
A Methodology for Designing Controlled Anonymous
Applications

Vincent Naessensl and Bart De Decker2

K.U.Leuven Campus Kortrijk, Department of Computer Science,
E. Sabbelaan 53, 8500 Kortrijk, Belgium

Vincent.Naessens@kuleuven-kortrijk.be
K.U.Leuven, Department of Computer Science,

Celestijnenlaan 200A, 3001 Heverlee, Belgium
Bart.DeDecker@cs.kuleuven.be

Abstract. Many anonymous applications offer unconditional anonymity to their
users. However, this can provoke abusive behavior. Dissatisfied users will drop
out or liability issues may even force the system to suspend or cease its services.
Therefore, controlling abuse is as important as protecting the anonymity of le-
gitimate users. However, designing such applications is no sinecure. This paper
presents a methodology for designing controlled anonymous environments. The
methodology generates a conceptual model that compromises between privacy
requirements and control requirements. The conceptual model allows to derive
performance and trust properties and easily maps to control mechanisms.

1 Introduction

Many existing privacy-enhancing applications (anonymous mail systems, anonymous
publication services, etc) offer unconditional anonymity to their users. As uncondi-
tional anonymity can provoke abusive behavior (spam mail, publishing copyrighted or
criminal contents, etc) and as new application domains are explored (anonymous pay-
ments, anonymous auctions, etc), anonymity control becomes an extremely important
issue. However, designing controlled anonymous applications is no sinecure because of
several reasons:

- Opposite requirements. A reasonable trade-off must be found between the interests
of the users (which mainly have privacy requirements) and the interests of the sys-
tem administrators and law enforcement (which mainly have control requirements).

- Cornplexig of building blocks. Anonymous credentials [2,3] are used as building
block for anonymity control. However, enhancing an application with anonymous
credentials while preserving the anonymity requirements is no sinecure. Some mod-
els achieve an acceptable level of control but do not comply with the anonymity
requirements. Others do not succeed to capture all control requirements.

This paper presents a methodology that eases the design of controlled anonymous
applications. The advantages of the methodology are fourfold. First, the methodology
allows designers to express anonymity requirements and control requirements at a high

Please use the following format when citing this chapter:
Author(s) [insert Last name, First-name initial(s)], 2006, in IFIP International Federation for Information
Processing, Volume 201, Security and Privacy in Dynamic Environments, eds. Fischer-Hubner, S., Rannenberg,
K., Yngstrom, L., Lindskog, S., (Boston: Springer), pp. [insert page numbers].

112 Vincent Naessens and Bart De Decker

level. Second, the methodology generates a conceptual model from which anonymityl-
trusb'performance properties can be derived. Third, the methodology provides altema-
tive design decisions that partially avoid conflicts between requirements and proposes
reasonable conflict resolution strategies. Fourth, the conceptual model can easily be
mapped to control mechanisms.

The paper is organized as follows: section 2 describes some terminology; an overview
of the methodology is given in section 3. Section 4 evaluates the methodology. Section 5
discusses related work. We conclude in section 6 with a summary of the major achieve-
ments.

2 Basic terminology

This section defines the basic terminology that is used in the rest of this paper, namely
actions, environmental attributes and rights.

An action is a sequence of interactions between two subjects: a user and a service
provider3. The set of actions in a particular system is A = { A l , ... , A h) . Actions are
either anonymous or identifiable. An action is identifiable if any publicly known unique
environmental attribute of the sender is revealed when the action is performed. Other-
wise, it is anonymous.

An environmental attribute is a user's attribute whose lifetime extends to multiple
actions. E = (€ 1 , . .., E L) defines the set of environmental attributes. Access to certain
services can depend on the value of these attributes. Some environmental attributes
(such as a mailbox address) are unique and others (such as age) aren't. A special type of
environmental attribute is defined, namely ID. ID refers to any publicly known unique
environmental attribute (such as SSN, driver's license number, etc) of an individual.

