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Abstract: With the advance in hardware integration, system-on-a-chip (SoC) test 
activities using only automatic test equipments (ATEs) result in an expensive 
option. Hardware-based test may reduce the ATE dependency. However, 
hardware-based test imposes some constraints like area overhead and 
processing speed degradation. The main objective of this work is to investigate 
and evaluate a less intrusive test approach called software-based test. 
Software-based test uses an embedded processor as source and sink of the test, 
sending the test patterns and reading the responses. A new integrated design 
and test environment has been developed to automatically synthesize test 
programs to test non-programmable cores of SoCs. Some benchmarks 
ISCAS85 and ISCAS89 are used to evaluate the proposed methodology. 
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1. INTRODUCTION 

In recent SoC based systems the amount of test data transferred between 
automatic test equipments (ATEs) and devices under test is becoming too 
large. Even expensive state-of-the-art ATEs restrict the SoC test as a result 
of limited memory resources, narrow channel bandwidth and low speed. 
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(Boston: Springer), pp. 165-179. 
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One known approach to overcome ATE limitations is to use hardware-
based test (i.e. built-in self-test BIST) to generate patterns and to analyze the 
results at -speed. This approach reduces the ATE constraints and the test 
cost. However, BIST has some drawbacks^ (i) some circuits are resistant to 
random patterns, resulting into a low fault-coverage; (ii) since new modules 
are inserted into the system, the total area, operation frequency and power 
consumption are negatively affected. 

Software-based test is an alternative approach to BIST and ATE. SoC 
devices usually contain, at least, one embedded processor and use bus-based 
interconnection to integrate several IP cores. We propose a test methodology 
to test non-programmable IP cores using an embedded processor. Since there 
are no new test modules added to the system, figures as area usage, speed 
and power are not changed. A possible drawback of the software-based test, 
when compared to the hardware-based test is the longer time needed to apply 
the patterns and/or analyze the results \ 

This work has two main objectives. The first one is the evaluation of 
software-based against hardware-based test. The second objective is to 
present the developed Computer Aided Test (CAT) tool to synthesize the test 
program and to integrate IP cores in the SoC. 

Unlike previous approaches '̂̂ '" ,̂ this paper presents a new tightly 
integrated design and test methodology, including commercial and in-house 
tools. Moreover, the evaluation compares software-based test with hardware-
based test, unlike^ which compares software-based test with boundary scan. 

This paper is organized as follows. Section 2 presents the state-of-the-art 
in software-based test. Section 3 presents the bus-based SoC architecture. 
Section 4 details the developed CAT environment. Section 5 focuses on the 
software-based test evaluation based on some ISCAS85/89 benchmarks. 
Section 0 concludes this paper and presents some directions for ftiture work. 

2. SOFTWARE-BASED TEST 

Software-based test can minimize some of the BIST drawbacks discussed 
before. The following is a list of advantages of this approach: 
• Ease to reuse and to modify the test strategy as it is implemented in 

software; 
• No specific test controller is required, since a generic embedded 

processor is responsible for the test control and execution; 
• Reduced (or none) area overhead due to the test patterns generation and 

response compaction implemented in software; 
• Reduced (or none) speed/power degradation, as there are no additional 

test modules; 
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• Can be applied to test processors, memories, general cores and 
interconnection (bus); 

• Reduced design time compared to BIST even considering automated 
tools since there is an additional manual process required to make the 
target core become BIST-ready^; 

• Test occurs in normal operational mode, eliminating the extra power 
consumption of BIST^; 

• Can apply and analyze at-speed test signals^ to detect delay faults, 
alleviating the need of high-speed tester. Moreover, since the test is 
applied in normal operational mode, the system is not over-tested. 
Possible drawbacks of the software-based test are: 

• The SoC must have an embedded processor; 
• Additional time to create the test program; 
• Extra memory needed to store the test program and the deterministic test 

patterns; 
• Licreased test time when comparing to hardware-based test. BIST usually 

generates patterns/ compact responses in just one clock cycle. However, 
in software-based test patterns are provided by the processor to the cores, 
taking longer to execute the same task than BIST modules. On the other 
hand, software-based test may be faster than ATE based test due to the 
limited bandwidth^ 
Thus, the goal of this work is to automate the test program generation, 

reducing the project time and to evaluate quantitatively the last two 
drawbacks (i.e. the increased test time and memory requirements). 

