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Abstract: This paper addresses the use of low power techniques applied to FIR filter and 
FFT dedicated datapath architectures. New low power arithmetic operators are 
used as basic modules. In FIR filter and FFT algorithms, 2's complement is 
the most common encoding for signed operands. We use a new architecture 
for signed multiplication, which maintains the pure form of an array 
multiplier. This architecture uses radix-2'" encoding, which leads to a 
reduction of the number of partial lines. Each group of m bits uses the Gray 
code, thus potentially further reducing the switching activity both internally 
and at the inputs. The multiplier architecture is applied to the DSP 
architectures and compared with the state of the art. Due to the characteristics 
of the FIR filter and FFT algorithms, which involve multiplications of input 
data with appropriate coefficients, the best ordering of these operations in 
order to minimize the power consumption in the implemented architectures is 
also investigated. As will be shown, the use of the low power operators with 
an appropriate choice of coefficients can contribute for the reduction of power 
consumption of the FIR and FFT architectures. Additionally, a new algorithm 
for the partitioning and ordering of the coefficients is presented. This 
technique is experimented in a Semi-Parallel architecture which enables speed­
up transformation techniques. 
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1. INTRODUCTION 

This work focuses on power optimization techniques at the architectural 
level applied to Digital Signal Processing (DSP) systems '̂" .̂ DSP 
applications require high computational speed and, at the same time, suffer 
from stringent power dissipation constraints^ Power consumption in VLSI 
DSP circuits has gained special attention mainly due to the proliferation of 
high-performance portable battery-powered electronic devices like cellular 
phones, laptop computers, etc. In DSP applications, Finite Impulse Response 
(FIR) and Fast Fourier Transform (FFT) are two of the most widely used 
algorithms. 

In our work, FIR filter and FFT computations are addressed through the 
implementation of dedicated architectures, where the main goal is to reduce 
the power consumption by using transformation techniques. 

Since multiplier modules are common to many DSP applications, one of 
the low power techniques used in this work is the use of efficient multiplier 
architectures in the dedicated DSP architectures^. These multiplier circuits, 
named Hybrid array multipliers, use coding as a method of decreasing the 
switching activity. As observed in this paper, DSP architectures that use the 
multiplier of̂  are more efficient than those that use the common Booth 
multiplier. Power savings above 35% are achievable in the FFT architecture 
using Hybrid array multiplier of̂ . This power reduction is mainly due to the 
lower logic depth in the multiplier circuit, which has a big impact on the 
reduction of the glitching activity in the FFT architectures. 

In this work, the low power arithmetic modules are experimented in 
dedicated FIR filter and FFT architectures. In the FIR implementations, 
combinations of Fully-Sequential and Semi-Parallel architectures with 
pipelined version are explored. For the FFT algorithm. Fully-Sequential and 
Semi-Parallel architectures with pipelined version are also implemented. 

Additionally, we propose an extension to the Coefficient Ordering 
technique^ that aims at reducing the power dissipation by optimizing the 
ordering of the coefficient-data product computation. We have used this 
technique in the FIR and FFT implementations. As will be shown, the 
manipulation of a set of coefficients can contribute for reducing the power 
consumption in the dedicated architectures. 

This work is organized as follows. In Section 2, we discuss the dedicated 
FIR filter and FFT realization. An overview of coding for low power is 
presented in Section 3. Section 4 describes the low power techniques use in 
this work. Performance comparisons between the architectures for the 
different low power techniques are presented in Section 5. Finally, in Section 
6 we discuss the main conclusions of this work. 
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2. DEDICATED FIR AND FFT REALIZATION 

We present Fully-Sequential and Semi-Parallel FIR filter architectures in 
the Pipelined form. The Pipelined version is also explored for the Fully-
Sequential and Semi-Parallel FFT implementation. These different datapath 
architectures are compared with implementations that are 16-bit wide and 
use as examples: i) an 8-order FIR filter ii) a 16-point radix-2 common factor 
FFT with decimation in frequency. As should be emphasized, although we 
have presented FIR and FFT examples with a lower number of coefficients, 
the technique shown in this work could be applied to architectures with any 
coefficient order. However, the results of these more complex architectures 
are limited by the power estimation tool used in this work^. 