A right is a token that is required to perform an action. Each right r , belongs to
a type Ri. R = {R1, ..., R,) defines the set of right types. We assume the follow-
ing properties of rights4. First, the values of a set of environmental attributes can be
stored in a right. Users retrieve new rights when performing certain actions success-
fully. Thereafter, the user can prove the ownership of that right. In addition, the subject
may choose to prove any attribute (or property of these attributes). Hence, rights are
used to fulfil access control conditions. We further assume that two or more proofs of
the same right cannot be linked unless the value of a unique environmental attribute is
proven. Moreover, a proof can be deanonymizable. If so, the proof can be linked to the
right itself by a designated external entity if a condition is fulfilled.

3 Design methodology

First, the requirements are classified according to four categories: privacy requirements,
control requirements, performance requirements and trust requirements. Next, a sam-

Pfitzmann [l l] distinguishes between senders and recipients. PRIME [I] distinguishes be-
tween users and data controllers. Hence, the terminology depends on the specific setting in
which the concepts are used.
Rights are introduced at the conceptual design phase to enforce control requirements. At the
implementation phase, rights are mapped to anonymous credentials.

A Methodology for Designing Controlled Anonymous Applications 113

ple application is introduced on which the design steps will be applied. The conceptual
design phase is discussed in the third subsection. Thereafter, we focus on how con-
flicts between design decisions and requirements can be avoidedresolved. Finally, the
conceptual model is transformed using high-level credential primitives.

3.1 Requirements

Privacy requirements Privacy requirements are typically defined in terms unlinka-
bilities between two items. Unlinkable(x, y) expresses that the two items x and y
may not be linked. In our methodology, x and y are either actions or environmen-
tal attributes. However, unlinkability requirements between application data can eas-
ily be transformed to unlinkability requirements between actions. Assume that d i E
appl-data(ai) and d j E appldata(a j) , then Unlinkable(&, d j) can be transformed
to Unlinkable(ai, a j) . Pfitzmann [l 11 distinguishes between anonymity and unlinka-
bility. However, each anonymity requirement can easily be transformed to an unlink-
ability requirement as follows: ~ n o n ~ m o u s (a i) * Unlinkable(ai,ID). Although
coarse-grained parameters reduce the maximal amount of unlinkability requirements,
many expressions are still possible. The maximal amount of unlinkability requirements
of an application with 8 actions and 7 environmental attributes is (8 + 7) = 225.
To reduce the amount of anonymity requirements that have to be expressed explicitly,
unlinkability requirements are split according to three categories: high priority require-
ments should be preserved in all circumstances; moderate priority requirements should
be preserved as long as the user abides the rules; low priority requirements are not ex-
pressed explicitly. However, the methodology aims to preserve unlinkabilities as much
as possible.

Control requirements In controlled environments, access to certain services is re-
stricted. The access requirements are split according to three categories. First, orderlmul-
tiplicity constraints restrict the order of actions and the number of times actions may be
performed. Second, service providers may enforce users to authenticate. Authentication
can either be identifiable or attribute-based. In the latter case, the user must reveal the
value (or properties) of environmental attributes.

Unfortunately, access policies cannot prevent all types of abusive behavior. Con-
trol measures are defined to discourage such behavior. However, control measures are
performed only if some type of abusive behavior is detected: ful f i l s (a i , c o d) -+

measure. The methodology supports three types of control measures. First, the sys-
tem may demand to reveal the identity of the user (i.e, accountability). Second, it must
be possible to revoke permissions of the subject. Third, the system may need to link
attributes from the same user.

Performance requirements Modelling anonymitylcontrol requirements may decrease
the performance of the system. First, proofslinitializations of rights increase the pro-
cessing time per action. Second, service providers have to store evidence to enable con-
trol measures. Moreover, the system may be more attractive if rights are stored on smart

114 Vincent Naessens and Bart De Decker

cards. However, the storage capacity of smart cards is limited. Therefore, the stakehold-
ers can define an upper bound for the amount of proofs/initializations per action, the
maximal amount of rights in the system and the maximal amount of evidence that has
to be stored.

Trust requirements Trust requirements are also defined from two viewpoints. Users
fundamentally mistrust system entities. They expect them to collaborate with each other
and to combine their knowledge. Consequently, at least one trusted external entity
should be required to reveal certain links between items. On the other hand, the sys-
tem needs to rely on entities to make evidence available when performing a control
measure.