2.1 Processor Test 

The first works on software-based test for processors were conducted in 
the 70s by Thatte and Abraham^. Software-based self-test of processors is a 
challenging issue due to: (i) the number of different hardware modules to be 
tested; (ii) the limited number of pins to access the processor; (iii) the 
existence of modules that can not be accessed directly, as interrupt 
controller, flag, exception handler; (iv) the huge variation of 
implementations and architectures. Recent works on software-based 
processor test can be found in '̂̂ , 

2.2 Memory Test 

Memory test is very simple to be implemented by a processor due to its 
regular structure. Well-know algorithms^ using deterministic patterns, e.g. 
55h and AAh, are used. Zorian and Ivanov^ consider a ROM as a 
combinational circuit, where the address is the input and the memory content 
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is the output. An exhaustive test is performed reading all memory contents 
and compacting the output. 

2.3 Non-Programmable Core Test 

The embedded processor can execute a specific program to test each core 
of the SoC, which is the goal of this paper. This program has the following 
functions: (i) generate the test patterns; (ii) send these patterns to the cores 
through the communication path (e.g. bus or TAM); (iii) read the test 
responses; (iv) compact these responses. Since it is a software-based test, it 
is possible to use different algorithms to test each core. 

The test program can emulate the behavior of a LFSR and MISR in 
software, generating pseudo-random patterns and compacting responses^^. A 
disadvantage of emulating a LFSR or a MISR in software is the increasing 
test time, since it may need several clock cycles to produce one pattern. 
Other approaches using adders, subtractors and multipliers to generate 
patterns and/or to compact responses can be used. In ^Mt is shown that these 
modules can be used to substitute LFSR, generating comparable fault 
coverage, with the advantage of generating a pattern for each instruction 
(e.g. add). 

Huang et al ^ developed a bus-based architecture with MIPS processor, 
PCI bus and VCI interface. Using this architecture, they evaluated the test 
time and fault coverage of some ISCAS89 benchmarks. Lai and Cheng"* used 
the same architecture presented in ^ to evaluate test programs generated for 
four ISCAS89 benchmarks, using the DLX processor. The test program 
length is from 40 to 27000 bytes. The test time is from 94 to 30430 clock 
cycles. The results point to important test memory requirements and test 
time compared to hardware-based test. 

Hwang and Abraham^ developed a bus-based architecture with an ARM 
processor and Wishbone interface. The authors compared the test time and 
area overhead between software-based test and boundary scan. In both cases, 
the software-based test presented better results. 

3. SOC ARCHITECTURE AND TOOLS 

This work targets SoCs employing a bus to connect a processor to 
memory and IP cores. The proposed approach is prototyped in FPGAs using 
the Excalibur"^^ environment^^. Figure 1 presents the target SoC architecture. 
A PC is used as the external tester, responsible for loading the test program 
and deterministic patterns into the memory through the serial interface. 
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Figure J. Target SoC architecture. 

The embedded processor used is the 5-stage pipeline Nios32^^. The 32-bit 
Avalon™ bus is used to connect the SoC components. The cl908, cl355, 
c3540 and si 196 benchmarks, randomly chosen, are used to evaluate the 
proposed test method and the CAT tool. Each core connected to the bus is 
wrapped. Using a uniform wrapper, the same test procedures can be applied 
to all cores under test. 

In the data memory, each core has its LFSR configuration (i.e. the 
multiple seeds and polynomials) chosen in a manual process, the ATPG 
patterns generated by a commercial tool, the expected signatures and the 
application data. The instruction memory contains the synthesized test 
program used to test all non-programmable cores and the application 
program. 

