
GRAY ENCODED ARITHMETIC OPERATORS
APPLIED TO FFT AND FIR DEDICATED
DATAPATHS

Eduardo A. C. da Costa\ Jose C. Monteiro^ and Sergio Bampi^
Universidade Catolica dePelotas (UCPel), Pelotas/RS-Brazil; Instituto de Engenhaha e

Sistemas de Computadores (INESC-ID), Lisboa-Portugal; ^Universidade Federal do Rio
Grande do Sul (UFRGS). Porto Alegre/RS-Brazil

Abstract: This paper addresses the use of low power techniques applied to FIR filter and
FFT dedicated datapath architectures. New low power arithmetic operators are
used as basic modules. In FIR filter and FFT algorithms, 2's complement is
the most common encoding for signed operands. We use a new architecture
for signed multiplication, which maintains the pure form of an array
multiplier. This architecture uses radix-2'" encoding, which leads to a
reduction of the number of partial lines. Each group of m bits uses the Gray
code, thus potentially further reducing the switching activity both internally
and at the inputs. The multiplier architecture is applied to the DSP
architectures and compared with the state of the art. Due to the characteristics
of the FIR filter and FFT algorithms, which involve multiplications of input
data with appropriate coefficients, the best ordering of these operations in
order to minimize the power consumption in the implemented architectures is
also investigated. As will be shown, the use of the low power operators with
an appropriate choice of coefficients can contribute for the reduction of power
consumption of the FIR and FFT architectures. Additionally, a new algorithm
for the partitioning and ordering of the coefficients is presented. This
technique is experimented in a Semi-Parallel architecture which enables speed­
up transformation techniques.

Key words: Hybrid encoding, DSP architectures, power consumption.

Please use the following format when citing this chapter:
A. C. da Costa, Eduardo, Monteiro, Jose, C, Bampi, Sergio 2006, in IFIP International
Federation for Information Processing, Volume 200, VLSI-SOC: From Systems to
Chips, eds. Glesner, M., Reis, R., Indrusiak, L., Mooney, V., Eveking, H., (Boston:
Springer), pp. 281-297.

282 Eduardo A. C. da Costa, Jose C. Monteiro and Sergio Bampi

1. INTRODUCTION

This work focuses on power optimization techniques at the architectural
level applied to Digital Signal Processing (DSP) systems '̂" .̂ DSP
applications require high computational speed and, at the same time, suffer
from stringent power dissipation constraints^ Power consumption in VLSI
DSP circuits has gained special attention mainly due to the proliferation of
high-performance portable battery-powered electronic devices like cellular
phones, laptop computers, etc. In DSP applications, Finite Impulse Response
(FIR) and Fast Fourier Transform (FFT) are two of the most widely used
algorithms.

In our work, FIR filter and FFT computations are addressed through the
implementation of dedicated architectures, where the main goal is to reduce
the power consumption by using transformation techniques.

Since multiplier modules are common to many DSP applications, one of
the low power techniques used in this work is the use of efficient multiplier
architectures in the dedicated DSP architectures^. These multiplier circuits,
named Hybrid array multipliers, use coding as a method of decreasing the
switching activity. As observed in this paper, DSP architectures that use the
multiplier of̂ are more efficient than those that use the common Booth
multiplier. Power savings above 35% are achievable in the FFT architecture
using Hybrid array multiplier of̂ . This power reduction is mainly due to the
lower logic depth in the multiplier circuit, which has a big impact on the
reduction of the glitching activity in the FFT architectures.

In this work, the low power arithmetic modules are experimented in
dedicated FIR filter and FFT architectures. In the FIR implementations,
combinations of Fully-Sequential and Semi-Parallel architectures with
pipelined version are explored. For the FFT algorithm. Fully-Sequential and
Semi-Parallel architectures with pipelined version are also implemented.

Additionally, we propose an extension to the Coefficient Ordering
technique^ that aims at reducing the power dissipation by optimizing the
ordering of the coefficient-data product computation. We have used this
technique in the FIR and FFT implementations. As will be shown, the
manipulation of a set of coefficients can contribute for reducing the power
consumption in the dedicated architectures.

