
EXPLORATION OF SEQUENTIAL DEPTH
BY EVOLUTIONARY ALGORITHMS

Nicole Drechsler
Institute of Computer Science
University of Bremen
28359 Bremen, Germany
nd @ informatik.uni-bremen.de

Rolf Drechsler
Institute of Computer Science
University of Bremen
28359 Bremen, Germany
drechsie@informatik.uni-bremen.de

Abstract Verification has become one of the major bottlenecks in today's circuit and sys­
tem design. Up to 80% of the overall design costs are due to checking the cor­
rectness. Formal verification based on Bounded Model Checking (BMC) is a
very powerful method that allows to prove the correctness of a device. In BMC
the circuits behavior is considered over a finite time interval, but for the user it
is often difficult to determine this interval for a given Device Under Verification
(DUV).

In this paper we present a simulation based approach to automatically de­
termine the sequential depth of a Finite State Machine (FSM) corresponding to
the DUV. An Evolutionary Algorithm (EA) is applied to get high quality results.
Experiments are given to demonstrate the efficiency of the approach.

Keywords: Verification of sequential circuits, evolutionary algorithms, simulation based ap­
proach

!• Introduction
Modem circuits contain up to several hundred million transistors. In the

meantime it has been observed that verification becomes the major bottleneck
in circuit and system design, i.e. up to 80% of the overall design costs are due
to verification. This is one of the reasons why recently several methods have
been proposed as alternatives to classical simulation, since it cannot guarantee
sufficient coverage of the design. E.g. in [Bentley, 2001] it has been reported

Please use the following format when citing this chapter:
Drechsler, Nicole, Drechsler, Rolf, 2006, in IFIP International Federation for
Information Processing, Volume 200, VLSI-SOC: From Systems to Chips, eds. Glesner,
M., Reis, R., Indmsiak, L., Mooney, V, Eveking, H., (Boston: Springer), pp. 73-83.

74 Nicole Drechsler, Rolf Drechsler

that for the verification of the Pentium IV more than 200 bilUon cycles have
been simulated, but this only corresponds to 2 CPU minutes, if the chip is run
with 1 GHz.

As alternatives, formal verification or symbolic simulation have been pro­
posed and in the meantime these techniques have been successfully applied
in many industrial projects. To allow for an early detection of design errors,
model checking has been used. While "classical" CTL-based model checking
[Burch et al., 1990] can only be applied to medium sized designs, approaches
based on Bounded Model Checking (BMC) as discussed in [Biere et al., 1999]
give very good results when used for complete blocks with up to 100k gates.

But there is one inherent problem when applying BMC: The circuit is con­
sidered over a fixed time interval and to give complete proofs it is important to
determine the sequential depth of the circuit. Recently in [Yen et al., 2002] an
approach based on simulation in combination with a toggle-heuristic has been
proposed, but experiments have shown that the method might result in over-
or under-approximations and often gives sub-optimal results. This makes the
technique hard to use for a designer or a verification engineer. An exact so­
lution to this problem based on a problem formulation as quantified Boolean
functions has been proposed in [Mneimneh and Sakallah, 2003]. A SAT-solver
is applied to compute the optimal result, but due to the complexity of real-
world circuits this technique cannot be applied to larger problem instances.

In this paper we present a simulation based algorithm for computation of the
sequential depth of FSMs. The quality of the simulated vectors is evaluated us­
ing techniques from Evolutionary Algorithms (EAs). It has been observed that
EAs work very well in testing applications [Corno et al., 1996b; Como et al.,
1996a; Rudnick et al , 1997; Keim et al., 2001; Drechsler and Drechsler, 2002]
and here the underlying problem is very similar. Experiments show that the
same quality can be obtained as the exact approach but using simulation tech­
niques only. By this, the EA technique combines the best of the two approaches
from [Yen et al., 2002] and [Mneimneh and Sakallah, 2003], i.e. we get the op­
timal results but for the evaluation no time consuming proof techniques, like
BDD or SAT, are used, but only simulation that can be carried out in linear
time in the circuit size.