4. CAT TOOL ENVIRONMENT 

The CAT environment developed has four main functions: (i) 
automatically synthesize test programs in C language; (ii) automatically 
synthesize the VHDL wrappers to each core; (iii) insert scan chains when 
necessary; (iv) automatically synthesize the SoC interface to integrate the 
cores. Figure 2 and Figure 4 present a design flow divided in two parts: the 
SoC generation and the test program generation. 
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Figure 2. SoC generation CAD flow. 

QT (http://www.trolltech.com) is used to build the graphical interface of 
this environment. The CAT tool synthesizes ' C and 'VHDL' descriptions 
from pre-validated templates, integrates commercial CAD tools (Leonardo, 
ModelSim, FlexTest, FastScan, DFTAdvisor) and guides the user through 
the design and test flow. 

4.1 SoC Generation 

The SoC generation flow starts with a tool called core extraction -Figure 
2(a). This tool extracts the core interface (input/outputs) and may insert scan 
chains when required. Scan chains are inserted using the DFT Advisor tool. 
In the interface extraction, some of the extracted data are: (i) the name of the 
core; (ii) the type of the core - core, processor or memory, (iii) the files 
composing the core; (iv) the top entity; (v) the ports and generics of the top 
entity. The user must specify the port usage for each port of the core. Port 
usage means how the port is used in the system (e.g. data, clock, reset, 
enable, external). This is a key piece of information, since it enables the SoC 
generator tool to automatically synthesize the wrapper for this core and the 
SoC interface. 
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Figure S. Wrapper scheme. 

The next step is the SoC generation, Figure 2(b). The following actions 
are executed during this step: (i) selection of the cores and the processor; (ii) 
selection of the communication media; (iii) wrapper synthesis for each core; 
(iv) SoC interface synthesis. 

The cores are selected from a library created in the first step {core 
extraction). After that, the user defines the communication architecture. 
Different communication architectures can be easily integrated to the 
environment, but presently only bus-based is allowed. 

Once the communication architecture is defined, the wrapper is 
automatically synthesized for each core. Wrappers are synthesized after the 
communication architecture selection since the communication protocol and 
the wrapper interface are associated to the communication media, in this 
case, a bus. 

Figure 3 presents an example of wrapper for a bus-based architecture. 
The wrapper has shift-registers adapting the bus width (32-bit) to the core 
input/output widths, represented by ci and co registers. The test is executed 
in two steps: patterns loading and response reading. The six least significant 
bits of the addr port are used to set the test mode, i.e. pattern loading or 
response reading. 

When the wrapper is in test mode and a write operation is required (wr 
port), the internal clockEnb is asserted during one clock cycle to process the 
incoming test patterns. Note that the clockEnb assertion occurs only when 
the last part of the incoming pattern is written into the input shift-register. 
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The responses are stored into the output shift-registers one clock cycle 
after clockEnb assertion. The processor reads the responses when the rd port 
is asserted. 

At this step of the flow, two VHDL files are created for each core: 
wrapper and testbench. The testbench is used to validate the wrapper. The 
test patterns for this testbench can be internally generated from a 
configurable LFSR or read from patterns stored in an external file. When 
read from external files, it can be used to validate the test patterns and 
generate the expected signature. 

The last step is the SoC interface generation, which is obtained from the 
data extracted from each core. When the port usage is specified as external, 
it is connected to the SoC interface. The wrapped core has ports connected to 
the communication interface and external ports connected to the SoC 
interface. 

These external ports impose modifications (addition of ports) in the 
wrapper and in the SoC interface. 

4.2 Test Program Generation 

Once the SoC is built, the next step is to create the test program. The test 
program generates the test vectors, compacts the responses and evaluates the 
signature of each core. The selected test pattern generation approach is based 
on Hellebrand's approach'^, which uses different LFSR configurations to 
increase the fault coverage obtained from pseudo-random patterns. 
Therefore, fewer deterministic patterns are stored in the memory. The main 
advantage of this approach is the minimization of technological requirements 
of the external tester, such as bandwidth, memory and frequency. However, 
the challenge is to find a tradeoff between run-time for pseudo-random test 
and the memory requirements for deterministic test. The test program 
generation flow is presented in Figure 4. 

