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Abstract. Many anonymous applications offer unconditional anonymity to their 
users. However, this can provoke abusive behavior. Dissatisfied users will drop 
out or liability issues may even force the system to suspend or cease its services. 
Therefore, controlling abuse is as important as protecting the anonymity of le- 
gitimate users. However, designing such applications is no sinecure. This paper 
presents a methodology for designing controlled anonymous environments. The 
methodology generates a conceptual model that compromises between privacy 
requirements and control requirements. The conceptual model allows to derive 
performance and trust properties and easily maps to control mechanisms. 

1 Introduction 

Many existing privacy-enhancing applications (anonymous mail systems, anonymous 
publication services, etc) offer unconditional anonymity to their users. As uncondi- 
tional anonymity can provoke abusive behavior (spam mail, publishing copyrighted or 
criminal contents, etc) and as new application domains are explored (anonymous pay- 
ments, anonymous auctions, etc), anonymity control becomes an extremely important 
issue. However, designing controlled anonymous applications is no sinecure because of 
several reasons: 

- Opposite requirements. A reasonable trade-off must be found between the interests 
of the users (which mainly have privacy requirements) and the interests of the sys- 
tem administrators and law enforcement (which mainly have control requirements). 

- Cornplexig of building blocks. Anonymous credentials [2,3] are used as building 
block for anonymity control. However, enhancing an application with anonymous 
credentials while preserving the anonymity requirements is no sinecure. Some mod- 
els achieve an acceptable level of control but do not comply with the anonymity 
requirements. Others do not succeed to capture all control requirements. 

This paper presents a methodology that eases the design of controlled anonymous 
applications. The advantages of the methodology are fourfold. First, the methodology 
allows designers to express anonymity requirements and control requirements at a high 

Please use the following format when citing this chapter: 
Author(s) [insert Last name, First-name initial(s)], 2006, in IFIP International Federation for Information 
Processing, Volume 201, Security and Privacy in Dynamic Environments, eds. Fischer-Hubner, S., Rannenberg, 
K., Yngstrom, L., Lindskog, S., (Boston: Springer), pp. [insert page numbers]. 
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level. Second, the methodology generates a conceptual model from which anonymityl- 
trusb'performance properties can be derived. Third, the methodology provides altema- 
tive design decisions that partially avoid conflicts between requirements and proposes 
reasonable conflict resolution strategies. Fourth, the conceptual model can easily be 
mapped to control mechanisms. 

The paper is organized as follows: section 2 describes some terminology; an overview 
of the methodology is given in section 3. Section 4 evaluates the methodology. Section 5 
discusses related work. We conclude in section 6 with a summary of the major achieve- 
ments. 

2 Basic terminology 

This section defines the basic terminology that is used in the rest of this paper, namely 
actions, environmental attributes and rights. 

An action is a sequence of interactions between two subjects: a user and a service 
provider3. The set of actions in a particular system is A = { A l ,  ... , A h ) .  Actions are 
either anonymous or identifiable. An action is identifiable if any publicly known unique 
environmental attribute of the sender is revealed when the action is performed. Other- 
wise, it is anonymous. 

An environmental attribute is a user's attribute whose lifetime extends to multiple 
actions. E = ( € 1 ,  . .., E L )  defines the set of environmental attributes. Access to certain 
services can depend on the value of these attributes. Some environmental attributes 
(such as a mailbox address) are unique and others (such as age) aren't. A special type of 
environmental attribute is defined, namely ID. ID refers to any publicly known unique 
environmental attribute (such as SSN, driver's license number, etc) of an individual. 

A right is a token that is required to perform an action. Each right r ,  belongs to 
a type Ri. R = {R1, ..., R,) defines the set of right types. We assume the follow- 
ing properties of rights4. First, the values of a set of environmental attributes can be 
stored in a right. Users retrieve new rights when performing certain actions success- 
fully. Thereafter, the user can prove the ownership of that right. In addition, the subject 
may choose to prove any attribute (or property of these attributes). Hence, rights are 
used to fulfil access control conditions. We further assume that two or more proofs of 
the same right cannot be linked unless the value of a unique environmental attribute is 
proven. Moreover, a proof can be deanonymizable. If so, the proof can be linked to the 
right itself by a designated external entity if a condition is fulfilled. 