The paper is structured as follows: First, basic definitions of sequential cir­
cuits and sequential depth computation are outlined. Then the proposed EA
for depth approximation is presented. Experimental results show the quality of
the presented approach and finally, the paper is summarized.

2. Preliminaries
A synchronous sequential circuit can be described using a Finite State Ma­

chine (FSM). An FSM is a 5-tuple M = (/, 0 , 5 , 5 , A), where / is the input

Exploration of Sequential Depth By Evolution Algorithms 75

Initial

9 L

State

y(i)

i 1.
• { — • c

L

y{t)

c

Time frame 1 Time frame t

Figure 1. Iterative description of a sequential circuit

set, O is the output set and S is the set of states. 5 : / x 5 —> 5 is the next-state
function and A : / x 5 —> O is the output function. Since we consider a gate
level realization of the FSM, we have / = B^, O = B ^ and 5 = B ^ with
B = {0,1}. fc denotes the number of primary inputs, I denotes the number of
primary outputs, and m denotes the number of memory elements. The func­
tions 5 and A are computed by a combinational circuit C. The inputs (outputs)
of the combinational circuit, which are connected to the outputs (inputs) of the
memory elements, are called secondary inputs (outputs). Sometimes the sec­
ondary inputs are called present state variables and the secondary outputs are
called next state variables.

For the description of our algorithms we use the following notations: X —
x(1) , . . . , a;(n) denotes the input sequence of depth n. Si denotes the next state
defined by x{%) and 5i_i, 1 < i < n.

Using these notations the next state is given by

5(50,0 - {
50

5(a;(t), 5 (5 o , t - l))
ift = 0
otherwise

In doing so, we consider a synchronous sequential circuit as an iterative net­
work (see Figure 1).

The state transition graph of an FSM is a labeled directed graph T = (y, E)
where each node v ^V corresponds to a state 5 ,̂ 0 < i < \S\ — 1, of M, and
each edge e = (y,,w), v,,w ^V, corresponds to a transition from state 5̂ to
state Sy The edge is labeled with y e I^ which is the input vector that affects
the transition from 5̂ to Sj, i.e. 6{y, si) = 5j, 0 < i^j < \S\ — 1.

A path is a sequence of nodes v of T where all nodes are different. Using
the definitions above, the sequential depth of an FSM is given as follows:

Consider an FSM M and its corresponding state transition graph T with a single
initial state SQ. Find a path of maximum length starting in SQ such that each
node along the path is visited only once and additionally, the path has maximum
length.

EXAMPLE 1 In Figure 2 a state transition graph with four states is illustrated.
If the initial state is 00, only path 00-10-11-01 with length 3 exists. All other

76 Nicole Drechsler, Rolf Drechsler

0 — - - - o

Figure 2. State transition graph

paths have a shorter length, i.e. paths 00-01-11 and 00-10-11 have length 2.
The resulting sequential depth of the given example is 3.

In the next section we present a simulation based optimization technique for
determining the sequential depth of an FSM.

3. Evolutionary Algorithm
In this section the different components of the EA are described. Instead of

a single solution, EAs consider a whole set - also called a population. First,
the encoding of these elements and their representation is presented in the fol­
lowing sections. The "critical part" of the EA is to measure the quality of
simulation sequences. This is done in several steps using multi-objective op­
timization. Then, the evolutionary operators used are described and finally,
the overall algorithmic flow - including the detailed choices for the parameter
settings - is discussed.

Representation
Each individual in the population represents a set of m input vectors Y. An

upper limit on the size of the vector set is given by the user and the length
of one vector is given by the number of input variables k. An individual is a
vector set represented by a binary string of length k - \Y\.

During the initialization phase, these strings are randomly chosen.

Objective Function
Simulation. Each individual is evaluated by the objective function to deter­
mine its quality. For the evaluation of the objective function the set of vectors
represented by an individual is simulated starting from the initial state SQ.

Exploration of Sequential Depth By Evolution Algorithms 11

• Starting from the initial state SQ the set of next states is calculated:

where yi eY.

• Then for each new state in S and Y the set of next states is calculated.
I.e.:

IV̂ I \Snew\

i=l j=l

where yi eY and Sj G Snew

• This is repeated, until no new state is found.