2.1 FIR Filter Datapaths 

FIR filtering is achieved by convolving the input data samples with the 
desired unit impulse response of the filter. The output Y[n] of an A -̂tap FIR 
filter is given by the weighted sum of the latest N input data samples X[n\ as 
shown in Eq. (1). 

Y[n\=yH,x[n-i\ (1) 

In the Direct Form FIR filter implementation, in each clock cycle a new 
data sample and the corresponding filter coefficients are simultaneously, 
producing considerable glitching at the primary outputs^. 

In our work, we address this problem by implementing an alternative 
Fully-Sequential architecture, called Pipelined form, as shown in Fig. 1. 

The Fully-Sequential architecture is a manner to reduce hardware 
requirements for the FIR filter algorithm, shown in Fig. 1(a). In the 
sequential implementation the basic idea is to reduce hardware requirements 
by re-using as much of the hardware as possible. 

In order to speed-up the FIR filter computations, we have experimented a 
Semi-Parallel architecture. In this architecture, shown in Fig. 1(b), hardware 
requirements are duplicated with respect to the Fully-Sequential, allowing 
two samples to be processed simultaneously. Again, we have constructed a 
Pipelined version of the Semi-Parallel architecture. 
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Figure 1. FIR Filter Fully-Sequential and Semi-Parallel Implementations 

2.2 FFT Datapaths 

The main goal of the FFT algorithms is to compute the Discrete Fourier 
Transform (DFT) efficiently^. The hierarchical computational blocks in the 
FFT structure are stages, groups, and butterflies. Each stage requires the 
computation of groups, and each group requires the computation of 
butterflies. The butterfly plays a central role in the FFT computation. For 
the common factor FFT algorithm with decimation in frequency, the 
butterfly allows the calculation of complex terms according to Eq. (2) and 
Eq. (3). 

complex complex complex (2) 

D complex (A - B 
V "^complex complex 

)*W^ complex (3) 

As can be observed in the equations above, one complex addition, one 
complex subtraction and one complex multiplication are involved in the 
butterfly block. The arithmetic operators for the complex operation are 
shown in the Fig. 2 for a Fully-Sequential FFT implementation. In this 
figure, the arithmetic operators present in the butterfly block, enable the 
calculation of the real and imaginary parts. The results of these calculation 
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are stored in appropriate register banks shown in the left side and right side 
of the Fig. 2 for the real and imaginary parts respectively. The set of 
multiplexers shown in this figure select the appropriate values to be stored in 
the register banks. Several modules of ROM are required for the storage of 
twiddle factors. We have omitted these modules to minimize the complexity 
of Fig. 2. 

Figure 2. Datapath of FFT Fully-Sequential Implementations 

The presence of a large number of multiplier operators in the FFT 
architecture leads to a significant amount of glitching in a transform 
computation. Thus, we have implemented a pipelined version with the 
insertion of registers at the multiplier outputs, as shown using the dotted 
lines in the Fig. 2. 

In a 16-point Fully-Sequential FFT implementation, 32 real and 32 
imaginary terms are performed in the butterfly (4 stages with 8 butterfly). 
Thus, 33 clock cycles are necessary for a full calculation in the FFT 
architecture (1 cycle for the 16 point load and 32 cycle for a transform 
computation in the butterfly). In order to speed-up the FFT calculation, we 
have implemented a Semi-Parallel architecture, presented in Fig. 3. In this 
architecture, hardware requirements in terms of arithmetic operators are 
duplicated with respect to the Fully-Sequential, because two butterfly are 
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used and two transforms can be performed simultaneously. Thus, the full 
transform calculation is performed using half of the cycles used in the Fully-
Sequential version. Again, we have implemented a Pipelined Semi-Parallel 
architecture, as shown in Fig. 3. 