This work is organized as follows. In Section 2, we discuss the dedicated
FIR filter and FFT realization. An overview of coding for low power is
presented in Section 3. Section 4 describes the low power techniques use in
this work. Performance comparisons between the architectures for the
different low power techniques are presented in Section 5. Finally, in Section
6 we discuss the main conclusions of this work.

Gray Encoded Arithmetic Operators Applied to FFT and FIR Dedicated 283
Datapaths

2. DEDICATED FIR AND FFT REALIZATION

We present Fully-Sequential and Semi-Parallel FIR filter architectures in
the Pipelined form. The Pipelined version is also explored for the Fully-
Sequential and Semi-Parallel FFT implementation. These different datapath
architectures are compared with implementations that are 16-bit wide and
use as examples: i) an 8-order FIR filter ii) a 16-point radix-2 common factor
FFT with decimation in frequency. As should be emphasized, although we
have presented FIR and FFT examples with a lower number of coefficients,
the technique shown in this work could be applied to architectures with any
coefficient order. However, the results of these more complex architectures
are limited by the power estimation tool used in this work^.

2.1 FIR Filter Datapaths

FIR filtering is achieved by convolving the input data samples with the
desired unit impulse response of the filter. The output Y[n] of an A -̂tap FIR
filter is given by the weighted sum of the latest N input data samples X[n\ as
shown in Eq. (1).

Y[n\=yH,x[n-i\ (1)

In the Direct Form FIR filter implementation, in each clock cycle a new
data sample and the corresponding filter coefficients are simultaneously,
producing considerable glitching at the primary outputs^.

In our work, we address this problem by implementing an alternative
Fully-Sequential architecture, called Pipelined form, as shown in Fig. 1.

The Fully-Sequential architecture is a manner to reduce hardware
requirements for the FIR filter algorithm, shown in Fig. 1(a). In the
sequential implementation the basic idea is to reduce hardware requirements
by re-using as much of the hardware as possible.

In order to speed-up the FIR filter computations, we have experimented a
Semi-Parallel architecture. In this architecture, shown in Fig. 1(b), hardware
requirements are duplicated with respect to the Fully-Sequential, allowing
two samples to be processed simultaneously. Again, we have constructed a
Pipelined version of the Semi-Parallel architecture.

284

Coeflcl«ncx< (Hi

Eduardo A. C. da Costa, Jose C. Monteiro and Sergio Bampi

X[nl

J ,
€ Shift_Rsgist»i-

ici«nts <Ht) Ml Cosfticlents (Hi)

J Multiplexsd J Multlpl«x«i| J MultlplftxeJ J Hultlpl«xei|

Pipelined
Vftrî lon

V - - - f

:5
I Yin]

Figure 1. FIR Filter Fully-Sequential and Semi-Parallel Implementations

2.2 FFT Datapaths

The main goal of the FFT algorithms is to compute the Discrete Fourier
Transform (DFT) efficiently^. The hierarchical computational blocks in the
FFT structure are stages, groups, and butterflies. Each stage requires the
computation of groups, and each group requires the computation of
butterflies. The butterfly plays a central role in the FFT computation. For
the common factor FFT algorithm with decimation in frequency, the
butterfly allows the calculation of complex terms according to Eq. (2) and
Eq. (3).

complex complex complex (2)

D complex (A - B
V "^complex complex

)*W^ complex (3)

As can be observed in the equations above, one complex addition, one
complex subtraction and one complex multiplication are involved in the
butterfly block. The arithmetic operators for the complex operation are
shown in the Fig. 2 for a Fully-Sequential FFT implementation. In this
figure, the arithmetic operators present in the butterfly block, enable the
calculation of the real and imaginary parts. The results of these calculation

Gray Encoded Arithmetic Operators Applied to FFT and FIR Dedicated
Datapaths

285

are stored in appropriate register banks shown in the left side and right side
of the Fig. 2 for the real and imaginary parts respectively. The set of
multiplexers shown in this figure select the appropriate values to be stored in
the register banks. Several modules of ROM are required for the storage of
twiddle factors. We have omitted these modules to minimize the complexity
of Fig. 2.

Figure 2. Datapath of FFT Fully-Sequential Implementations

The presence of a large number of multiplier operators in the FFT
architecture leads to a significant amount of glitching in a transform
computation. Thus, we have implemented a pipelined version with the
insertion of registers at the multiplier outputs, as shown using the dotted
lines in the Fig. 2.