A sketch of the algorithm is given in Figure 3. The sets 5, Snew and Spresent
are initialized with the initial state. In set S all states reached during the ex­
ploration are included. Snew describes only the set of new states reached in the
present exploration step and Spresent is set S one time step before. Then for
each vector in Y and each state in Snew the next states are calculated.

If no new state is found the algorithm terminates and the present value of
depth is calculated by the input set Y,

Multi-objective Optimization. For EAs it has been observed that often
a single objective function is not sufficient to allow for high quality results.
Using only the computed depth as optimization criterion would prefer input
vectors that calculate a maximum (instead of the sequential) depth of the given
FSM. Thus, several specialized techniques have been developed following the
paradigm of Multi-Objective Optimization (MOO) [Deb, 2001].

In MOO several criteria are considered in parallel during optimization. The
classical approach of combining multiple criteria is the weighted-sum, i.e. the
fitness values of the objectives are combined using linear (or quadratic) combi­
nation. One drawback of the method is e.g. that distinct solutions can compute
the same fitness. Thus the algorithm is not able to distinguish between these
solutions. EAs are very well suited to deal with multi-objective problems, be­
cause several solutions are considered in parallel in a population. For this,
MOO in EAs has been studied very well in both, theorie and practice. In our
application we make use of the MOO technique proposed in [Drechsler et al.,
1999] that has been integrated in the software library GAME [Goeckel et al ,
1997].

The advantage of GAME's method is that the handling of priorities of se­
lected objectives is supported. For each criterion a priority has to be deter-

78 Nicole Drechsler, Rolf Drechsler

compute-depth (individual) {
S := {so} ;

Onew •= 1^0/ ;
^present '-^^ 1*0/ >

depth := 0 ;
do{

f o r i : = l t o | F | d o {
for j := lto\Snew\do {

s := 6{yi,Sj) ;
S:=SU{s};

}
}

depth := depth +1 ;
^new •== *̂ \ ^present '•>

^present '-^^ O \
} while (Snew 7̂ 0) ;

return depth ;
}

Figure 3. Objective function

priority objective
1 maximize total number of visited states
1 minimize depth
/c, /c = 2 , . . . , depth maximize number of visited states in depth k

Figure 4. Optimization objectives and their priorities

Exploration of Sequential Depth By Evolution Algorithms 79

mined, that ranks *'how important" this objective is. The choices for our appH-
cation are given in Figure 4. As can be seen, two optimization objectives have
the highest priority: the total number of reached states has to be maximized and
the computed depth has to be minimized. Thus, the input sets are optimized
such that a maximum number of states with a minimum depth is reached. Fur­
thermore, objectives with descending priorities maximize the number of states
reached in level fc, 2 < fc < depth. Then the input sets where the states are
visited "as fast as possible" are preferred during the optimization process.

Operators
Now the evolutionary operators that are the "core operators" of EA appli­

cations are described. First, we distinguish between "standard" crossover op­
erators (well-known for EAs [Davis, 1991]) and problem specific operators
[Corno et al., 1996b; Como et al., 1996a; Keim et al., 2001]. In our framework
we only make use of the standard operators and one problem specific "meta
operator", that is a generalization of all the others. Additionally, we make
use of "classical" mutation operators to explore the local region of proposed
solutions.

First, the standard EA operators are briefly reviewed: All operators are di­
rectly applied to binary strings of length / that represent elements in the pop­
ulation. The parent(s) for each operation is (are) determined by Tournament-
selection. For the selection of each parent element two individuals are ran­
domly chosen from the population. Then the better individual - with respect to
its ranking in the population - is selected.

Crossover: Construct two new elements ci and C2 from two parents pi and
P2» where pi and p2 are split in two parts at a cut position i. The first
(second) part of ci (C2) is taken from pi and the second (first) part is
taken from p2- (Notice, that a special case of this operator is the hor­
izontal crossover from [Como et al., 1996a], where the cut position is
chosen only between two test vectors, i.e. test vectors are not split up.)