Figure 3. Datapath of FFT Semi-Parallel Implementations 

2.3 Related Work on FIR and FFT Realization 

Various architectures have been used in FIR filter and FFT realizations, 
where implementations in programmable DSP and hardwired architectures 
are addressed^'^''^ In case of applications where the flexibility of the 
programmable processor is not required, hardwired implementation is the 
preferred choice as such an implementation typically results in higher 
throughput and low power''. 

For the hardwired implementation, architectural transformations have 
targeted performance, power and computational complexity^. A very 
efficient technique when targeting low power consumption is to reduce the 
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supply voltage, resulting in a power reduction proportional to the square of 
the reduction in the supply voltage. With this objective, parallel processing 
and pipelining have been applied to the implementation of FIR filters and 
FFT architectures'*'̂  ̂ "̂ "̂ as a form of recovering the performance loss due to 
the lower supply voltages. 

The work presented in this chapter will build on some of the 
transformation approaches mentioned, specially the techniques that target the 
increase in performance and switching activity reduction. In particular, 
similar transformations will be essayed on pipelined dedicated FIR filter and 
FFT architectures. In our work, we experiment the use of low power 
arithmetic operators in the dedicated architectures. 

In the FIR filter operation, the output is performed by a summation of 
data-coefficient products. Thus, some techniques called Coefficient 
Ordering, Selective Coefficient Negation and Coefficient Scaling have 
addressed the use of coefficient manipulation in order to reduce the 
switching activity in the multipliers inputs^ '̂̂ . The main goal of these 
techniques is to minimize the Hamming distance between consecutive 
coefficients in order to reduce power consumption in the multiplier input and 
data bus. The technique is only applied to a Fully-Sequential architecture. In 
our work an extension of the Coefficient Ordering technique is experimented 
in the FIR and FFT architectures. The proposed technique can be applied to 
both Fully-Sequential and Semi-Parallel architectures. 

3. CODING FOR LOW POWER 

Coding has long been used in communication systems to control the 
statistics of the transmitted data symbols, or in other words, to control the 
spectrum of the transmitted signal^ .̂ 

Low-Power techniques for global communication in CMOS VLSI using 
data encoding methods are overviewed in'^, where it is shown that such 
techniques can decrease the power consumed for transmitting information 
over heavy load communication paths (buses) by reducing the switching 
activity. 

One technique that has been proposed in order to reduce the switching 
activity on buses is One-Hot Coding^ .̂ This technique is a redundant coding 
scheme with a one-to-one mapping between the n-hii data words to be sent 
and the m-bit data words that are transmitted. The main disadvantage of this 
technique is related to the wire quantity required, proportional to 2". 

The Limited-Weight Codes is another technique proposed in order to 
obtain switching activity reduction on buses'^. This technique requires 
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transition signaling in order to reduce the switching activity, since with 
transition signaling only Ts generate transitions. According to* ,̂ transition 
signaling is convenient for low-power as it offers a direct way of controlling 
the bus activity factor simply by reducing the number of logical I's 
transmitted over the bus. 

The Bus-Invert method as a means of encoding words for reducing I/O 
power, in which a word may be inverted and then transmitted if doing so 
reduces the number of transitions^^. In this method an extra bus line, called 
invert is used. 

The Transition Coding and Bit Prediction techniques were used in order 
to reducing the number of transitions observed in data and address buses^^. 
The Transition Coding technique indicates that there is a transition on the 
bus every time the data to be transmitted is a 1 and there is no transition on 
the bus if the data to be transmitted is a 0. The Bit Prediction technique is 
used in address buses that exhibit a very high percentage of addresses that 
are sequential, so that a factor can be used to predict the value of the next 
data word with reasonably high accuracy. 

One of the most promising encodings that can be used to reduce 
switching activity is the Gray code since only one bit changes between 
consecutive values. Therefore, for highly correlated signals the switching 
activity can be reduced significantly^^. This code has been applied to code 
address lines for both instruction access and data access to reduce the 
number of transitions^^. 