3.2 Description of the application

The design steps that are introduced in the next sections are applied to a sample appli-
cation, namely an integrated student environment. Users (i.e, students) register at the
registration desk R . Users must reveal uniquely identifying information when register-
ing. After registration, they can create a mailbox and activate an e-learning environment.
The mail servers and the e-learning environment are administered by M and E respec-
tively. An address is assigned to each mailbox. Students can only retrieve mail from
their own mailbox.

Students have to prove the discipline for which they subscribed to activate the e-
learning environment successfully. After successful activation, students can perform
certain actions (such as viewing announcements, consulting schedules, etc) within the
e-learning environment under a pseudonym identifier pid. They can also submit com-
plaints anonymously. Moreover, they can register for the courses within their discipline
after which they can take self-tests about the course and participate in course discus-
sions on chat boards under a nym. Each course is administered by the teacher T

Users must be held accountable for sending abusive mail and for submitting offen-
sive messages to chat boards. Further, system should take measures to discourage spam.
In addition, one high priority unlinkability requirement and three moderate priority un-
linkability requirements are expressed:

UR:: Unlinkable(pid,ZD)
UR?: Unlinkable(address,ID)
U R T : Unlinkable(send, address)
UR?: Unlinkable(nym,ID)

3.3 Conceptual design phase

The conceptual design phase consists of three steps and uses multiple graph-based for-
malisms. In the initial design step, multiplicity/order constraints are modelled and rep-
resented in a Flow Graph. Next, the Flow Graph is transformed to a Petri Net represen-
tation which is further enhanced with access constraints. Finally, control measures are
modelled. In addition, a linkability graph is used to evaluate the anonyrnity/trust proper-
ties. As multiple formalisms are used, the semantics of each attribute within a formalism

A Methodology for Designing Controlled Anonymous Applications 11 5

and a set of rules to transform a model within one formalism to a model within another
formalism must be defined. For a detailed description of the transformation rules, we
refer to [9] .

Flow Graph In the initial design step, multiplicify/order constraints are represented
graphically by a Flow Graph FG = {A, E). Each vertex represents one action A i E A.
Each directed edge e = [Ai, Aj] defines that action Ai must precede action Aj. More-
over, a multiplicity is assigned to each edge. The multiplicity (with multiplicity (e) E
N U m) denotes the number of times action A may be performed after action Ai. The
order dependencies in the student application are represented in figure 1. Note that the
service provider is assigned to each action.

I createMB: M le-learning activation: E/
m A m m o n

1 send: M 1 / retrieve: M 1 submit complaint: E I /course registration: TI -1

Fig. 1. Flow Graph.

Petri Net The Flow Graph is transformed to a Petri Net. A Petri Net is a four-tuple
(A, R, P, Z). Each transition corresponds to an action A E A; each place R E R
defines a container of rights of the same type; each token within a place R defines a
right ri E R, each input arc [R, A] E P defines that the user must spend a right r E R
to perform action A; each output arc [R, A] E Z corresponds to a right r E R that is
retrieved when action A E A is performed successfully. A natural number is assigned
to each input arc and each output arc. This number defines the number of rights that are
spent and retrieved respectively. The default value is 1.

Each node in the Flow Graph maps to a transition in the Petri Net. The transfor-
mation of an edge in the Flow Graph depends on its multiplicity. A bidirectional arc
between a place and a transition denotes that the number of valid tokens in the place is
not changed when the transition has fired (see figure 2). Semantically, a bidirectional
arc defines that the user must prove the ownership of a right; a unidirectional input arc
defines a right that is spent.

