-cost wireless computing devices equipped with different sensors. They measure
and collect environmental data. Access to these data is organized via a special gateway,
called base station, which sends queries into the sensor network and gives the required
sensor data to the users.

According to some paradigms for organizing sensor networks, such as Directed
Diffusion [l l] and TinyDB [14], the base station floods the sensor network with the
query, as identifiers and locations of sensor nodes which are able to answer a particular
query are not known to the base station beforehand. An example of such a query is
"which sensor nodes measure temperature above 6' grad?".

As data gathered by the sensor network may be valuable or critical, it should be
protected from the unauthorized access. In particular, only the base station should be
allowed to send queries. In this work, we consider how the base station can authenticate
its queries, such that only legitimate queries are answered by the sensor nodes.

Our idea is based on the fact that in general, before the query reaches the nodes
which are able to answer it, it has to be flooded through some significant part of the
network. Thus, if some mechanism allows the sensor nodes to verify the legitimacy of
the query probabilistically, illegitimate queries will be dropped before they get deeply
into the network and reach their target nodes.

We developed a probabilistic protocol which restricts propagation of fake queries to
a logarithmic part of the network. Some sensor nodes in our protocol may fail to recog-
nize a fake query. This does not matter much, however, as long as their number is "very
small". We think, logarithmic part of the network qualifies for the term "very small",
considering that sensor networks may consist of thousands and hundred thousands of
nodes.

Please use the following format when citing this chapter:
Author(s) [insert Last name, First-name initial(s)], 2006, in IFIP International Federation for Information
Processing, Volume 201, Security and Privacy in Dynamic Environments, eds. Fischer-Hubner, S., Rannenberg,
K., Yngstrom, L., Lindskog, S., (Boston: Springer), pp. [insert page numbers].

Authenticated Query Flooding in Sensor Networks 39

Roadmap We review related work in Section 2. We define Authenticated Query Flood-
ing (AQF) in Section 3, and present our basic protocol AQF-pass, accompanied by
theoretical analysis and simulation results, in Section 4. In Section 5, we discuss possi-
ble improvements to the basic protocol, and overview our ongoing and future work.

2 Related Work

One possibility for an entity to authenticate its messages to multiple receivers is au-
thenticated multicast (or broadcast). The receivers can verify the origin of the message
using some attached authentication information, called authenticator. However, no re-
ceiver can generate the authenticator, and therefore, cannot impersonate the sender.

Some approaches to authenticated broadcast in sensor networks exist in the litera-
ture. In SPINS [18], authenticated streaming multicast pTESLA is realized using one-
way hash chains, time synchronization, and symmetric keys shared by the base station
with each sensor in the network. pTESLA is a very efficient protocol. Its security de-
pends on the security of the underlying time synchronization mechanism. However,
devising a protocol which globally synchronizes time in a large sensor network seems
to be a difficult problem [7].

Relatively inexpensive digital signatures can also be used for authenticated flooding
(see, e.g., [20]), assuming that each sensor node is preloaded with the public key of
some certification authority. However, these signatures are still very expensive consid-
ering the limited resources of sensor nodes.

Our protocol uses only symmetric cryptography. The protocol is based on the inge-
nious protocol by Canetti et al. [3], but it has a much better performance, as our protocol
relies on the implicit cooperation between the sensor nodes which occurs when the au-
thenticated query is flooded into the network.

3 System Model

Sensor Network Architecture Sensor network is spread over a large geographic area
and consists of homogeneous sensor nodes which are similar to Telos sensor nodes [16]
in construction and performance. They may have 8 or 16 bit microcontroller, with the
amount of RAM varying between 2 kB and 10 kB and flash memory ranging from 48 kB
to 128 kB. The speed of radio communications is in the order of 100 kbps.

There is also a base station in the network which is a laptop class device. The base
station is trusted by sensor nodes. It can flood queries into the sensor network. The
queries sent by a base station are called legitimate queries.