3 Design methodology 

First, the requirements are classified according to four categories: privacy requirements, 
control requirements, performance requirements and trust requirements. Next, a sam- 

Pfitzmann [ l l ]  distinguishes between senders and recipients. PRIME [I]  distinguishes be- 
tween users and data controllers. Hence, the terminology depends on the specific setting in 
which the concepts are used. 
Rights are introduced at the conceptual design phase to enforce control requirements. At the 
implementation phase, rights are mapped to anonymous credentials. 
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ple application is introduced on which the design steps will be applied. The conceptual 
design phase is discussed in the third subsection. Thereafter, we focus on how con- 
flicts between design decisions and requirements can be avoidedresolved. Finally, the 
conceptual model is transformed using high-level credential primitives. 

3.1 Requirements 

Privacy requirements Privacy requirements are typically defined in terms unlinka- 
bilities between two items. Unlinkable(x, y)  expresses that the two items x and y 
may not be linked. In our methodology, x and y are either actions or environmen- 
tal attributes. However, unlinkability requirements between application data can eas- 
ily be transformed to unlinkability requirements between actions. Assume that d i  E 
appl-data(ai) and d j  E appldata(a j ) ,  then Unlinkable(&, d j )  can be transformed 
to Unlinkable(ai, a j ) .  Pfitzmann [ l  11 distinguishes between anonymity and unlinka- 
bility. However, each anonymity requirement can easily be transformed to an unlink- 
ability requirement as follows: ~ n o n ~ m o u s ( a i )  * Unlinkable(ai,ID). Although 
coarse-grained parameters reduce the maximal amount of unlinkability requirements, 
many expressions are still possible. The maximal amount of unlinkability requirements 
of an application with 8 actions and 7 environmental attributes is (8 + 7) = 225. 
To reduce the amount of anonymity requirements that have to be expressed explicitly, 
unlinkability requirements are split according to three categories: high priority require- 
ments should be preserved in all circumstances; moderate priority requirements should 
be preserved as long as the user abides the rules; low priority requirements are not ex- 
pressed explicitly. However, the methodology aims to preserve unlinkabilities as much 
as possible. 

Control requirements In controlled environments, access to certain services is re- 
stricted. The access requirements are split according to three categories. First, orderlmul- 
tiplicity constraints restrict the order of actions and the number of times actions may be 
performed. Second, service providers may enforce users to authenticate. Authentication 
can either be identifiable or attribute-based. In the latter case, the user must reveal the 
value (or properties) of environmental attributes. 

Unfortunately, access policies cannot prevent all types of abusive behavior. Con- 
trol measures are defined to discourage such behavior. However, control measures are 
performed only if some type of abusive behavior is detected: ful f i l s (a i ,  c o d )  -+ 

measure. The methodology supports three types of control measures. First, the sys- 
tem may demand to reveal the identity of the user (i.e, accountability). Second, it must 
be possible to revoke permissions of the subject. Third, the system may need to link 
attributes from the same user. 

Performance requirements Modelling anonymitylcontrol requirements may decrease 
the performance of the system. First, proofslinitializations of rights increase the pro- 
cessing time per action. Second, service providers have to store evidence to enable con- 
trol measures. Moreover, the system may be more attractive if rights are stored on smart 
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cards. However, the storage capacity of smart cards is limited. Therefore, the stakehold- 
ers can define an upper bound for the amount of proofs/initializations per action, the 
maximal amount of rights in the system and the maximal amount of evidence that has 
to be stored. 

Trust requirements Trust requirements are also defined from two viewpoints. Users 
fundamentally mistrust system entities. They expect them to collaborate with each other 
and to combine their knowledge. Consequently, at least one trusted external entity 
should be required to reveal certain links between items. On the other hand, the sys- 
tem needs to rely on entities to make evidence available when performing a control 
measure. 

3.2 Description of the application 

The design steps that are introduced in the next sections are applied to a sample appli- 
cation, namely an integrated student environment. Users (i.e, students) register at the 
registration desk R . Users must reveal uniquely identifying information when register- 
ing. After registration, they can create a mailbox and activate an e-learning environment. 
The mail servers and the e-learning environment are administered by M and E respec- 
tively. An address is assigned to each mailbox. Students can only retrieve mail from 
their own mailbox. 