In a 16-point Fully-Sequential FFT implementation, 32 real and 32
imaginary terms are performed in the butterfly (4 stages with 8 butterfly).
Thus, 33 clock cycles are necessary for a full calculation in the FFT
architecture (1 cycle for the 16 point load and 32 cycle for a transform
computation in the butterfly). In order to speed-up the FFT calculation, we
have implemented a Semi-Parallel architecture, presented in Fig. 3. In this
architecture, hardware requirements in terms of arithmetic operators are
duplicated with respect to the Fully-Sequential, because two butterfly are

286 Eduardo A. C. da Costa, Jose C. Monteiro and Sergio Bampi

used and two transforms can be performed simultaneously. Thus, the full
transform calculation is performed using half of the cycles used in the Fully-
Sequential version. Again, we have implemented a Pipelined Semi-Parallel
architecture, as shown in Fig. 3.

Figure 3. Datapath of FFT Semi-Parallel Implementations

2.3 Related Work on FIR and FFT Realization

Various architectures have been used in FIR filter and FFT realizations,
where implementations in programmable DSP and hardwired architectures
are addressed^'^''^ In case of applications where the flexibility of the
programmable processor is not required, hardwired implementation is the
preferred choice as such an implementation typically results in higher
throughput and low power''.

For the hardwired implementation, architectural transformations have
targeted performance, power and computational complexity^. A very
efficient technique when targeting low power consumption is to reduce the

Gray Encoded Arithmetic Operators Applied to FFT and FIR Dedicated 287
Datapaths

supply voltage, resulting in a power reduction proportional to the square of
the reduction in the supply voltage. With this objective, parallel processing
and pipelining have been applied to the implementation of FIR filters and
FFT architectures'*'̂ ̂ "̂ "̂ as a form of recovering the performance loss due to
the lower supply voltages.

The work presented in this chapter will build on some of the
transformation approaches mentioned, specially the techniques that target the
increase in performance and switching activity reduction. In particular,
similar transformations will be essayed on pipelined dedicated FIR filter and
FFT architectures. In our work, we experiment the use of low power
arithmetic operators in the dedicated architectures.

In the FIR filter operation, the output is performed by a summation of
data-coefficient products. Thus, some techniques called Coefficient
Ordering, Selective Coefficient Negation and Coefficient Scaling have
addressed the use of coefficient manipulation in order to reduce the
switching activity in the multipliers inputs^ '̂̂ . The main goal of these
techniques is to minimize the Hamming distance between consecutive
coefficients in order to reduce power consumption in the multiplier input and
data bus. The technique is only applied to a Fully-Sequential architecture. In
our work an extension of the Coefficient Ordering technique is experimented
in the FIR and FFT architectures. The proposed technique can be applied to
both Fully-Sequential and Semi-Parallel architectures.

3. CODING FOR LOW POWER

Coding has long been used in communication systems to control the
statistics of the transmitted data symbols, or in other words, to control the
spectrum of the transmitted signal^ .̂

Low-Power techniques for global communication in CMOS VLSI using
data encoding methods are overviewed in'^, where it is shown that such
techniques can decrease the power consumed for transmitting information
over heavy load communication paths (buses) by reducing the switching
activity.

One technique that has been proposed in order to reduce the switching
activity on buses is One-Hot Coding^ .̂ This technique is a redundant coding
scheme with a one-to-one mapping between the n-hii data words to be sent
and the m-bit data words that are transmitted. The main disadvantage of this
technique is related to the wire quantity required, proportional to 2".

The Limited-Weight Codes is another technique proposed in order to
obtain switching activity reduction on buses'^. This technique requires

288 Eduardo A. C. da Costa, Jose C. Monteiro and Sergio Bampi

transition signaling in order to reduce the switching activity, since with
transition signaling only Ts generate transitions. According to* ,̂ transition
signaling is convenient for low-power as it offers a direct way of controlling
the bus activity factor simply by reducing the number of logical I's
transmitted over the bus.

The Bus-Invert method as a means of encoding words for reducing I/O
power, in which a word may be inverted and then transmitted if doing so
reduces the number of transitions^^. In this method an extra bus line, called
invert is used.