Ahersary Model The adversary is an illegitimate entity interested in the data produced
by the sensor network. The goal of the adversary is to post arbitrary queries to the
sensor network, just like the base station can do. The queries sent by the adversary are
called illegitimate (or fake) queries.

The adversary can capture some sensor nodes. Capturing means gaining information
from a sensor node through direct physical access. In this case, we assume that the
adversary knows the cryptographic keys of the captured nodes. As discovered in [I],

40 Zinaida Benenson et al.

node capturing requires non-negligible amount of time and resources. Therefore, we
assume that the adversary can capture only a small amount of sensor nodes, in order of
tens, but certainly not of hundreds.

Definition of Authenticated Query Flooding Let W S N be a sensor network. After
receiving a query, each sensor node decides whether the query comes from the base
station. If its decision is positive, we say that the sensor accepts the query. Consider an
arbitrary query q. The W S N design satisfies authenticated queryjooding (AQF) if it
satisfies the following properties:

- (Safety) If a sensor s in W S N accepts the query q as a legitimate query, then q is a
legitimate query, e.g., q was originated by the base station.

- (Liveness) Any legitimate query q will be received by all sensors in W S N .

4 Basic Authenticated Query Flooding: AQF-pass

We now describe our basic protocol for authenticated query flooding, called AQF-pas s.
This protocol uses the pass strategy which is explained below in the protocol descrip-
tion. In a nutshell, if the sensor cannot decide whether the query is legitimate or not, it
passes it to its neighbors. In Section 5 we discuss other possible strategies for this case.

4.1 Preliminaries

ID-Based Kq Predistribution Random key predistribution for sensor networks origi-
nates from [6] . The idea is that each sensor node is preloaded with randomly chosen k
keys, called key ring, from the key pool of size I . The values of 1 and k can be chosen
such that any two nodes have at least one common key with a given probability. How-
ever, here we do not care about the probability that two neighboring sensors share a
key, because in our scheme, key predistribution is used not for secure and authenticated
communication between the neighboring sensor nodes, but for authenticated flooding.

ID-based key predistribution was introduced in [22] . The keys in the key pool are
numbered from 1 to 1. Each sensor s with a unique identifier id , is first assigned k dis-
tinct integers between 1 and I by applying a pseudorandom number generator PRG()
with the seed id,. Then the sensor s is preloaded with the keys whose identifiers are
these k numbers from the sequence of pseudorandom numbers PRG(id ,).

This method of choosing key rings enables to characterize sets of key identifiers
very efficiently, as only the corresponding short seed needs to be known. This helps to
save energy in a sensor network if the set of key identifiers needs to be transmitted over
the air, as radio communication is very expensive in terms of energy. In this case, only
the seed x is transmitted. Then, any sensor can determine if it knows some keys from
a set of key identifiers K I D , characterized by the seed x. It computes PRG(x) =
K I D , and compares its own key identifiers to the key identifiers from KID,.

Authenticated Query Flooding in Sensor Networks 41

1-bit MACs In our protocol, we use message authentication codes (MACs) with 1-bit
output. The idea of using MACs with single bit output originates from [3]. We view a
1-bit MAC under a given key as a random function, i.e., we require the following:

- A single 1-bit MAC (under an unknown random key) cannot be feasibly guessed
with any probability significantly exceeding i.

- Similarly, an m-bit string of m 1-bit MACs under m independent random keys
cannot be guessed with probability significantly more than &.

4.2 AQF-pass: Protocol Description

We assume that an ID-based key predistribution scheme is deployed in the sensor net-
work. The protocol description follows.

Base station The base station first computes the query q and a hash from the query x =
h (q) using a hash function h() . Then it generates m key identifiers for the underlying
ID-based key predistribution scheme: K I D , = P R G (x) = (k i d l , . . . , kid,). We
denote the corresponding key sequence K x = (k k z d , , ... , kkid,).

Then the base station computes m 1-bit MACs on h (q) using keys from K,. We
call these m 1-bit MACs authenticator for q, denoted as macs(q) .