Students have to prove the discipline for which they subscribed to activate the e- 
learning environment successfully. After successful activation, students can perform 
certain actions (such as viewing announcements, consulting schedules, etc) within the 
e-learning environment under a pseudonym identifier pid. They can also submit com- 
plaints anonymously. Moreover, they can register for the courses within their discipline 
after which they can take self-tests about the course and participate in course discus- 
sions on chat boards under a nym. Each course is administered by the teacher T 

Users must be held accountable for sending abusive mail and for submitting offen- 
sive messages to chat boards. Further, system should take measures to discourage spam. 
In addition, one high priority unlinkability requirement and three moderate priority un- 
linkability requirements are expressed: 

UR:: Unlinkable(pid,ZD) 
UR?: Unlinkable(address,ID) 
U R T :  Unlinkable(send, address) 
UR?: Unlinkable(nym,ID) 

3.3 Conceptual design phase 

The conceptual design phase consists of three steps and uses multiple graph-based for- 
malisms. In the initial design step, multiplicity/order constraints are modelled and rep- 
resented in a Flow Graph. Next, the Flow Graph is transformed to a Petri Net represen- 
tation which is further enhanced with access constraints. Finally, control measures are 
modelled. In addition, a linkability graph is used to evaluate the anonyrnity/trust proper- 
ties. As multiple formalisms are used, the semantics of each attribute within a formalism 
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and a set of rules to transform a model within one formalism to a model within another 
formalism must be defined. For a detailed description of the transformation rules, we 
refer to [9 ] .  

Flow Graph In the initial design step, multiplicify/order constraints are represented 
graphically by a Flow Graph FG = {A, E). Each vertex represents one action A i E A. 
Each directed edge e = [Ai, Aj] defines that action Ai must precede action Aj. More- 
over, a multiplicity is assigned to each edge. The multiplicity (with multiplicity (e) E 
N U m) denotes the number of times action A may be performed after action Ai. The 
order dependencies in the student application are represented in figure 1. Note that the 
service provider is assigned to each action. 

I createMB: M le-learning activation: E/ 
m A  m m o  n 

1 send: M 1 / retrieve: M 1 submit complaint: E I /course registration: TI -1 

Fig. 1. Flow Graph. 

Petri Net The Flow Graph is transformed to a Petri Net. A Petri Net is a four-tuple 
(A, R, P, Z). Each transition corresponds to an action A E A; each place R E R 
defines a container of rights of the same type; each token within a place R defines a 
right ri E R, each input arc [R, A] E P defines that the user must spend a right r E R 
to perform action A; each output arc [R, A] E Z corresponds to a right r E R that is 
retrieved when action A E A is performed successfully. A natural number is assigned 
to each input arc and each output arc. This number defines the number of rights that are 
spent and retrieved respectively. The default value is 1. 

Each node in the Flow Graph maps to a transition in the Petri Net. The transfor- 
mation of an edge in the Flow Graph depends on its multiplicity. A bidirectional arc 
between a place and a transition denotes that the number of valid tokens in the place is 
not changed when the transition has fired (see figure 2). Semantically, a bidirectional 
arc defines that the user must prove the ownership of a right; a unidirectional input arc 
defines a right that is spent. 

After transformation, the Petri Net is enhanced with access constraints. First, each 
input arc is labelled with a set of (properties of) environmental attributes that a user 
must prove to perform a certain action. For instance, the user must prove the discipline 
disc for which he subscribed when activating the e-learning environment. Similarly, 
the user must prove that the course for which he wants to take a self-test forms part 
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of his curriculum. Second, each output arc is labelled with a set of attributes that are 
initialized. Note that each attribute must be initialized before it is used in proofs. Figure 
2 represents the Petri Net that is derived from the 

Flow Graph enhanced with constraints on environmental attributes. Several perfor- 
mance properties can be derived from the Petri Net. The number of input and output 
arcs connected to an action define the number of proofs and initializations respectively. 
As each token is mapped to a credential (see section 3.5), the maximal number of tokens 
is linear to the amount of storage space for users. The latter property can be derived by 
running Petri Net simulations. For other properties that can be derived from Petri Nets, 
see [8]. Among others, liveness shows how often actions can be performed,persistence 
investigates if enabled actions remain enabled after performing other actions, etc. 

discuss 
9 9  topic 

R6 pid other 
action 

Fig. 2. Petri Net. 