As presented above, there is a large number of techniques that resort to 
signal encoding in order to reduce switching activity on buses. These 
techniques have all been applied to address buses where data is highly 
sequential. In^ similar techniques were applied to arithmetic operators that 
operate directly upon different coded inputs. In this work we have 
experimented the use of these operators in the dedicated FIR and FFT 
architectures. 

4. LOW POWER TECHNIQUES 

This section presents different low power techniques that will be 
experimented in the dedicated datapath architectures for DSP. The reduction 
of switching activity is addressed by using low power arithmetic operators 
and the manipulation of the filter and FFT coefficients. 
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4.1 Low Power Arithmetic Operators 

In this section we summarize the methodology of̂  for the generation of 
regular structures for arithmetic operators using signed radix-2'" Hybrid 
representation. 

4.1.1 2's Complement Radix-2'" Hybrid Multiplier Architecture 

The idea of splitting the operands in groups of w-bits and encode each 
group using the Gray code can be used for operands that operate in 2's 
complement representation. Table 1 shows the 2's complement Hybrid 
encoding for 4-bit numbers and m=2. 

Table 1. 2' 
Decimal 

0 
1 
2 
3 

s Complement Hybrid Code Representation for m= 
Hybrid 
0000 
0001 
0011 
0010 

Decimal 
4 
5 
6 
7 

Hybrid 
0100 
0101 
0111 
OHO 

Decimal 
-8 
-7 
-6 
-5 

=2 
Hybrid 

1100 
1101 
1111 
1110 

Decimal 
-4 
-3 
-2 
-1 

Hybrid 
1000 
1001 
1011 
1010 

For the operation of a radix-2'" multiplication, the operands are split into 
group of m bits. Each of these groups can be seen as representing a digit in a 
radix-2'". Hence, the radix-2'" multiplier architecture follows the basic 
multiplication operation of numbers represented in radix-2'^. The radix-2'" 
operation in 2's complement representation is given by Eq. (4). This 
operation is illustrated in Fig. 4. 

m 

AxB = A'xB'-A\_,b^ 2 ^ - " - a ^ _ , a ^ yz?^.2^-""^' (4) 

For the W-m least significant bits of the operands unsigned multiplication 
can be used. The partial product modules at the left and bottom of the array 
need to be different to handle the sign of the operands. 

For this architecture, three types of modules are needed. Type I are the 
unsigned modules used in the previous section. Type II modules handle the 
m-bit partial product of an unsigned value with a 2's complement value. 
Finally, Type III modules that operate on two signed values. Only one Type 
III module is required for any type of multiplier, whereas 2 - ^ - 2 Type II 
modules and (•^- 1)̂  Type I modules are needed. We present a concrete 
example for ^=8 bit wide operands using radix-16 (m=4) in Fig. 5. The 
modules of the architecture are performed by using Hybrid representation. 
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Moreover, as can be observed in the dotted lines of the Fig. 5, the sign 
extension is shown in Hybrid representation (1000 for a negative number). 

Radix-16 
Representation 

Mybrid 
Representation 

U 
sign extension 

Decimal 
Representation 

I 0 0 1 1 I I 0 (-21) 

(1 O O O I I O I O O O O O I O I O 

0 0 0 0 I I 1 Q [ I 0 0 ] 

0 0 0 0 0 I 0 0 1 1 0 0 I 0 I 0 

|40%x0) (256x7) (16x8) (12) 

^ i ^ I 
0 t- 1792 - 128 t- 12 - [Wm 

(a) 

-6 4 

I 1 I 1 0 1 I 0 

1 1 1 0 i\\) 

Oa I I 1 0 1 0 (44) 

1 I 10 1 0 0 I (-1056) 

(1 0 0 0) 1 0 0 0 1 1 0 0 (-8) 

0 0 0 0 101 0 (192) 

I 0 0 0 0 I 1 I 0 1 I 0 0 I (184) 

(b) 

Figure 4. Example of a 2's complement 8-bit wide radix-16 multiplication 

A.̂  A2 Al AO B7 B6 B5 134 A3 A2 Al AO B3 B2 Bl BO 
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zr 
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4 I - ^ 

: 

ij'p^» 

aft )(zero) 

T 
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Figure 5. Example of a 8-bit wide 2's complement radix-16 Hybrid multiplier 
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^A,l Modified Booth Multiplier 

The radix-4 Booth's algorithm (also called Modified Booth) has been 
presented in^\ In this architecture it is possible to reduce the number of 
partial products by encoding the two's complement multiplier. In the circuit 
the control signals (0, +X, +2X, -X and -2X) are generated from the 
multiplier operand for each group of 3-b as shown in the example of Fig. 6 
for a 8 bits wide operation. A multiplexer produces the partial product 
according to the encoded control signal. 