2-time Crossover: Construct two new elements ci and C2 from two parents
pi and p2, where p\ and p2 are split in three parts at cut positions i and
j . The first (second) part of ci (C2) is taken fxompi (P2), the second part
is taken from p2 (pi) and the last part is again taken from pi (p2)-

Uniform Crossover: Construct two new elements ci and C2 from two parents
pi and p2, where at each position the value is taken with a certain prob­
ability from pi and p2, respectively.

Next, the problem specific operator is presented. The string representation
of a sequence of vectors is interpreted as a two-dimensional matrix, where the

80 Nicole Drechsler, Rolf Drechsler

ZZI X •—
•. .•; • • , M 1

^ ^. Ci C2

Figure 5. Example for Free-Vertical Crossover

x-dimension represents the number of inputs and the y-dimension represents
the number of vectors. The operator works as follows [Keim et al., 2001]:

Free Vertical Crossover: Construct two new elements ci and C2 from two
parents pi and ^2- Determine for each test vector t a cut position it.
Divide each test vector tofpi and p2 in two parts at cut position it- The
first (second) part of each test vector of ci (02) is taken from pi and the
second (first) part is taken from p2- (Notice, that the vertical crossover
from [Como et al., 1996b] is a special case of this operator, if î is equal
for all test vectors t,)

EXAMPLE 2 The behavior of the free vertical crossover is illustrated in Fig­
ure 5. The black filled areas result, if vector sets of different size are consid­
ered; then, the offsprings are filled with randomly generated values. (But, in
our application all individuals have the same length.)

Moreover, three (standard) mutation operators are applied which are based
on bit-flipping at a random position.

Mutation (MUX): Construct one new element c from a parent p by copying
the whole element and changing a value at a randomly chosen position i.

2-time Mutation: Perform MUT two times on the same element.

Mutation with neiglibour: Perform MUT at two adjacent positions on the
same element.

Obviously, all evolutionary operators generate only valid solutions, if they are
applied to binary strings.

Exploration of Sequential Depth By Evolution Algorithms

approximate_sequentiaLdepth (circuit) {
generate j-andom_population () ;

evaluate_population () ;
do{

apply-evolutionary-operators () ;
evaluate.offsprings () ;
update.population () ;

} while (not terminal case);
return (best-element);

}

Figure 6. Sketch of basic algorithm

Algorithm

We now introduce the basic EA which describes the overall flow. (A sketch
is given in Figure 6.)

• The initial population of size \V\ is generated, i.e. the binary strings of
length I are initialized using random values.

• Two parent elements are determined by Tournament-^Qlcciion.

• Two new individuals are created using the evolutionary operators with
given probabilities.

• These new individuals are then mutated by one of the mutation operators
with a fixed mutation rate.

• The quality of the elements is determined by simulation and MOO rank­
ing.

• The elements which lost the tournament selection in the present parent
population are deleted and the offsprings are inserted in the population.

• The algorithm stops if the best element has not changed for 100 genera­
tions.

For the experiments the following parameters have been used: The popu­
lation size is set to \V\ = 24. The vertical crossover is carried out with a
probability of 80% and one out of the standard crossover operators is carried
out with a probability of 20%, respectively. The offsprings are mutated with a
probability of 15% by one of the mutation operators.

82 Nicole Drechsler, Rolf Drechsler

Table 1. Experiments for ISCAS circuits

name
s298
s208
s349
s386
s499
s510
s526
s641
s713
s820
s953
si 196
sl488

1 Sim
18
255
6

n.a.
n.a.
46
150
n.a.
10

n.a.
n.a.
5
21

SAT
18

n.a.
n.a.
7
21
n.a.
n.a.
6
6
10
10
2
21

EA
18
255
6
7
21
46
150
6
6
10
10
2
21

4, Experimental Results
The techniques described in the previous section have been implemented

using the software Hbrary GAME [Goeckel et al., 1997]. All algorithms are
written in C/C + + and the experiments were all run on a SUN Ultra with 256
MByte main memory. As a simulator for evaluation of the objective function
we used a simple functional approach based on the ideas of [Ashar and Malik,
1995]. Here, the underlying BDD package is CUDD from [Somenzi, 2001].
For the experiments a sample of the benchmarks from ISCAS were taken.