The Transition Coding and Bit Prediction techniques were used in order
to reducing the number of transitions observed in data and address buses^^.
The Transition Coding technique indicates that there is a transition on the
bus every time the data to be transmitted is a 1 and there is no transition on
the bus if the data to be transmitted is a 0. The Bit Prediction technique is
used in address buses that exhibit a very high percentage of addresses that
are sequential, so that a factor can be used to predict the value of the next
data word with reasonably high accuracy.

One of the most promising encodings that can be used to reduce
switching activity is the Gray code since only one bit changes between
consecutive values. Therefore, for highly correlated signals the switching
activity can be reduced significantly^^. This code has been applied to code
address lines for both instruction access and data access to reduce the
number of transitions^^.

As presented above, there is a large number of techniques that resort to
signal encoding in order to reduce switching activity on buses. These
techniques have all been applied to address buses where data is highly
sequential. In^ similar techniques were applied to arithmetic operators that
operate directly upon different coded inputs. In this work we have
experimented the use of these operators in the dedicated FIR and FFT
architectures.

4. LOW POWER TECHNIQUES

This section presents different low power techniques that will be
experimented in the dedicated datapath architectures for DSP. The reduction
of switching activity is addressed by using low power arithmetic operators
and the manipulation of the filter and FFT coefficients.

Gray Encoded Arithmetic Operators Applied to FFT and FIR Dedicated 289
Datapaths

4.1 Low Power Arithmetic Operators

In this section we summarize the methodology of̂ for the generation of
regular structures for arithmetic operators using signed radix-2'" Hybrid
representation.

4.1.1 2's Complement Radix-2'" Hybrid Multiplier Architecture

The idea of splitting the operands in groups of w-bits and encode each
group using the Gray code can be used for operands that operate in 2's
complement representation. Table 1 shows the 2's complement Hybrid
encoding for 4-bit numbers and m=2.

Table 1. 2'
Decimal

0
1
2
3

s Complement Hybrid Code Representation for m=
Hybrid
0000
0001
0011
0010

Decimal
4
5
6
7

Hybrid
0100
0101
0111
OHO

Decimal
-8
-7
-6
-5

=2
Hybrid

1100
1101
1111
1110

Decimal
-4
-3
-2
-1

Hybrid
1000
1001
1011
1010

For the operation of a radix-2'" multiplication, the operands are split into
group of m bits. Each of these groups can be seen as representing a digit in a
radix-2'". Hence, the radix-2'" multiplier architecture follows the basic
multiplication operation of numbers represented in radix-2'^. The radix-2'"
operation in 2's complement representation is given by Eq. (4). This
operation is illustrated in Fig. 4.

m

AxB = A'xB'-A_,b^ 2 ^ - " - a ^ _ , a ^ yz?^.2^-""^' (4)

For the W-m least significant bits of the operands unsigned multiplication
can be used. The partial product modules at the left and bottom of the array
need to be different to handle the sign of the operands.

For this architecture, three types of modules are needed. Type I are the
unsigned modules used in the previous section. Type II modules handle the
m-bit partial product of an unsigned value with a 2's complement value.
Finally, Type III modules that operate on two signed values. Only one Type
III module is required for any type of multiplier, whereas 2 - ^ - 2 Type II
modules and (•^- 1)̂ Type I modules are needed. We present a concrete
example for ^=8 bit wide operands using radix-16 (m=4) in Fig. 5. The
modules of the architecture are performed by using Hybrid representation.

290 Eduardo A. C. da Costa, Jose C. Monteiro and Sergio Bampi

Moreover, as can be observed in the dotted lines of the Fig. 5, the sign
extension is shown in Hybrid representation (1000 for a negative number).