MD 1 0 1 1 0 1 1 1 (-73) 
MR 0 1 0 1 1 0 1 0(0) (+90) 

1 0 1 1 0 1 1 1 0 
0 0 1 0 0 1 0 0 1 
0 1 0 0 1 0 0 1 0 

(2*MD) 
(-MD) 
(-2*MD) 

0 0 0 0 0 0 0 0 0 
0 1 0 0 1 0 0 1 0 

(PP) 

O O O I O O I O O I O (shift) 

0 0 1 0 0 1 0 0 1 

0 0 0 0 1 1 0 1 1 0 1 1 0 (shift) 

1 0 1 1 0 1 1 1 0 

1 1 0 0 0 1 0 0 1 0 1 1 0 C s h i f t ) 

1 1 0 1 1 0 1 1 1 

(-6570) I I I I O O I I O O I O I O I I O (shift) 

Figure 6. Example of a 8-bit wide Modified Booth multiplication 

Common to both architectures is that at each step of the algorithm two 
bits are processed. However, the basic Booth cells are not simple adders as 
in the proposed array multiplier, but must perform addition-subtraction-no 
operation and controlled left-shift of the bits on the multiplicand. Besides 
taking more area, this complexity also makes it more difficult to increase the 
radix value in the Booth architecture. 

4.2 Coefficient Manipulation 

Coefficient ordering can be used as a technique for low power because in 
a FIR filter computation, the summation operation is both commutative and 
associative, and the filter output is independent of the order of computing the 
coefficient product^. Coefficient ordering is used in^ as a technique for low 
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power, where all coefficients are ordered in a Fully-Sequential circuit so as 
to minimize the transitions in the multiplier input and data bus. 

In our work we have experimented an extension of this technique in a 
Semi-Parallel architecture, where the hardware is duplicated and coefficients 
are partitioned into groups of coefficients. Thus, the problem is related to 
finding the best partition for each coefficient by calculating the minimum 
Hamming distance between the coefficients into each group. 

The pseudo-code presented in Fig. 7 describes an example of the 
algorithm that optimizes the partitioning and ordering of the coefficients. In 
the example shown in Fig. 7, the cost function is calculated for all the 
combinations over the coefficients. For the FIR and FFT architectures used 
in this work, the total number of permutations is still reasonable. However, 
for a higher number of coefficients this exhaustive algorithm is less 
attractive due to the time necessary to process the large number of 
combinations. In this case, an heuristic algorithm should be used to get as 
near as possible to the optimal solution. 

7. for all permutations of coefficients H(0- 7) { 

2. partition! =Hamming((HfO],Hn]) + (H[1],H[2]) + 

3. (H[2],H[3]) + (H[3],H[0])); 

4. partition2=Hamming((H[4],H[5]) + (H[5],H[6]) + 

5. (H[6].H[7]) + (H[7],H[0])): 

6. cost function = partition! + partition2; 

7. if(cost function < minimum found) { 

8. save current partition; 

9. minimum^ cost function: 

10. } 

II. } 
Figure 7. Pseudo-code of the algorithm for the generation of coefficient partitioning and 

ordering 

5. RESULTS 

In This section, we discuss the impact of the proposed low power 
techniques on dedicated pipelined FIR filter and FFT architectures. Area, 
delay and power consumption for each architecture are presented. Area is 
given in terms of the number of literals. Delay values were obtained in SIS 
environment^^ using the general delay model from the mcnc library. This 
parameter defines the minimum clock period. Power results were obtained 
with the SLS tool^ using the general delay model. For the power simulation, 
we have applied a random pattern signal with 10.000 input vectors 
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represented in 2's complement. For power consumption comparisons, we 
have chose to compute the power dissipation per sample for the FIR filter 
and the power dissipation per transform for the FFT. 