The first action of the test program generator (Figure 4(a)) is to select 
the polynomials and seeds to generate patterns to each core. Multiple 
polynomials can be selected and each polynomial may have several seeds. 
The environment supports generic modular LFSR and MISR descriptions. A 
reseeding tool like^^ could present better encoding efficiency, i.e. more 
compact test pattern set to achieve higher fault coverage. However, the 
LFSR configuration was randomly chosen since this kind of tool is not 
available, at the moment. 

Each LFSR configuration is simulated, creating the test patterns for each 
core - Figure 4(b). The generated patterns are translated to the fault simulator 
format (Flextesf^Wastscan"^^) and the fault coverage is evaluated, using the 
synthesized description of the cores. If the resulting fault coverage is not 
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sufficient, the user may run the ATPG tool to generate the remaining test 
patterns or choose other LFSR configuration, restarting the process. At the 
end of this process, the user has all the necessary patterns to test each core. 
Thus, the expected signature can be generated using a logic simulator -
Figure 4(c). 

Finally, these patterns (pseudo-random and/or deterministic) are 
translated to the test program in C language - Figure 4(d). After the program 
generation, the user can evaluate the required test time using a 
hardware/software co-simulation tool - Figure 4 (e). The co-simulation tool 
is provided by the Excalibur environment. Figure 5 presents an example of 
pseudo test program. 

The core under test in Figure 5 is memory mapped, which means that the 
processor accesses cores with load and store instructions. This can be 
observed by the "^cutPtr pointer, in the third line. 

^ from SoC Generator 

Test Code Generator 

Select 
Polynomials and 

Seeds 
(a) 

Simulate LFSR 
Configuration 

X 

(b) 

Fault Simulation |< 

i 
ATPG 

Core 
j ~ l _ J Description 

(EDIF) 

Fault Simulation k -

j , good fault coverage 

(c) 
Signature 

Generation 

Test Code 
Generation (d) 

Test Code 
Simulation in the 
Soc Description 

N S5C 
Description 

(VHDLl 

Figure 4. Test program generation CAT flow. 
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1) #define nCores 5 
2) const coreTyp coreCfg[nCores] = {{expectedSig,corePtr},{),{}} ; 
3 ) const unsigned detVet[nCores]={{},{},{},{},{}}; 
4) const unsigned lfsrCfcr[nCores3={ {},{},{},{},{} }; 
5) void lfsr{ unsigned polynomial, int *state); 
6) 
7) void ApplyPseudoRandoinPattom(volatile void *hwif) { 
8) for each polynomial { 
9) poly = lfsrCfg[ind]; 
10) n_seed = lfsrCfg[ind+l]; 
11) ind+=2; 
12) for each seed { 
13) value = lfsrCfg[ind]; 
14) n_patterns = lfsrCfg[ind+l]; 
15) ind+=2; 
16) for each pattern { 
17) *hwif = value; // send pattern to CUT 
18) lfsr(poly;&value); // generate new pattern 
19) }}}} 
20) void ApplyDeterministicPattoimlvolatile void *hwif){ 
21) for each pattern { 
22) *hwif = detVet[i]; // send det. pattern to CUT 
23) }} 
24) int ExecuteTest(void){ 
25) volatile void *cut; 
26) for each core { 
27) cut = coreCfg[core].cutPtr; 
28) ApplyPseudoRandomPattern(cut); 
29) ApplyDeterministicPattern(cut); 
30) genSignature = *cut; // read signature from the 
31) // CUT - MISR in hardware 
32) if (genSignature != coreCfg[core].expectedSig) 
33) abortTestO; 
34) } 

35) }} 

Figure 5. Pseudo test program example. LFSR implemented in software (Ifsr ftinction) and 
MISR in hardware. 