Radix-16
Representation

Mybrid
Representation

U
sign extension

Decimal
Representation

I 0 0 1 1 I I 0 (-21)

(1 O O O I I O I O O O O O I O I O

0 0 0 0 I I 1 Q [I 0 0]

0 0 0 0 0 I 0 0 1 1 0 0 I 0 I 0

|40%x0) (256x7) (16x8) (12)

^ i ^ I
0 t- 1792 - 128 t- 12 - [Wm

(a)

-6 4

I 1 I 1 0 1 I 0

1 1 1 0 i\\)

Oa I I 1 0 1 0 (44)

1 I 10 1 0 0 I (-1056)

(1 0 0 0) 1 0 0 0 1 1 0 0 (-8)

0 0 0 0 101 0 (192)

I 0 0 0 0 I 1 I 0 1 I 0 0 I (184)

(b)

Figure 4. Example of a 2's complement 8-bit wide radix-16 multiplication

A.̂ A2 Al AO B7 B6 B5 134 A3 A2 Al AO B3 B2 Bl BO

4-4^ ; ^4 AA^ ^

A7A6A5A4 B7B6B5B4 A7A6A5A4 B3B2BIB0

zr
T yrc Jl

ly|x? Ill

4 I - ^

:

ij'p^»

aft)(zero)

T

I iJign extemion
S-

T' T'
P15IM4P13P12 P 7 R N P 5 N

lyi^i

P3P2P1P0

Figure 5. Example of a 8-bit wide 2's complement radix-16 Hybrid multiplier

Gray Encoded Arithmetic Operators Applied to FFT and FIR Dedicated 291
Datapaths

^A,l Modified Booth Multiplier

The radix-4 Booth's algorithm (also called Modified Booth) has been
presented in^\ In this architecture it is possible to reduce the number of
partial products by encoding the two's complement multiplier. In the circuit
the control signals (0, +X, +2X, -X and -2X) are generated from the
multiplier operand for each group of 3-b as shown in the example of Fig. 6
for a 8 bits wide operation. A multiplexer produces the partial product
according to the encoded control signal.

MD 1 0 1 1 0 1 1 1 (-73)
MR 0 1 0 1 1 0 1 0(0) (+90)

1 0 1 1 0 1 1 1 0
0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0

(2*MD)
(-MD)
(-2*MD)

0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0

(PP)

O O O I O O I O O I O (shift)

0 0 1 0 0 1 0 0 1

0 0 0 0 1 1 0 1 1 0 1 1 0 (shift)

1 0 1 1 0 1 1 1 0

1 1 0 0 0 1 0 0 1 0 1 1 0 C s h i f t)

1 1 0 1 1 0 1 1 1

(-6570) I I I I O O I I O O I O I O I I O (shift)

Figure 6. Example of a 8-bit wide Modified Booth multiplication

Common to both architectures is that at each step of the algorithm two
bits are processed. However, the basic Booth cells are not simple adders as
in the proposed array multiplier, but must perform addition-subtraction-no
operation and controlled left-shift of the bits on the multiplicand. Besides
taking more area, this complexity also makes it more difficult to increase the
radix value in the Booth architecture.

4.2 Coefficient Manipulation

Coefficient ordering can be used as a technique for low power because in
a FIR filter computation, the summation operation is both commutative and
associative, and the filter output is independent of the order of computing the
coefficient product^. Coefficient ordering is used in^ as a technique for low

292 Eduardo A. C. da Costa, Jose C. Monteiro and Sergio Bampi

power, where all coefficients are ordered in a Fully-Sequential circuit so as
to minimize the transitions in the multiplier input and data bus.

In our work we have experimented an extension of this technique in a
Semi-Parallel architecture, where the hardware is duplicated and coefficients
are partitioned into groups of coefficients. Thus, the problem is related to
finding the best partition for each coefficient by calculating the minimum
Hamming distance between the coefficients into each group.

The pseudo-code presented in Fig. 7 describes an example of the
algorithm that optimizes the partitioning and ordering of the coefficients. In
the example shown in Fig. 7, the cost function is calculated for all the
combinations over the coefficients. For the FIR and FFT architectures used
in this work, the total number of permutations is still reasonable. However,
for a higher number of coefficients this exhaustive algorithm is less
attractive due to the time necessary to process the large number of
combinations. In this case, an heuristic algorithm should be used to get as
near as possible to the optimal solution.