5.1 Application of the Low Power Arithmetic Operator 

In this section, we present results on use of the Hybrid array ^=2) 
arithmetic operators of Section 4.1 in the FIR and FFT architectures. Area, 
minimum clock period and power consumption are investigated and 
compared to the architectures with Modified Booth operator. 

5.1.1 Area 

Table 2 presents area results for FIR filter and FFT architectures using 
the Hybrid array (m=2) and Modified Booth operators. As can be observed 
in this table, there is significant area difference between the architectures 
with these operators. The Fully-Sequential and Semi-Parallel architectures 
which use the Hybrid array multiplier operators present more area. This due 
to the fact that Hybrid array multipliers require more area than Booth 
circuits. 

Table 2. Area results for the 
Architectur 
Altemativi 

Fully-
Sequential 

Semi-
Parallel 

al 

FIR 
FFT 
FIR 
FFT 

pipelined architectures 
Operators 

Booth 
6427 

24099 
10569 
46000 

Hybrid Array 
8035 

32435 
13785 
58964 

Difference (%) 
Hybrid Array vs. Booth 

+25.0 
+34.6 
+30.4 
+28.2 

5.1.2 Minimum Clock Period 

Although FIR filter and FFT architectures with the Hybrid array 
operators present higher area, these architectures permit a slightly lower 
clock period than the architectures with Booth operators, as shown in Table 
3. This reduction occurs because in the Fully-Sequential and Semi-Parallel 
FIR and FFT architectures the multiplier circuit is present in the critical path 
(Fig. 1, Fig. 2 and Fig. 3). For this arithmetic operator, the circuit has a lower 
delay value^. 



294 Eduardo A. C. da Costa, Jose C. Monteiro and Sergio Bampi 

Table 3. Minimum Clock Period results in ns for the pipelined architectures. 
Architectur 
Altemativi 

Fully-
Sequential 

Semi-
Parallel 

al 

FIR 
FFT 
FIR 
FFT 

Operators 
Booth 
260.1 
355.0 
258.1 
418.2 

Hybrid Array 
254.8 
342.6 
252.8 
414.1 

Difference (%) 
Hybrid Array vs. Booth 

-2.0 
-3.5 
-2.1 
-1.0 

5,1,3 Power Dissipation 

The Hybrid array and the Modified Booth multiplier applied in this work 
present reduced power consumption values because of the reduction of the 
number of partial product lines. In Table 4 we present the power per sample 
values for the Fully-Sequential and Semi-Parallel FIR architectures in the 
pipelined version, using the Hybrid array multiplier (m=2) and the Modified 
Booth multiplier. 

Table 4. FIR architecture -
Architectural 
Alternatives 

Fully-Sequential 
Semi-Parallel 

- Power per sample (fiW). 
Modified Hybrid Array 

Booth w=2 
215.4 180.7 
188.6 158.2 

Difference(%) 
Hybrid Array vs. Booth 

-16.1 
-16.1 

As can be observed in Table 4, with the use of the Hybrid array 
multiplier power per sample savings above 16% are achievable in the Fully-
Sequential and Semi-Parallel FIR architectures. This occurs because 
multiplier circuits are the main responsible for the power consumption in the 
FIR architectures and the Hybrid array multiplier consumes less power due 
to the simplest structure and smaller critical path and delay values. 

Besides the FIR filter, the FFT architectures also have multiplier circuit 
in the critical path, as can be observed in Fig. 2 and Fig. 3. For the FFT 
structure, the higher number of multiplier circuits in the butterfly produces a 
great amount of glitching activity. Thus, with the use of the Hybrid array 
multiplier, the FFT architectures become significantly more efficient 
presenting close to 30% less power consumption per transform, as shown in 
Table 5. This power reduction is mainly due to the lower logic depth of the 
array multiplier structure which has a big impact on the reduction of the 
amount of glitching in the FFT circuits. 