The first lines define the expected signature, the deterministic test vectors 
generated by the ATPG and the LFSR configuration. The ExecuteTest 
procedure is the main test function. For all cores of the system this function 
applies the pseudo-random patterns and the deterministic patterns. 
Depending on the test time requirements, the test designer may implement 
the MISR in hardware (line 28) to speed-up the test, as presented in this 
example. Each core has an embedded MISR, which is read by the software at 
the end of the core test. The returned signature is compared against the 
expected one (lines 30-31). When the test code is generated to each core, the 
system (hardware and software) is prototyped on a development board for 
the final validation. 

5. RESULTS AND DISCUSSION 

The features evaluated using the ISCAS85/89 benchmarks are fault 
coverage, test time and memory requirements to store the test program 
(instruction memory) and deterministic patterns (data memory). Table 1 
presents some additional information of the benchmarks. 
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Table J. Benchmarks general information. 

Core Inputs Outputs Core area 

C1908 33 25 286 843 
C1355 41 32 271 948 
c3540 50 22 756 1499 
S1196 14 14 476 854 

The benchmarks are mapped to a 0.35 library and the area is presented in 
nand2 equivalent gates. The cores evaluated are small and do not represent 
real case cores. Using complex benchmarks, the wrapper overhead will be 
reduced since it is a function mainly of the number of inputs and outputs. 

Table 2 presents the fault coverage (FC) obtained and the number of 
patterns for the mixed patterns approach. For example, core cl908 obtained 
67.94% fault coverage using only pseudo-random patterns. Deterministic 
patterns, generated by a commercial ATPG, increased the fault coverage to 
99.52%. The last two columns present the number of patterns (pseudo­
random and deterministic) used. 

Table 3 presents the data memory requirements to store the LFSR 
configuration {random size) and the ATPG patterns (deterministic size) in 
bytes. As can be observed, the number of bytes to store a LFSR 
configuration is much smaller than deterministic patterns, as stated in ^̂ . 
However, a significant number of deterministic patterns had to be used to 
reach acceptable fault coverage. Those remaining deterministic patterns can 
be reduced even more using embedded compression algorithms or using a 
tool to select the best seeds and polynomials for each core. Using 
compression algorithms will obviously reduce the test data and the time to 
download them. However, this can have a negative impact in the test time, 
since the patterns had to be decompressed before being sent to the core. On 
the other hand, using a tool to select seeds can increase the quality of the 
pseudo random patterns (i.e. increase the number of useful patterns) 
reducing the need of deterministic pattems^^. 

The mixed test pattern approach (i.e. deterministic and pseudo-random) 
was partitioned into four different hardware/software test configurations. In 
the first partition, the LFSR, the MISR and the control structure used to 
apply deterministic patterns are implemented in hardware (hardware 
partition). In the second partition, all test modules are implemented in 
software (software partition). The third partition implements the LFSR in 
software and the MISR in hardware (misr hardware partition). In the fourth 
partition, the test patterns are generated using arithmetic functions (adders 
software partition) provided by the processor and the MISR is implemented 
in hardware^ ̂  The fault coverage using adders is not evaluated. 
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Table 2. Fault coverage (FC) and number of test patterns 
o n A x^r- Deterministic+ 
Core Random FC T̂  , ^-^ 

Random FC 
cl908 67.94 
C1355 88.89 
c3540 75.22 
S1196 53.41 

99.52 
100.00 
97.48 
94.57 

for mixed test 
# Random 
Patterns 
40 
66 
105 
159 

patterns approach. 
# Deterministic 
Patterns 
68 
29 
184 
459 

Table 3. Data memory requirements, in bytes, for each core. 
Core 
C1908 
cl355 
C3540 
sl l96 

Random Size 
9 
17 
21 
15 

Deterministic Size 
137 
59 
369 
460 

Table 4 compares the instruction memory requirements to store the test 
program (each instruction uses two bytes) for three partitions. The test 
program is the same for all cores. As can be noted, since the test program is 
simplified (i.e. moved from LFSR to adder to generate pattems) the test 
program obviously is reduced in size. As can be seen in Table 4 the 
instruction memory requirements, i.e. bytes necessary to store the test 
program, are relatively small. The instruction memory requires less than 
1Kbyte to store a test program to test all the non-programmable cores. This 
shows that the memory requirements to store the test program are not a 
constraint for software-based test applied to non-programmable core. 