The base station floods the query q into the sensor network, accompanied by the
authenticator for the query.

Sensor nodes Upon receiving the query q with the authenticator macs(q) , each sensor
s first computes x = h (q) and the sequence of key identifiers K I D , = P R G (x) . It
compares the key identifiers from K I D , to its own key identifiers in order to find out
if s knows some keys from K,.

If s knows some keys, it verifies the corresponding 1-bit MACs from macs(q) . If
any of them does not verify correctly, then the sensor drops the query. If all verifiable
MACs are correct, the sensor forwards the query to his neighbors according to the
underlying flooding mechanism.

If the sensor is not able to verify any MACs (i.e., the sensor does not know any
keys from K,), than the sensor forwards the query to his neighbors according to the
underlying flooding mechanism. We say that the sensorpasses the non-verifiable query.
This action gives the name to the algorithm AQF-pass.

4.3 AQF-pass: Analysis

The query of a legitimate user will be flooded into the sensor network without any
obstacles. However, a query forged by an adversary will only be able to reach a limited
part of the network, as some sensor nodes will discard the query. In the following, we
analytically determine how many 1-bit MACs should be appended to a query in order
to limit the propagation of a fake query to a logarithmically small part of the network.

The variables used in the analysis are summarized in Table 1.

42 Zinaida Benenson et al.

Table 1. Variables used in the analysis ofAQF-pass .

meaning of the variable variable/ typical values

number of nodes in the sensor network
number of keys in the key pool 10000 - 100000
number of keys in the key ring of a node 50 - 250
node density (average number of neighbors of a node)
number of captured senor nodes
number of cavtured kevs Formula 1

Propagation Probability of a Fake Query Using a common model for cryptographic
hash functions [2] , it is infeasible to first choose some x and then search for an appro-
priate value q with h(q) = x, or to fix any properties for the desired x and then search
for a query q with satisfying h(q). For different queries q, the adversary always receives
independent random values x = h(q).

Therefore, we assume that the adversary uses the following strategy: It computes
the seed x = h(q) for its query q, computes the appropriate sequence of key identi-
fiers KID, using PRG(x), and hopes that it knows enough keys with identifiers from
KID, in order to be able to construct a fake query.

In the following, we compute the probability of a fake query generated as above to
successfully propagate through the sensor network assuming that the adversary captured
ii sensor nodes and guessed the bits of authenticator which it could not compute.

If ii sensor nodes are compromised, then the adversary knows in average b keys:

number of keys in the authenticator which the adversary knows
number of right bits in the fake authenticator
probability that the message will be forwarded
size of the authenticator

Formula 1 assumes that the keys are distributed according to a uniform probability
distribution. Given that the adversary knows b keys out of 1, we can compute the average
number of bits in a MAC of length m that will be correct due to the adversary's partial
knowledge of the key space 1:

Since the attacker knows nothing about the other keys in the authenticator, it has to
guess the other bits. There it will have the probability of 50% to guess the correct value.
This lets us compute the total number of correct bits in the faked authenticator:

El,
B

pf
m

Formula 2
Formula 3
Formula 4

100 - 500 bits

Authenticated Query Flooding in Sensor Networks 43

We can finally compute the probability p f that a sensor accepts the query with the
fake authenticator:

The expression in the parentheses gives the probability that one bit of the authen-
ticator passed the test by a particular sensor node. The first summand expresses the
probability that the sensor node does not share any keys with the claimed set of key
identifiers PRG(2). The second summand shows the probability that either the adver-
sary could compute the appropriate bit or guessed it.

Limiting the Propagation of Fake Queries The last section calculated the probability
each single sensors forwards the faked query. It is yet open, however, how the network
as a total behaves, namely, whether the query reaches a significant number of nodes, or
is stopped from doing so.