Table 5. FFT architecture -
Architectural 
Alternatives 

Fully-Sequential 
Semi-Parallel 

- Power per transform (mW). 
Modified Hybrid Array 

Booth m=2 
156.6 110.4 
144.8 92.8 

Difference(%) 
Hybrid Array vs. Booth 

-29.5 
-35.9 
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5.2 Application of Coefficient Manipulation 

In Table 6 we show the power per sample results after using this 
algorithm in the Pipelined Fully-Sequential FIR filter architecture with 
Hybrid array (m=2 and w=4) operators. In this table, it is also shown the 
power per sample results after applying the ordering algorithm to the Semi-
Parallel architecture. 

Table 6. FIR architecture - Power per sample (|iW) 

Fully-
Sequential 

Semi-
Parallel 

Group of 
Bits 
m=2 
m=4 
m=2 
m=4 

Original 
Coefficients 

180.7 
228.5 
158.3 
215.0 

Manipulated 
Coefficients 

176.9 
216.0 
151.1 
201.0 

Difference(%) 
Manip. vs. Orig. 

-3.8 
-12.5 
-6.7 
-13.9 

As shown in Table 6, there is no significant power per sample reduction 
in the FIR architectures with w=2 Hybrid array operator for the set of 
coefficients used in this work. However, for groups of m=4 bits there is a 
higher correlation between these coefficients and the architectures with m=4 
Hybrid array operator present an increasingly power per sample reduction as 
can be observed in Table 6. 

As can be observed in Table 6, for the set of coefficients used in this 
work, the Semi-Parallel architecture using ordering and partitioning 
algorithm presents more power per sample reduction compared to Sequential 
architecture with ordering algorithm. This technique becomes more effective 
in a set of coefficients with higher correlation (m=4). 

The manipulation techniques that have been applied to the Fully-
Sequential and Semi-Parallel architectures show that the correlation between 
coefficients can reduce the switching activity in the multipliers input. In the 
FFT algorithm this aspect becomes more significant due to a higher number 
of coefficients used in all the stages of the FFT. Thus, we have a higher 
opportunity for saving power by the manipulation of coefficients. Table 7 
shows the power per transform results by the application of the manipulation 
technique in the Pipelined Fully-Sequential and Semi-Parallel FFT 
architectures with m=2 and m=4 Hybrid array multiplier. 

In a Semi-Parallel architecture, the coefficients are partitioned into N/4 
groups at each FFT stage. The aspect of applying the ordering technique in a 
smaller group of partitioned coefficients increase the proximity between the 
coefficients. Thus, the w=2 and m=4 Semi-Parallel architecture presents a 
higher power per transform reduction compared to the Sequential 
architecture as can be observed in Table 7. 
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Table 7. FFT architecture - Power per ti 

Fully-
Sequential 

Semi-
Parallel 

Group of 
Bits 
m=2 
m=4 
m=2 
m=4 

ransform (mW) 
Original 

Coefficients 
110.8 
101.1 
93.7 
87.7 

Manipulated 
Coefficients 

91.7 
91.4 
75.5 
70.1 

Difference(%) 
Manip. vs. Orig. 

-17.2 
-9.6 
-19.4 
-20.1 

6. CONCLUSIONS 

In this work, low power arithmetic operators were experimented in the 
FIR and FFT architectures. Performance comparisons for pipelined 
architectures using the array (w=2) and Modified Booth operators were 
investigated and the results showed that, despite higher area shown by the 
architectures with the Hybrid array operators, these architectures can present 
less minimum clock period and power consumption. Due to the 
characteristics of the FIR and FFT algorithms, which are performed by the 
product of input data with appropriate coefficients, the best ordering of these 
coefficients to minimize the power consumption of the implemented 
architectures was also investigated. The results showed that the FFT 
architectures can present more power reduction due to the higher opportunity 
of using the coefficients manipulation technique. 
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