After transformation, the Petri Net is enhanced with access constraints. First, each
input arc is labelled with a set of (properties of) environmental attributes that a user
must prove to perform a certain action. For instance, the user must prove the discipline
disc for which he subscribed when activating the e-learning environment. Similarly,
the user must prove that the course for which he wants to take a self-test forms part

1 16 Vincent Naessens and Bart De Decker

of his curriculum. Second, each output arc is labelled with a set of attributes that are
initialized. Note that each attribute must be initialized before it is used in proofs. Figure
2 represents the Petri Net that is derived from the

Flow Graph enhanced with constraints on environmental attributes. Several perfor-
mance properties can be derived from the Petri Net. The number of input and output
arcs connected to an action define the number of proofs and initializations respectively.
As each token is mapped to a credential (see section 3.5), the maximal number of tokens
is linear to the amount of storage space for users. The latter property can be derived by
running Petri Net simulations. For other properties that can be derived from Petri Nets,
see [8]. Among others, liveness shows how often actions can be performed,persistence
investigates if enabled actions remain enabled after performing other actions, etc.

discuss
9 9 topic

R6 pid other
action

Fig. 2. Petri Net.

Linkability graph A linkability graph LG, = {U, L) is used to analyze the (un)linka-
bility properties in the system. Each unit u E U is either an action, a right or unique
environmental attribute. The set of entities to which the unit is revealed are assigned
to each node. Each 1 E L defines a direct link between two units. Two properties are
assigned to each direct link, namely a set of additional entities (typically extemaWtrusted
entities) that are required to link both units and the conditions that must be fulfilled to
link them.

A set of rules is defined to generate the LG, from the Petri Net. The full lines in
figure 3 denote the direct links6 that can be derived from the Petri Net. Moreover, a set
of queries are defined on LG,. For instance, all paths between two given units that can
be linked by any given subset of entities can be queried.

Modelling control measures In the next design step, control measures are modelled.
To perform a control measure successfully, the system must be able to link the illicit
action actionillicit to another ~nit~,,,,~. To reveal the identity of a subject, the illicit

Moreover, a cardinality ratio can be assigned to each link. It returns the maximal number of
unit instances to which a given unit instance can be linked.
For simplicity, the set of entities to which each unit is revealed is omitted in fig. 3.

A Methodology for Designing Controlled Anonymous Applications 11 7

Fig. 3. Linkability graph.

action must be linked to any publicly identifying information ID. To deny a user to ac-
cess a certain service, the illicit action must be linked to a right that is required to access
the service. Frequently, units cannot be linked directly. The set of control measures that
are possible in the current model can be derived from LG,. For that purpose, LG, is
extended with conditional links that can be enforced using the following property that
is defined on rights in section 2: a deanonyrnizableproof can be linked to the right itsev
by a designated external entity i f a condition is fulfilled. Hence, if a subject sends an
offensive message to a chat board, that unacceptable action can be linked conditionally
to R9. As R9 is retrieved when accessing the chat board, access~ha t board can be
linked conditionally to R8, etc. The dotted lines in figure 3 denote the conditional links
that can be enforced to take a countermeasure if some type of abuse occurs in action
discuss-topic. A right that is linked (in)directly to the illicit action in the extended
linkability graph can be revoked. Similarly, the identity of a subject can be revealed if
the illicit action can be linked to ID. Hence, the designer can get an overview of all
possible control measures given a particular abuse.

Thereafter, the designer marks the desired control measures. All paths between the
illicit action and the identity or the right that must be revoked can automatically be
derived from the extended linkability graph. For instance, the following path can be
used to reveal the identity of the subject after he has sent an offensive message (dead
threat, blackmail, etc) to the chat board:

Pael = [discuss-topic, R9, access-chat-board, R8, course-registration, R4,
elearning-activation, R1, subscription,ID]

If multiple paths exist to enforce a control measure, one path is selected. The se-
lection strategy can depend on multiple factors: the path length (which is related to the
amount of evidence that is stored), the trust level of each involved entity and the number
of entities that are relied on, etc.

However, certain paths may also conflict with different types of requirements. As
Unlinkable(pid,ID) is a high priority requirement, selecting the path PSe1 to enforce
the accountability measure is unacceptable (see figure 3). A selected path may also
clash with trust requirements if at least one entity that has to deliver evidence is not
trusted by the system. Finally, the amount of evidence that is stored by selecting a path
may be unacceptable.