To calculate the parameters that have to be set in order to stop a fake query from
reaching a critical mass of nodes, we make use of the theory by Erdos and Rtnyi [5]
which is also used in [lo]: a random (nip)-graph3 becomes disconnected if pn < 1,
i.e., if the average number of outgoing connections from a node is fewer than 1. In this
case the largest connected component is of the size O(log(n)).

In our sensor network, each sensor has d neighbors on average, and each neighbor
forwards the query with probability p f . Then, we have a (d,pf)-graph for query dis-
semination and therefore, we have to adjust the parameters that we can control, such
that:

~ f d < 1

From Formulas 4 and 5 it follows:

log d
++m>

-log (1 - W)
We have variable parameters d, 1 , k , fi (or b instead of fi) for the length of the au-

thenticator m. The administrators of the network control parameters d, I , k and m, while
the adversary controls fi, and therefore, also b.

A random (n,p)-graph has n nodes, and the connection between any two nodes exists with
probability p.

44 Zinaida Benenson et al.

The next task is to find suitable ranges for d, I , k and m, such that the adversary is
unable to send fake queries for reasonable ranges of 5. We did so analytically, as well
as in a simulation (see Section 4.4).

Reasonably, the more nodes the attacker has compromised, i.e., the more keys it
has, the more difficult it gets to keep the attacker from broadcasting illegitimate queries.
Also dense networks are harder to protect, due to the high connectivity of query propa-
gation in these networks, as our approach stops an illegitimate query only if the average
connectivity of query propagation drops below 1 (Formula 5).

The results of the analytical evaluation using Formula 8 are presented on Figure 1.
We considered n = 1000 nodes, key pool size 1 = 10,000, node density d E {7,15)
and key ring size k E (75,150).

Firstly, we comment on the choice of the node density parameter. If the node den-
sity is too high, then the capacity of wireless networks decreases. On the other hand,
if the network density is too low, the network may become disconnected. Node density
required to ensure connectivity can be estimated as @(log n) [2 11, but the exact number
of neighbors remains an open problem. For networks of moderate size, 6 to 8 neigh-
bors may be considered [17]. Thus, we chose density 15, at which the network should
certainly be connected, and density 7 which seems to be a border case.

Figure 1 shows that in the range of tens of compromised nodes, the needed authen-
ticator size increases reasonably slow. The best results are reached for the small node
density 7 and the large key ring size 150. In this case, if the adversary captured around
10 sensor nodes, authenticator size around 300 bits suffices to thwart propagation of
fake queries.

Fig. 1. Necessary authenticator size, depending on node density, key ring size, and the number of
compromised nodes. The size of key pool is 1 = 10000.

Authenticated Query Flooding in Sensor Networks 45

4.4 Simulation Results

We simulated AQF-pass using Shawn [13], a discrete event simulator for large wire-
less sensor networks. We used a key pool of I = 10,000 keys and varied node den-
sity d E (7,151 and key ring size k € (75,150). In each simulation run, 1000
nodes were randomly and uniformly placed such that the given node density d was
satisfied. The source of the query (base station or the adversary) was also placed ran-
domly in the sensor field. The query was sent, accompanied by the authenticator of
size m. We looked into the number of nodes reached by an illegitimate query for m =
50,100,150, . . . ,500 assurningthat the adversary captured f i = 0,1,2,4,16,32,64,128
nodes. For each combination of parameters, 50 protocol runs on different network
topologies were performed. Due to space limit, we only present the most significant
results here.

At node density 15 and key ring size 75 all the networks were fully connected, that
is, legitimate queries always reached all of nodes. However, also illegitimate queries
reached a significant part of the network even if no nodes were captured, until the au-
thenticator size reached the unacceptable 500 bits. This confirms our analytical results
showing that in this case, authenticator size of around 700 bits are needed.

Formula 8 indicates that the size of the authenticator decreases with the decreasing
node density and increasing key ring size. In Figure 2, results for node density 7 and key
ring size 150 are presented. With node density 7, the network may already become dis-
connected. However, the number of sensors which are disconnected fiom the network
in this case was negligible.