Linkability graph A linkability graph LG, = {U, L )  is used to analyze the (un)linka- 
bility properties in the system. Each unit u E U is either an action, a right or unique 
environmental attribute. The set of entities to which the unit is revealed are assigned 
to each node. Each 1 E L defines a direct link between two units. Two properties are 
assigned to each direct link, namely a set of additional entities (typically extemaWtrusted 
entities) that are required to link both units and the conditions that must be fulfilled to 
link them. 

A set of rules is defined to generate the LG, from the Petri Net. The full lines in 
figure 3 denote the direct links6 that can be derived from the Petri Net. Moreover, a set 
of queries are defined on LG,. For instance, all paths between two given units that can 
be linked by any given subset of entities can be queried. 

Modelling control measures In the next design step, control measures are modelled. 
To perform a control measure successfully, the system must be able to link the illicit 
action actionillicit to another ~nit~,,,,~. To reveal the identity of a subject, the illicit 

Moreover, a cardinality ratio can be assigned to each link. It returns the maximal number of 
unit instances to which a given unit instance can be linked. 
For simplicity, the set of entities to which each unit is revealed is omitted in fig. 3. 
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Fig. 3. Linkability graph. 

action must be linked to any publicly identifying information ID. To deny a user to ac- 
cess a certain service, the illicit action must be linked to a right that is required to access 
the service. Frequently, units cannot be linked directly. The set of control measures that 
are possible in the current model can be derived from LG,. For that purpose, LG, is 
extended with conditional links that can be enforced using the following property that 
is defined on rights in section 2: a deanonyrnizableproof can be linked to the right itsev 
by a designated external entity i f a  condition is fulfilled. Hence, if a subject sends an 
offensive message to a chat board, that unacceptable action can be linked conditionally 
to R9. As R9 is retrieved when accessing the chat board, access~ha t  board can be 
linked conditionally to R8, etc. The dotted lines in figure 3 denote the conditional links 
that can be enforced to take a countermeasure if some type of abuse occurs in action 
discuss-topic. A right that is linked (in)directly to the illicit action in the extended 
linkability graph can be revoked. Similarly, the identity of a subject can be revealed if 
the illicit action can be linked to ID. Hence, the designer can get an overview of all 
possible control measures given a particular abuse. 

Thereafter, the designer marks the desired control measures. All paths between the 
illicit action and the identity or the right that must be revoked can automatically be 
derived from the extended linkability graph. For instance, the following path can be 
used to reveal the identity of the subject after he has sent an offensive message (dead 
threat, blackmail, etc) to the chat board: 

Pael = [ discuss-topic, R9, access-chat-board, R8,  course-registration, R4, 
elearning-activation, R1, subscription,ID] 

If multiple paths exist to enforce a control measure, one path is selected. The se- 
lection strategy can depend on multiple factors: the path length (which is related to the 
amount of evidence that is stored), the trust level of each involved entity and the number 
of entities that are relied on, etc. 

However, certain paths may also conflict with different types of requirements. As 
Unlinkable(pid,ID) is a high priority requirement, selecting the path PSe1 to enforce 
the accountability measure is unacceptable (see figure 3). A selected path may also 
clash with trust requirements if at least one entity that has to deliver evidence is not 
trusted by the system. Finally, the amount of evidence that is stored by selecting a path 
may be unacceptable. 
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Therefore, a set of alternative strategies (or patterns) are defined to avoid con- 
flicts7. These strategies enhance the Petri Net with new transitions, places andor arcs. 
For instance, the conflict discussed above can be avoided by introducing a new place 
R10 and three new arcs, namely [subscription, RlO], [RlO, courseregistration] and 
[course..registration, RlO]. Hence, an alternative path can be selected to enforce the 
accountability measure. Finally, the LG, is updated with new (conditional) links based 
on the selected path. 