The experimental results are given in Table 1. The name of the benchmark is
given in the first column. The columns Sim and ̂ ATgive the results from [Yen
et al., 2002] and [Mneimneh and Sakallah, 2003], respectively. It is important
to notice that Sim obtains estimations only, while SAT givt the exact numbers.
As can be seen, compared to SAT the other technique gives over- as well as
under-approximations, what makes them hard to use in real-world scenarios.

The results of our EA approach are given in the last column. It can be
observed that in all cases the exact results (where this is known) is computed.
But since the EA is based on simulation, it can also be applied to larger circuits.

In this way, the presented technique combines the best of [Yen et al., 2002]
and [Mneimneh and Sakallah, 2003], i.e. very high-quality results are com­
puted but for the evaluation no time consuming proof techniques, like BDD or
SAT, are used. Instead, simulation that can be carried out in linear time in the
circuit size is successfully applied.

Exploration of Sequential Depth By Evolution Algorithms 83

5, Conclusions
In this paper a simulation-based approach for the computation of the se­

quential depth of a FSM has been presented. Due to the choice of the objective
function results of high quality can be obtained. This finds direct application in
BMC, since the depth of the FSM corresponding to the DUV gives the results
for the maximal time interval that has to be considered.

The run time of the algorithm is dominated by the simulation time. For this,
it is a focus of current work to integrate a more efficient parallel simulator in
the GAME software library.

References
Ashar, P. and Malik, S. (1995). Fast functional simulation using branching programs. In Int'l

Conf. on CAD, pages 408-412.
Bentley, B. (2001). Validating the Intel Pentium 4 microprocessor. In Design Automation Conf.,

pages 244-248.
Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., and Zhu, Y. (1999). Symbolic model checking

using SAT procedures instead of BDDs. In Design Automation Conf, pages 317-320.
Burch, J.R., Clarke, E.M., McMillan, K.L., and Dill, D.L. (1990). Sequential circuit verification

using symbolic model checking. In Design Automation Conf, pages 46-51.
Corno, R, Prinetto, P., Rebaudengo, M., and Reorda, M.S. (1996a). GATTO: A genetic algo­

rithm for automatic test pattern generation for large synchronous sequential circuits. IEEE
Trans, on CAD, 15(8):991-1000.

Corno, F., Prinetto, P., Rebaudengo, M., Reorda, M.S., and Mosca, R. (1996b). Advanced tech­
niques for GA-based sequential ATPG. In European Design & Test Conf, pages 375-379.

Davis, L. (1991). Handbook of Genetic Algorithms, van Nostrand Reinhold, New York.
Deb, K. (2001). Multi-objective Optimization using Evolutionary Algorithms. John Wiley and

Sons, New York.
Drechsler, N., Drechsler, R., and Becker, B. (1999). A new model for multi-objective optimiza­

tion in evolutionary algorithms. In Int'l Conference on Computational Intelligence (Fuzzy
Days), volume 1625 of LNCS, pages 108-117. Springer Verlag.

Drechsler, R. and Drechsler, N. (2002). Evolutionary Algorithms for Embedded System Design.
Kluwer Academic Publisher.

Goeckel, N., Drechsler, R., and Becker, B. (1997). GAME: A software environment for using
genetic algorithms in circuit design. In Applications of Computer Systems, pages 240-247.

Keim, M., Drechsler, N., Drechsler, R., and Becker, B. (2001). Combining GAs and symbolic
methods for high quality test of sequential circuits. Jour of Electronic Testing: Theory and
Applications, 17:141-142.

Mneimneh, M. and Sakallah, K. (2003). SAT-based sequential depth computation. In ASP De­
sign Automation Conf.

Rudnick, E.M., Patel, J.H., Greenstein, G.S., and Niermann, T.M. (1997). Genetic algorithm
framework for test generation. IEEE Trans, on CAD, 16(9): 1034-1044.

Somenzi, F. (2001). Efficient manipulation of decision diagrams. Software Tools for Technology
Transfer, 3(2):lll-l^l.

Yen, C.-C, Chen, K.-C, and Jou, J.-Y. (2002). A practical approach to cycle bound estimation
for bounded model checking. In Int'l Workshop on Logic Synth., pages 149-154.