With this parameters, authenticator size of 200 bit already suffices for tens of cap-
tured nodes as considered in our adversary model. Analytical results suggest authenti-
cator of around 300 bits here.

50 1 W 150 2W 250 3W 350 4W 450 500
authenticator size (bits)

pars strategy node densty 7, key nng 150

Fig. 2. Number of nodes reached by the fake query depending on authenticator size, with node
density 7 and key ring size 150.

1WO

sOO

8W

Ocaptured nodes -
4 captured nodes

,r 32 captured nodes r -
M captured nodes

-

7W -

BW -

5W -
\

46 Zinaida Benenson et al.

4.5 Estimated Verification Efficiency

Although we have not implemented AQF-pass yet, we roughly estimate its running
time here.

We assume key pool size 1 = 10,000, and key ring size k = 150. Therefore, the
size of a key identifier is 14 bits, we take 16 bits for convenience of computation. As our
analysis and simulations suggest authenticator size m of 200-300 bits, we assume m =
256 for convenience. The verification of the query q consists of computing its hash value
h(q), generating 256 key identifiers using PRG(h(q)), and finally, computing some
MACs on h(q). On average, a sensor node would know keys from the authenticator.
Thus, the sensor node needs to generate 256 . 16 = 4096 pseudorandom bits, and to
compute r-1 = 4 MACs on average.

We assume that both the PRG() and the MAC are implemented using a single block
cipher with the block size B as a primitive. As in the following we want to compare the
efficiency of AQF-pass to existing implementations of other authenticated broadcast
protocols, we assume that this cipher is RC5 [19] with B = 64.

Pseudorandom numbers can be generated using the block cipher in counter (CTR)
mode [15]. Then, generating N pseudorandom bits corresponds to encrypting N bits.

For the MAC computation, we use the CBC-MAC [15], and then take the first bit of
its output for the 1-bit MAC. Time to compute CBC-MAC on N bits can be estimated
as encrypting B bits times. With block size 64, and the output of the hash function
160 bits, computing the CBC-MAC on h(q) can be estimated as 3 encryptions of 64 bit
long messages.

At present, the cryptanalysis of hash functions is a very fast developing research
area. Therefore, it is difficult to choose a "right" hash function to use. We assume that
we use SHA-1 [15]. We very roughly estimate its computation time as time to compute
a MAC on 128 bits (the hash function should be more efficient than the MAC). Thus,
computing h(q) an be estimated as 2 encryptions of 64 bit long messages.

We compare the verification efficiency of our protocol to the efficiency of two other
approaches to authenticated broadcast: pTESLA and digital signatures.

In [8,9], the most efficient (to date) implementation of a well established public key
cryptosystem for sensor networks is reported. The authors implemented elliptic curve
cryptography (ECC) on the popular MICA2 sensor nodes [4], and obtained time of
0.81s for one point multiplication (key size 160 bits). The digital signatures have length
of 320 bits.

On the other hand, [12] reports implementation of RC5 on MICA2 nodes. Encrypt-
ing 64 bits with RC5 takes 0.26 ms. Then, computing h(q) takes 0.52 ms, generating
4096 pseudorandom bits takes 16.64 ms, and computing 4 MACs on 160 bits requires
4 . 3 .0.26 = 3.12 ms. Thus, query verification in AQF-pass requires 20.28 ms, which
is much more efficient than digital signatures.

pTESLA [18] is a very efficient authenticated broadcast protocol for sensor net-
works. It uses only symmetric key cryptography, but its security depends critically on
clock synchronization in the sensor network. This incurs additional costs, as even loose
clock synchronization in a network with 1000 nodes is a non-trivial task. Verification
of pTESLA broadcast messages takes at most 17.8 ms.