11 8 Vincent Naessens and Bart De Decker

Therefore, a set of alternative strategies (or patterns) are defined to avoid con-
flicts7. These strategies enhance the Petri Net with new transitions, places andor arcs.
For instance, the conflict discussed above can be avoided by introducing a new place
R10 and three new arcs, namely [subscription, RlO], [RlO, courseregistration] and
[course..registration, RlO]. Hence, an alternative path can be selected to enforce the
accountability measure. Finally, the LG, is updated with new (conditional) links based
on the selected path.

3.4 Conflict avoidance versus conflict resolution

Multiple alternatives exist to model control measures. Hence, conflicts between con-
trol requirements and anonymityltrust requirements can partially be avoided. However,
some conflicts cannot be resolved by simply applying another strategy. As new arcs may
be introduced, the set of proofs per action may increase which may imply conflicts with
performance requirements. If so, it might be possible to avoid conflicts by revising the
control measures that were modelled before (i.e, the methodology can be enhanced with
automatic backtracking). This means that acceptable alternatives for previous control
measures are tried if no acceptable solution is available for the current control measure.

If the backtracking algorithm fails too, a strategy must be defined to resolve con-
flicts. Abandoning the current control measure is reasonable if the priority of the control
measure is low.

Another strategy is to weakedremove other requirements. For instance, the maxi-
mal acceptable amount of proofs may be increased for one or multiple actions. Sim-
ilarly, certain unlinkability requirements can be omitted prior to rerunning the back-
tracking algorithm.

A more advanced strategy is to provide the designer (andor stakeholders) with a
set of alternatives. Although the backtracking algorithm fails to return an alternative
without conflicts, it may successfully return models for which the number of conflicts
andor for which the sum of the priorities of the conflicting requirements is lower than
a predefined number.

3.5 Implementation phase

Anonymous credentials are used as building blocks to realize the model. Idemix [3]
is an anonymous credential system that helps to realize anonymous yet accountable
transactions. In this section, some rules of thumb are summarized to generate credential
primitives. We refer to [9] for a detailed overview of the realization of the conceptual
model.

Each right R E R corresponds to a credential type. Input/output arcs are trans-
formed to credential showicredential issue protocols. Credential shows sometimes re-
sult in a transcript that can be deanonymized by a third party if a particular condition is
fulfilled. Deanonymization reveals the nym on which the credential was issued. More-
over, application data can be signed during a credential show.

[9] gives an overview of alternative strategies.

A Methodology for Designing Controlled Anonymous Applications 11 9

In addition, the paths that are assigned to control measures are mapped to chains of
evidence. Each element in a chain defines an atomic piece of evidence at the implemen-
tation level that is required to perform the control measure.

3.6 Evaluation of the student environment

The optimized Petri Net for sample application is depicted in figure 4. A subset of
properties that can be derived automatically from the models are summarized below.

complaint perform

other action self-test

Fig. 4. Optimized Petri Net model.

Performance properties The maximum number of tokens (i.e, credentials) in R .={RO,
R1, R2, R3, R5, R10) is 4. The maximum number of tokens in R ,={R4, R7) is n (with
n defines the number of courses). The space that is required to store one credential is
slightly overestimated to 4 kB. Hence, all tokens that are required to go through ac-
tivations, to use the mail services and use a subset of services within the e-leaming
environment (i.e, R,) can be stored on a smart card with 32 kB of rewritable mem-
ory. All services can be accessed from a smart card with 64 kB of rewritable memory
assuming that the number of courses n 5 12. Moreover, the processing time per ac-
tion remains acceptable: only one proof is required for each type of action that can be
performed unlimited.

Control measures The entities that are required to perform a control measure can au-
tomatically be derived from the linkability graph and is listed below. We used a single
trusted deanonymizer D to reveal certain conditional links. However, trust can be dis-
tributed over a set of entities. The evidence that must be stored by each individual entity
is omitted for simplicity.