3.4 Conflict avoidance versus conflict resolution 

Multiple alternatives exist to model control measures. Hence, conflicts between con- 
trol requirements and anonymityltrust requirements can partially be avoided. However, 
some conflicts cannot be resolved by simply applying another strategy. As new arcs may 
be introduced, the set of proofs per action may increase which may imply conflicts with 
performance requirements. If so, it might be possible to avoid conflicts by revising the 
control measures that were modelled before (i.e, the methodology can be enhanced with 
automatic backtracking). This means that acceptable alternatives for previous control 
measures are tried if no acceptable solution is available for the current control measure. 

If the backtracking algorithm fails too, a strategy must be defined to resolve con- 
flicts. Abandoning the current control measure is reasonable if the priority of the control 
measure is low. 

Another strategy is to weakedremove other requirements. For instance, the maxi- 
mal acceptable amount of proofs may be increased for one or multiple actions. Sim- 
ilarly, certain unlinkability requirements can be omitted prior to rerunning the back- 
tracking algorithm. 

A more advanced strategy is to provide the designer (andor stakeholders) with a 
set of alternatives. Although the backtracking algorithm fails to return an alternative 
without conflicts, it may successfully return models for which the number of conflicts 
andor for which the sum of the priorities of the conflicting requirements is lower than 
a predefined number. 

3.5 Implementation phase 

Anonymous credentials are used as building blocks to realize the model. Idemix [3] 
is an anonymous credential system that helps to realize anonymous yet accountable 
transactions. In this section, some rules of thumb are summarized to generate credential 
primitives. We refer to [9] for a detailed overview of the realization of the conceptual 
model. 

Each right R E R corresponds to a credential type. Input/output arcs are trans- 
formed to credential showicredential issue protocols. Credential shows sometimes re- 
sult in a transcript that can be deanonymized by a third party if a particular condition is 
fulfilled. Deanonymization reveals the nym on which the credential was issued. More- 
over, application data can be signed during a credential show. 

[9] gives an overview of alternative strategies. 
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In addition, the paths that are assigned to control measures are mapped to chains of 
evidence. Each element in a chain defines an atomic piece of evidence at the implemen- 
tation level that is required to perform the control measure. 

3.6 Evaluation of the student environment 

The optimized Petri Net for sample application is depicted in figure 4. A subset of 
properties that can be derived automatically from the models are summarized below. 

complaint perform 

other action self-test 

Fig. 4. Optimized Petri Net model. 

Performance properties The maximum number of tokens (i.e, credentials) in R .={RO, 
R1, R2, R3, R5, R10) is 4. The maximum number of tokens in R ,={R4, R7) is n (with 
n defines the number of courses). The space that is required to store one credential is 
slightly overestimated to 4 kB. Hence, all tokens that are required to go through ac- 
tivations, to use the mail services and use a subset of services within the e-leaming 
environment (i.e, R,) can be stored on a smart card with 32 kB of rewritable mem- 
ory. All services can be accessed from a smart card with 64 kB of rewritable memory 
assuming that the number of courses n 5 12. Moreover, the processing time per ac- 
tion remains acceptable: only one proof is required for each type of action that can be 
performed unlimited. 

Control measures The entities that are required to perform a control measure can au- 
tomatically be derived from the linkability graph and is listed below. We used a single 
trusted deanonymizer D to reveal certain conditional links. However, trust can be dis- 
tributed over a set of entities. The evidence that must be stored by each individual entity 
is omitted for simplicity. 

(send, spam) -+ denyPermission(send) / J J 

(discuss-topic, o f f ens i ve )  -+ reveal (ID) 
(send, criminal) + reveal(ID) 

R M E T D  
J J J 
J J J 
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Anonymity properties The entities that are required to link two given units and the 
conditions that must be fulfilled to link them can also be queried on the linkability 
graph. Among others, AR? : Unlinkable(pid,ID) is preserved unconditionally. The 
table below returns the link conditions between environmental attributeslactions that 
are used in UR?, UR? and UR? (see section 3.2). For instance, criminaVspam mails 
can be linked to the users' mailbox address. However, only criminal mails (illegal con- 
tents, blackmail, etc) can be linked to the identity of the initiator. 