7. for all permutations of coefficients H(0- 7) {

2. partition! =Hamming((HfO],Hn]) + (H[1],H[2]) +

3. (H[2],H[3]) + (H[3],H[0]));

4. partition2=Hamming((H[4],H[5]) + (H[5],H[6]) +

5. (H[6].H[7]) + (H[7],H[0])):

6. cost function = partition! + partition2;

7. if(cost function < minimum found) {

8. save current partition;

9. minimum^ cost function:

10. }

II. }
Figure 7. Pseudo-code of the algorithm for the generation of coefficient partitioning and

ordering

5. RESULTS

In This section, we discuss the impact of the proposed low power
techniques on dedicated pipelined FIR filter and FFT architectures. Area,
delay and power consumption for each architecture are presented. Area is
given in terms of the number of literals. Delay values were obtained in SIS
environment^^ using the general delay model from the mcnc library. This
parameter defines the minimum clock period. Power results were obtained
with the SLS tool^ using the general delay model. For the power simulation,
we have applied a random pattern signal with 10.000 input vectors

Gray Encoded Arithmetic Operators Applied to FFT and FIR Dedicated 293
Datapaths

represented in 2's complement. For power consumption comparisons, we
have chose to compute the power dissipation per sample for the FIR filter
and the power dissipation per transform for the FFT.

5.1 Application of the Low Power Arithmetic Operator

In this section, we present results on use of the Hybrid array ^=2)
arithmetic operators of Section 4.1 in the FIR and FFT architectures. Area,
minimum clock period and power consumption are investigated and
compared to the architectures with Modified Booth operator.

5.1.1 Area

Table 2 presents area results for FIR filter and FFT architectures using
the Hybrid array (m=2) and Modified Booth operators. As can be observed
in this table, there is significant area difference between the architectures
with these operators. The Fully-Sequential and Semi-Parallel architectures
which use the Hybrid array multiplier operators present more area. This due
to the fact that Hybrid array multipliers require more area than Booth
circuits.

Table 2. Area results for the
Architectur
Altemativi

Fully-
Sequential

Semi-
Parallel

al

FIR
FFT
FIR
FFT

pipelined architectures
Operators

Booth
6427

24099
10569
46000

Hybrid Array
8035

32435
13785
58964

Difference (%)
Hybrid Array vs. Booth

+25.0
+34.6
+30.4
+28.2

5.1.2 Minimum Clock Period

Although FIR filter and FFT architectures with the Hybrid array
operators present higher area, these architectures permit a slightly lower
clock period than the architectures with Booth operators, as shown in Table
3. This reduction occurs because in the Fully-Sequential and Semi-Parallel
FIR and FFT architectures the multiplier circuit is present in the critical path
(Fig. 1, Fig. 2 and Fig. 3). For this arithmetic operator, the circuit has a lower
delay value^.

294 Eduardo A. C. da Costa, Jose C. Monteiro and Sergio Bampi

Table 3. Minimum Clock Period results in ns for the pipelined architectures.
Architectur
Altemativi

Fully-
Sequential

Semi-
Parallel

al

FIR
FFT
FIR
FFT

Operators
Booth
260.1
355.0
258.1
418.2

Hybrid Array
254.8
342.6
252.8
414.1

Difference (%)
Hybrid Array vs. Booth

-2.0
-3.5
-2.1
-1.0

5,1,3 Power Dissipation

The Hybrid array and the Modified Booth multiplier applied in this work
present reduced power consumption values because of the reduction of the
number of partial product lines. In Table 4 we present the power per sample
values for the Fully-Sequential and Semi-Parallel FIR architectures in the
pipelined version, using the Hybrid array multiplier (m=2) and the Modified
Booth multiplier.

Table 4. FIR architecture -
Architectural
Alternatives

Fully-Sequential
Semi-Parallel

- Power per sample (fiW).
Modified Hybrid Array

Booth w=2
215.4 180.7
188.6 158.2

Difference(%)
Hybrid Array vs. Booth

-16.1
-16.1

As can be observed in Table 4, with the use of the Hybrid array
multiplier power per sample savings above 16% are achievable in the Fully-
Sequential and Semi-Parallel FIR architectures. This occurs because
multiplier circuits are the main responsible for the power consumption in the
FIR architectures and the Hybrid array multiplier consumes less power due
to the simplest structure and smaller critical path and delay values.