(send, spam) -+ denyPermission(send) / J J

(discuss-topic, o f f ens i ve) -+ reveal (ID)
(send, criminal) + reveal(ID)

R M E T D
J J J
J J J

120 Vincent Naessens and Bart De Decker

Anonymity properties The entities that are required to link two given units and the
conditions that must be fulfilled to link them can also be queried on the linkability
graph. Among others, AR? : Unlinkable(pid,ID) is preserved unconditionally. The
table below returns the link conditions between environmental attributeslactions that
are used in UR?, UR? and UR? (see section 3.2). For instance, criminaVspam mails
can be linked to the users' mailbox address. However, only criminal mails (illegal con-
tents, blackmail, etc) can be linked to the identity of the initiator.

4 Discussion

ID
address

nym
send

Multi-paradigm modelling is introduced as a challenging approach for domain-specific
modelling in [6] and has proven its feasibility in many fields. The advantage of us-
ing multiple formalisms in the design process of controlled anonymous applications is
twofold. First, vertical multi-modelling (F G versus Petri Net) allows to model at dif-
ferent levels of abstraction. Second, horizontal multi-modelling (Petri Net versus LG ,)
allows to derive models that allow for analysis and evaluation. Moreover, Atom3 [5]
provided a powerful tool to define formalisms and generate models within the prede-
fined formalism.

The methodology allows to define multiple types of access requirements and con-
trol measures. Moreover, it provides powerful evaluation mechanisms and alternatives.
Therefore, it may certainly ease the design other applications with interactions between
users and service providers such as business and e-government environments. However,
future research is needed to extend the methodology to environments (such as P2P sys-
tems) with dynamic access policies and variable service providers. In this paper, only a
subset of the methodology is presented. First, the actions that are defined in the sample
application are static blocks. However, or-splitslor-joins constructs [8] allow to assign
conditions on initializerslproofs. For instance, a right to retrieve a driver's license is only
granted if the subject passed the practical exam successfully. Second, all environmen-
tal attributes in the sample application are constants. However, the methodology also
allows to enhance the application with environmental variables. Mutators are assigned
to output arcs. They specify how the value of these variables is updated. For instance,
the amount of available disk space decreaseslincreases if the subject storeslremoves
files, the reputation level of a participant in an auction system may change after each
transaction, etc.

ID address nYm send
- crimin. offensive crimin.

crimin. - crimin. A offensive crimin. V spam
offensive crimin. A of fensive - crimin. A of fensive

crimin. crimin. V spam crimin. A offensive -

5 Related work

The methodology is complementary with existing desigdevaluation tools. K. Irwin and
T. Yu [7] introduce a formal framework that reasons about the acceptability of attribute

A Methodology for Designing Controlled Anonymous Applications 121

based access control policies with respect to identifiability and information sensitivity.
The identifiability is the property of how specifically an attacker can narrow down the
identity of a user given the properties that he has disclosed. The sensitivity represents
the impact of revealing information. Additional parameters can be considered to decide
about the acceptability of a certain access policy such as asymmetric attributes, cross-
attribute predicates, benefit analysis, etc. However, these parameters are often difficult
to quantify.

E. Van Herreweghen [13] shows how various service providers' behavior can be
made verifiable and how trust of users and service providers in the correct operation
of other service providers could be minimized by defining appropriate liabilities and
punishments in service providers' certificates. The liabilities specify the obligations
towards service providers to reveal information depending on business agreements and
contracts.

A. Pashalidis and C. Mitchell [lo] consider timing attacks that may be launched by
colluding organizations who wish to link actions from the same subject and propose
solutions to tackle those attacks.

Graph-based models [4,14] already exist for anonymitylunlinkability analysis. How-
ever, there are some important differences. First, existing models do not consider con-
ditional links. Although omitting this feature is feasible to analyze anonymity prop-
erties in unconditional anonymous applications, evaluating conditional links becomes
extremely important in controlled anonymous applications. Second, the current models
analyze the anonymity properties towards one single entity (i.e, attackerlprofiler). Our
approach is more flexible as multiple entities are considered. On the contrary, some
models support probabilistic links. Note that additional rules can be defined to add prob-
abilistic links to LG,. However, estimating reliable probabilities is often very complex
and depends on many factors: the setting in which the system is used (i.e, the number of
participants, etc), the semantics of application data (i.e, the message contents, etc), etc.
Hence, those models are more appropriate for profiling purposes whereas LG , is a use-
ful tool to analyze unlinkability properties at the design stage of controlled anonymous
applications.