Authenticated Query Flooding in Sensor Networks 47

pTESLA also uses RC5 as a building block. Encryption of 64 bits in CTR mode
takes 0.55 ms, and computing CBC-MAC on 64 bits takes 0.64 ms. Thus, using the same
hardware, AQF-pass would take 44.16 ms, which is 2.5 times slower than pTESLA.
On the other hand, our AQF-pass does not require clock synchronization, which may
be worth the performance decrease.

5 Discussion and Future Work

Strategies forpropagation of non-verifiable queries In the protocol AQF -pass, if the
node cannot verify the query, it passes the query to all its neighbors. This is only one
of possible strategies. Another obvious strategy is AQF-stop, where the node drops
the non-verifiable query. In this case, the legitimate queries also can be dropped, so
care should be taken about their propagation probability as well. We analyzed and sim-
ulated this approach, and found out that it does not bring significant improvements.
When the authenticator size is too small, legitimate queries do not propagate well, as
too many nodes cannot verify the queries and drop them. With the growth of the authen-
ticator size, however, the event stop (meaning "a sensor cannot verify the query") gets
so rare, that the performance of AQF- stop gets very similar to that of AQF-pass.
Nevertheless, the stop strategy seems to be promising, as it decreases the number of
sent messages in the network, and therefore, saves energy. Thus, we are looking at how
to increase the probability of the drops. We now explore the following strategy: if the
sensor could only verify h bits of the authenticator, it drops the query with probability
1 -

2h '

Flooding strategies The protocol AQF-pass works efficiently for sparse sensor net-
works. The reason it gets worse with denser networks lies in the fact that if each sensor
node has a lot of neighbors, each forwarding event increases the probability of a query
to get trough the network. And as the adversary always can guess at least half of the
bits in the authenticator, even queries with completely guessed authenticator propagate
successfully. To thwart this disadvantage, we plan to use more sophisticated flooding
mechanisms, such as gossiping.

Preventing a sophisticated attack While the proposed protocol has its merits, there is
a weakness in the protocol that has to be taken into account. If an attacker is able to
send a query q with different authenticator macs(q), it might gain a broader access to
the network in case the attacker can observe parts of the network. The attack works
as follows: if the attacker has no knowledge about a single bit in macs(q) , it sends
one message with the bit set, and one with the bit cleared. It can then guess from the
number of nodes accepting the message, whether the bit should be set or not. This can
be repeated for all bits that are unknown to the attacker, until the message either reaches
a sufficient number of sensors, or the attacker knows how to set all bits correctly.

To thwart this attack, it has to be avoided that a message q can be sent with different
macs(q). The first proposal to counter the attack is that each sensor stores the number
of invalid requests it received from its neighbors. Further messages from a neighbor are
only forwarded if the number of invalid queries from it is below a certain threshold,

48 Zinaida Benenson et al.

or according to some probability distribution that depends on this number, e.g. expo-
nentially decreasing probability. This scales quite well, since the amount of data stored
is independent from the number of relayed messages, does not need a timestamp, and
is equal to the number of a node's neighbors. This counter technique isolates compro-
mised sensors, such that they are unable to send future requests.

Verification e$iciency Finally, efficiency of the authenticator verification remains to be
determined exactly. We are now working on design of an efficient 1-bit MAC scheme,
and plan to implement the query verification on the real sensor nodes.

References

1. Alexander Becher, Zinaida Benenson, and Maximilian Domseif. Tampering with motes:
Real-world physical attacks on wireless sensor networks. In 3rd International Conference
on Security in Pervasive Computing (SPC), April 2006.

2. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM Conference on Computer and Communications Security, pages 62-73,
1993.

3. Ran Canetti, Juan Garay, Gene Itkis, Daniele Micciancio, Moni Naor, and Benny Pinkas.
Multicast security: A taxonomy and some efficient constructions. In Proc. IEEE INFO-
COM'99, volume 2, pages 708-71 6, New York, NY, March 1999. IEEE.

4. Crossbow, Inc. MICA2 data sheet. Available at h t t p : //www .*ow. com/Products/
Productpdf -f i l e s /Wire lessqdf /MICA2Datasheet .pdf.