Table 5 presents the number of clock cycles between the generation of 
two patterns. In the hardware partition, the pseudo-random pattems are 
generated cycle by cycle and the deterministic pattems are estimated to 10 
clock cycles, due to the time to access the test memory. The software 
partition takes 185 cycles to apply a pseudo-random pattern and 175 cycles 
to apply a deterministic pattern, due to the test serialization. Since part of the 
test has been removed from the software (i.e. response compaction moved to 
hardware), the time is reduced. In the last partition, it is possible to see that 
the test time is even more reduced, confirming" '̂̂ \ which suggest the use of 
specific test instructions to reduce the test time and test program length. 

Table 6 complements the test time information presented in Table 5. It 
presents the total test time for the mixed test approach for the benchmarks 
using the four partitions. 

As expected, the software partition takes longer test time to complete the 
test. This difference is due to the overhead induced by the data transfer from 
the processor to the core over the bus, and the test serialization. In the 
hardware approach, these steps are executed in parallel, as a pipeline 
structure. 
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Table 4. Instruction memory requirements, in bytes, for the hardware/software partitions. 
^ Q fhx/ LFSR in Software Adder in Software 

MISR in Hardware MISR in Hardware 
All 564 428 394 

Table 5. Time in clock cycles to apply a new pattern to the UUT. 
„ ,̂  ^ _, , ^ „ LFSR software Adder software 
Pattern Type Hardware Software AyrTcr> u A A/TTCD U A 

MISR hardware MISR hardware 
Pseudo-random 1 185 102 73 
Deterministic 10 175 43 43 

Table 6. Total test time, in clock cycles, fox four test approach. 

Core Hardware Software 
LFSR software Adder software 
MISR hardware MISR hardware 

C1355 1400 40168 28034 18817 
C1908 646 35313 23246 17552 
C3540 3785 94232 61906 46790 
S1196 4749 110046 53452 48723 

The third and the fourth test partitions reduce the total test time. The 
MISR implemented in hardware reduces the traffic in the bus, since the 
responses are compacted in hardware, sending back to the processor only the 
signature (see the test program in Figure 5). The test time in the last partition 
was reduced by using a processor specific instruction to generate the pseudo­
random patterns. This has an advantage over the LFSR emulation because a 
new pattern is created with only one instruction, reducing the test time and 
the test program length" '̂'̂  The discussion of the results is presented in the 
next Section. 

6. CONCLUSIONS 

Software-based test minimizes the two main drawbacks related to BIST: 
performance degradation and additional hardware area. According to the 
literature, software-based test increases test time and the test memory 
requirements. This work presents a quantitative evaluation of these 
drawbacks. Actually, the test time is an important drawback for 
manufacturing test, since the test time using only software-based test is 
much longer compared to the hardware-based test. As shown, the test time is 
minimized when the test modules are partitioned into hardware/software 
modules. The test time is also minimized using an adder to generate patterns. 
On the other hand, the instruction memory requirement for software-based 
test is low, A careful design of the test program can enable its reuse to test 
different cores. It is also possible to reduce the data memory requirement 
using compression algorithms in the deterministic patterns, an issue not 
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explored in this work. Thus, software-based test can be applied to field test 
since the memory requirement, the main bottleneck to this kind of test, is 
minimal. 

The added area by the wrapper insertion. Table 1, is used to integrate the 
cores to the bus, without test-related circuitry. The only area overhead 
induced by the software-based test is the memory space used to store the test 
program. 

The second contribution of this work is the developed CAT environment, 
integrating software-based test to a generic and simple to use SoC design 
flow. 

As ongoing work, the CAT environment is being validated with ITC02 
benchmark. Other criterions, such as hardware overhead and power 
dissipation are also being evaluated. We are also evaluating software based-
test in other communication architectures like network-on-chip'"^. 
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