Besides the FIR filter, the FFT architectures also have multiplier circuit
in the critical path, as can be observed in Fig. 2 and Fig. 3. For the FFT
structure, the higher number of multiplier circuits in the butterfly produces a
great amount of glitching activity. Thus, with the use of the Hybrid array
multiplier, the FFT architectures become significantly more efficient
presenting close to 30% less power consumption per transform, as shown in
Table 5. This power reduction is mainly due to the lower logic depth of the
array multiplier structure which has a big impact on the reduction of the
amount of glitching in the FFT circuits.

Table 5. FFT architecture -
Architectural
Alternatives

Fully-Sequential
Semi-Parallel

- Power per transform (mW).
Modified Hybrid Array

Booth m=2
156.6 110.4
144.8 92.8

Difference(%)
Hybrid Array vs. Booth

-29.5
-35.9

Gray Encoded Arithmetic Operators Applied to FFT and FIR Dedicated 295
Datapaths

5.2 Application of Coefficient Manipulation

In Table 6 we show the power per sample results after using this
algorithm in the Pipelined Fully-Sequential FIR filter architecture with
Hybrid array (m=2 and w=4) operators. In this table, it is also shown the
power per sample results after applying the ordering algorithm to the Semi-
Parallel architecture.

Table 6. FIR architecture - Power per sample (|iW)

Fully-
Sequential

Semi-
Parallel

Group of
Bits
m=2
m=4
m=2
m=4

Original
Coefficients

180.7
228.5
158.3
215.0

Manipulated
Coefficients

176.9
216.0
151.1
201.0

Difference(%)
Manip. vs. Orig.

-3.8
-12.5
-6.7
-13.9

As shown in Table 6, there is no significant power per sample reduction
in the FIR architectures with w=2 Hybrid array operator for the set of
coefficients used in this work. However, for groups of m=4 bits there is a
higher correlation between these coefficients and the architectures with m=4
Hybrid array operator present an increasingly power per sample reduction as
can be observed in Table 6.

As can be observed in Table 6, for the set of coefficients used in this
work, the Semi-Parallel architecture using ordering and partitioning
algorithm presents more power per sample reduction compared to Sequential
architecture with ordering algorithm. This technique becomes more effective
in a set of coefficients with higher correlation (m=4).

The manipulation techniques that have been applied to the Fully-
Sequential and Semi-Parallel architectures show that the correlation between
coefficients can reduce the switching activity in the multipliers input. In the
FFT algorithm this aspect becomes more significant due to a higher number
of coefficients used in all the stages of the FFT. Thus, we have a higher
opportunity for saving power by the manipulation of coefficients. Table 7
shows the power per transform results by the application of the manipulation
technique in the Pipelined Fully-Sequential and Semi-Parallel FFT
architectures with m=2 and m=4 Hybrid array multiplier.

In a Semi-Parallel architecture, the coefficients are partitioned into N/4
groups at each FFT stage. The aspect of applying the ordering technique in a
smaller group of partitioned coefficients increase the proximity between the
coefficients. Thus, the w=2 and m=4 Semi-Parallel architecture presents a
higher power per transform reduction compared to the Sequential
architecture as can be observed in Table 7.

296 Eduardo A. C. da Costa, Jose C. Monteiro and Sergio Bampi

Table 7. FFT architecture - Power per ti

Fully-
Sequential

Semi-
Parallel

Group of
Bits
m=2
m=4
m=2
m=4

ransform (mW)
Original

Coefficients
110.8
101.1
93.7
87.7

Manipulated
Coefficients

91.7
91.4
75.5
70.1

Difference(%)
Manip. vs. Orig.

-17.2
-9.6
-19.4
-20.1

6. CONCLUSIONS

In this work, low power arithmetic operators were experimented in the
FIR and FFT architectures. Performance comparisons for pipelined
architectures using the array (w=2) and Modified Booth operators were
investigated and the results showed that, despite higher area shown by the
architectures with the Hybrid array operators, these architectures can present
less minimum clock period and power consumption. Due to the
characteristics of the FIR and FFT algorithms, which are performed by the
product of input data with appropriate coefficients, the best ordering of these
coefficients to minimize the power consumption of the implemented
architectures was also investigated. The results showed that the FFT
architectures can present more power reduction due to the higher opportunity
of using the coefficients manipulation technique.