4 Discussion 

ID 
address 

nym 
send 

Multi-paradigm modelling is introduced as a challenging approach for domain-specific 
modelling in [6] and has proven its feasibility in many fields. The advantage of us- 
ing multiple formalisms in the design process of controlled anonymous applications is 
twofold. First, vertical multi-modelling ( F G  versus Petri Net) allows to model at dif- 
ferent levels of abstraction. Second, horizontal multi-modelling (Petri Net versus LG ,) 
allows to derive models that allow for analysis and evaluation. Moreover, Atom3 [5] 
provided a powerful tool to define formalisms and generate models within the prede- 
fined formalism. 

The methodology allows to define multiple types of access requirements and con- 
trol measures. Moreover, it provides powerful evaluation mechanisms and alternatives. 
Therefore, it may certainly ease the design other applications with interactions between 
users and service providers such as business and e-government environments. However, 
future research is needed to extend the methodology to environments (such as P2P sys- 
tems) with dynamic access policies and variable service providers. In this paper, only a 
subset of the methodology is presented. First, the actions that are defined in the sample 
application are static blocks. However, or-splitslor-joins constructs [8] allow to assign 
conditions on initializerslproofs. For instance, a right to retrieve a driver's license is only 
granted if the subject passed the practical exam successfully. Second, all environmen- 
tal attributes in the sample application are constants. However, the methodology also 
allows to enhance the application with environmental variables. Mutators are assigned 
to output arcs. They specify how the value of these variables is updated. For instance, 
the amount of available disk space decreaseslincreases if the subject storeslremoves 
files, the reputation level of a participant in an auction system may change after each 
transaction, etc. 

ID address nYm send 
- crimin. offensive crimin. 

crimin. - crimin. A offensive crimin. V spam 
offensive crimin. A of fensive - crimin. A of fensive 

crimin. crimin. V spam crimin. A offensive - 

5 Related work 

The methodology is complementary with existing desigdevaluation tools. K. Irwin and 
T. Yu [7] introduce a formal framework that reasons about the acceptability of attribute 
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based access control policies with respect to identifiability and information sensitivity. 
The identifiability is the property of how specifically an attacker can narrow down the 
identity of a user given the properties that he has disclosed. The sensitivity represents 
the impact of revealing information. Additional parameters can be considered to decide 
about the acceptability of a certain access policy such as asymmetric attributes, cross- 
attribute predicates, benefit analysis, etc. However, these parameters are often difficult 
to quantify. 

E. Van Herreweghen [13] shows how various service providers' behavior can be 
made verifiable and how trust of users and service providers in the correct operation 
of other service providers could be minimized by defining appropriate liabilities and 
punishments in service providers' certificates. The liabilities specify the obligations 
towards service providers to reveal information depending on business agreements and 
contracts. 

A. Pashalidis and C. Mitchell [lo] consider timing attacks that may be launched by 
colluding organizations who wish to link actions from the same subject and propose 
solutions to tackle those attacks. 

Graph-based models [4,14] already exist for anonymitylunlinkability analysis. How- 
ever, there are some important differences. First, existing models do not consider con- 
ditional links. Although omitting this feature is feasible to analyze anonymity prop- 
erties in unconditional anonymous applications, evaluating conditional links becomes 
extremely important in controlled anonymous applications. Second, the current models 
analyze the anonymity properties towards one single entity (i.e, attackerlprofiler). Our 
approach is more flexible as multiple entities are considered. On the contrary, some 
models support probabilistic links. Note that additional rules can be defined to add prob- 
abilistic links to LG,. However, estimating reliable probabilities is often very complex 
and depends on many factors: the setting in which the system is used (i.e, the number of 
participants, etc), the semantics of application data (i.e, the message contents, etc), etc. 
Hence, those models are more appropriate for profiling purposes whereas LG , is a use- 
ful tool to analyze unlinkability properties at the design stage of controlled anonymous 
applications. 

6 Conclusion 

In this paper, we presented a methodology for designing applications with two opposite 
types of requirements: privacy and control requirements. Using multiple models allows 
to evaluate anonymity properties, trust properties and performance properties. Several 
alternatives are defined at each design step that partially avoid conflicts between re- 
quirements. Moreover, fair conflict resolution strategies are defined. The final model 
foresees an easy mapping to control mechanisms. The paper also discusses how the 
methodology can be combined with other tools to improve certain properties. However, 
future research is required to apply the methodology to settings with dynamic access 
control policies and variable service providers. 
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