5. P. Erdos and A. Renyi. On the evolution of random graphs. Publ. Math. Inst. Hungar: Acad.
Sci., pages 17-61, 1960.

6. Laurent Eschenauer and Virgil D. Gligor. A key-management scheme for distributed sensor
networks. In Proceedings of the 9th ACM Conference on Computer and Communications
Security, pages 41-47. ACM Press, 2002.

7. Saurabh Ganeriwal, Srdjan Capkun, Chih-Chieh Han, and Mani B. Srivastava. Secure time
synchronization service for sensor networks. In R S e '05: Proceedings ofthe 4th ACM
workshop on Wireless security, pages 97-106, New York, NY, USA, 2005. ACM Press.

8. Vipul Gupta, Matthew Millard, Stephen Fung, Yu Zhu, Nils Gura, Hans Eberle, and Sheuel-
ing Chang Shantz. Sizzle: A standards-based end-to-end security architecture for the embed-
ded internet. In Third IEEE International Conference on Pervasive Computing and Commu-
nication (PerCom 2005), Kauai, March 2005.

9. Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheueling Chang Shantz.
Comparing elliptic curve cryptography and rsa on 8-bit CPUs. In Cvptographic Hardware
and Embedded Systems (CHES); 6th International Workshop, pages 1 19-132, August 2004.

10. Joengmin Hwang and Yongdae Kim. Revisiting random key pre-distribution schemes for
wireless sensor networks. In SASN '04: Proceedings of the 2nd ACMworkshop on Security
ofad hoc andsensor networks, pages 43-52. ACM Press, 2004.

11. Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heidemann, and Fabio
Silva. Directed Diffusion for wireless sensor networking. IEEE/ACMTrans. Netw., 11(1):2-
16,2003.

12. Chris Karlof, Naveen Sastry, and David Wagner. TinySec: A link layer security architecture
for wireless sensor networks. In Second ACM Conference on Embedded Networked Sensor
Systems (SensSys 2004), November 2004.

Authenticated Query Flooding in Sensor Networks 49

13. A. Kroller, D. Pfisterer, C. Buschmann, S. P. Fekete, and S. Fischer. Shawn: A new approach
to simulating wireless sensor networks. In Design, Analysis, and Simulation ofDistributed
Systems, SpringSim 2005, April 2005.

14. Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. The design
of an acquisitional query processor for sensor networks. In SIGMOD '03: Proceedings of
the 2003 ACMSIGMOD International Conference on Management ofData, pages 491-502,
New York, NY, USA, 2003. ACM Press.

15. Alfied J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook ofApplied
Cryptography. CRC Press, Boca Raton, FL, 1997.

16. moteiv Corp. Telos revision B datasheet. Available at http : //www . rnoteiv. corn/
products/docs/telos-revb-datasheet.pdf.

17. J. Ni and S. Chandler. Connectivity properties of a random radio network. IEE Communica-
tions, 14 1 :389-296, August 1994.

18. Adrian Perrig, Robert Szewczyk, J. D. Tygar, Victor Wen, and David E. Culler. SPINS:
security protocols for sensor networks. Wireless Networks, 8(5):521-534, 2002.

19. Ronald L. Rivest. The RC5 encryption algorithm. In Fast Software Encqption, pages 86-96,
1994.

20. Stefaan Seys and Bart Preneel. Efficient cooperative signatures: A novel authentication
scheme for sensor networks. In 2nd International Conference on Security in Pervasive Com-
puting, number 3450 in LNCS, pages 86 - 100, April 2005.

21. Feng Xue and P. R. Kumar. The number of neighbors needed for connectivity of wireless
networks. Wirel. Netw., lO(2): 169-1 81, 2004.

22. Sencun Zhu, Shouhuai Xu, Sanjeev Setia, and Sushi1 Jajodia. Establishing pair-wise keys for
secure communication in ad hoc networks: A probabilistic approach. In IEEE International
Conference on Network Protocols, November 2003.