6 Conclusion

In this paper, we presented a methodology for designing applications with two opposite
types of requirements: privacy and control requirements. Using multiple models allows
to evaluate anonymity properties, trust properties and performance properties. Several
alternatives are defined at each design step that partially avoid conflicts between re-
quirements. Moreover, fair conflict resolution strategies are defined. The final model
foresees an easy mapping to control mechanisms. The paper also discusses how the
methodology can be combined with other tools to improve certain properties. However,
future research is required to apply the methodology to settings with dynamic access
control policies and variable service providers.

122 Vincent Naessens and Bart De Decker

References

1. E. Bangerter, J. Camenisch, and A. Lysyanskaya. A C~yptographic Framework for the Con-
trolled Release Of Certified Data. In Twelfth International Workshop on Security Protocols,
2004.

2. S. Brands. Rethinking Public Key Infrastructure and Digital Certificates Building in Privacy.
PhD thesis, Eindhoven Institute of Technology, 1999.

3. Jan Camenisch, Els Van Herreweghen. Design and Implementation of the Idemix Anonymous
Credential System. Research Report RZ 3419, IBM Research Division, June 2002. Also ap-
peared in ACM Computer and Communication Security, 2002.

4. D. Cvrcek and V. Matyas. On the role of contextual information for privacy attacks and clas-
sification. In Privacy and Security Aspects of Data Mining workshop, IEEE ICDM, Brighton,
UK, 1 November 2004.

5. J. de Lara, H. Vangheluwe, and M. Alfonseca. Meta-modelling and graph grammars for multi-
paradigm modelling in AToM3. In Software and Systems Modeling (SoSyw, 3(3): pages 194-
209, August 2004.

6. J. de Lara and H. Vangheluwe. Model-Based Development: Meta-
Modelling, Transformation and Verification. The Idea Group Inc., 2005.
http://www.cs.mcgill.ca~ hv/publications/04.0Omanagement.pdf

7. K. Irwin and T. Yu. An identifiability-based access control model for privacy protection in
open systems. In The Electronic Society archive Proceedings of the 2004 ACMworkshop on
Privacy in the electronic society. Washington DC, p. 43-5 1.

8. T. Murata. Petri Nets: Properties, Analysis amd Applications. In Proceedings of the IEEE, Vol
77(4). pp.: 541-579.

9. V. Naessens and B. De Decker. Design patterns for modelling controlled anonymous applica-
tions. DistriNet Report, Dept. of Computer Science, K.U.Leuven, 2005.

10. A. Pashalidis and C. J. Mitchell. Limits to anonymity when using credentials. In Proceedings
of the 12th International Workshop on Security Protocols, Cambridge, UK, Springer-Verlag
LNCS, April 2004.

11. A. ~fitzmann and M. Kohntopp. Anonymity, unobservability and pseudonymity: a proposal
for terminology. In Designing Privacy Enhancing Technologies: Proceedings ofthe Interna-
tional Workshop on the Design Issues in Anonymity and Observability, LNCS 2009, pages
1-9. Springer-Verlag, 2000.

12. W.B. Teeuw, H. van den Berg. On the Quality of Conceptual Models. In Proceedings of the
ER'97 Workshop on Behavioral Models and Design Transformations: Issues and Opportuni-
ties in Conceptual Modeling.

13. E. Van Herreweghen. A Risk Driven Approach to Designing Privacy Enhanced Secure
Applications. In Proceedings of the 19th IFIP International Information Security Confer-
ence(SECZOO4) - Embedded Workshop Privacy and Anonymity in Networked and Distributed
Systems (I-NetSec'04), August 2004.

14. A. Zugenmaier, M. Kreutzer, and G. Muller. The Freiburg Privacy Diamond: An attacker
model for a mobile computing environment. In Kommunikation in Verteilten Systemen (KiVS)
'03, Leipzig, 2003.