7. REFERENCES
1. M. Mehendale, S. Sherlekar, and G. Venkatesh, G., Low-Power
Realization of FIR Filters on Programmable DSP's. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 6(4):546-553, (1998).
2. A. Erdogan, and T. Arslan, High Throughput FIR Filter Design for Low
Power SOC Applications. In 13'^ Annual IEEE International ASIC/SOC
Conference, pp. 21-24, (2000).
3. M. Baas, A Low-Power, High-Performance, 1024-Point FFT Processor.
IEEE Journal of Solid-State Circuits, 34(3):380-387, (1999).
4. K. Parhi, Algorithms and Architectures for High-Speed and Low-Power
Digital Signal Processing. In Proceedings of 4^^ International Conference on
Advances in Communications and Control, (1993).
5. E. Mussol, and J. Cortadella, Low-Power Array Multipliers with
Transition-Retaining Barriers. PATMOS, pp. 227-235. 2002.
6. E. da Costa, J. Monteiro, and S. Bampi, A New Architecture for 2's
Complement Gray Encoded Array Multiplier. In Proceedings of the XV
Symposium on Integrated Circuits and Systems Design, pp. 14-19, (2002).

Gray Encoded Arithmetic Operators Applied to FFT and FIR Dedicated 297
Datapaths

7. M. Mehendale, S. Sherlekar, and G. Venkatesh, Algorithmic and
Architectural Transformations for Low Power Realization of FIR Filters. In
Eleventh International Conference on VLSI Design, pp. 12-17, (1998).
8. A. Genderen, SLS: An Efficient Switch-Level Timing Simulator Using
Min-Max Voltage Waveforms. In Proceedings of the International
Conference on Very Large Scale Integration, pp. 79-88, (1989).
9. A. Oppenheim, and R. Schafer, Discrete-Time Signal Processing. London:
Prentice Hall Signal International, (1989).
10. P. Kumhom, J. Johnson, and P. Nagvajara, Design and Implementation
of a Universal FFT Processor. In 13^^ Annual IEEE International ASIC/SOC
Conference, pp. 182-186, (2000).
11. S. He, and M. Torkelson, Design and Implementation of a 1024-point
Pipeline FFT Processor. InlEEE CICC, pp. 131.134, (1998).
12. S. Douglas, and et al., 1998, A Pipelined LMS Adaptive FIR Filter
Architecture without Adaption Delay. IEEE Transactions on Signal
Processing, 46(3), (199^).
13. S. Yu, and E. Swartzlander, A New Pipelined Implementation of the Fast
Fourier Transform. In Thirty-Fourth Asilomar Conference on Signals,
Systems and Computers, pp. 423-427, (2000).
14. K. Muhammad, R. Staszewski, and P. Balsara, Speed, Power, Area, and
Latency Tradeoffs in Adaptive FIR Filtering for PRML Read Channels.
IEEE Transactions on VLSI Systems, 9(1):42-51, (2001).
15. M. Mehendale, S. Sherlekar, and G. Venkatesh, Techniques for Low
Power Realization of FIR Filters. In Design Automation Conference, pp.
404-416,(1995).
16. A. Chandrakasan, and R. Brodersen, Low Power Digital CMOS Design,
Kluwer Academic Publishers, (1995).
17. M. Stan, and W. Burleson, Low-Power Encodings for Global
Communication in CMOS VLSI. IEEE Trans, on VLSI Systems, (1997).
18. M. Stan, and W. Burleson, Limited-Weight Codes for Low-Power I/O.
IEEE International Workshop on Low Power Design, (1997).
19. M. Stan, and W. Burleson, Bus-Invert Coding for Low-Power I/O. IEEE
Transactions on VLSI Systems, (1995).
20. P. Ramos, and A. Oliveira, Low Overhead Encodings for Reduced
Activity in Data and Address Buses. In IEEE International Symposium on
Signals, Circuits and Systems, pp. 21-24, (1999).
21. I. Khater, A. Bellaouar, and M. Elmasry, Circuit Techniques for CMOS
Low-Power High-Performance Multipliers. IEEE Journal of Solid-State
Circuits, 31:1535-1546, (1996).
22. E. Sentovich, and et al, SIS: A System for Sequential Circuit Synthesis,
Technical report, (1992).

