
SOFTWARE-BASED TEST FOR NON­
PROGRAMMABLE CORES IN BUS-BASED
SYSTEM-ON-CHIP ARCHITECTURES

Alexandre M. Amory\ Leandro A. Oliveira' and Fernando G. Moraeŝ
^Instituto de Informdtica - Universidade Federal do Rio Grande do Sul (UFRGS) - av. hento
gongalves, 9500 - predio 43412/bloco IV - Porto Alegre - Brazil - CEP 91501-970;
Faculdade de Informdtica - Pontijicia Universidade Catolica do Rio Grande do Sul (PUCRS)

- av. ipiranga, 6681 - predio 30/bloco 4 - Porto Alegre - Brazil - CEP 90619-900 -
moraes@inf.pucrs. br

Abstract: With the advance in hardware integration, system-on-a-chip (SoC) test
activities using only automatic test equipments (ATEs) result in an expensive
option. Hardware-based test may reduce the ATE dependency. However,
hardware-based test imposes some constraints like area overhead and
processing speed degradation. The main objective of this work is to investigate
and evaluate a less intrusive test approach called software-based test.
Software-based test uses an embedded processor as source and sink of the test,
sending the test patterns and reading the responses. A new integrated design
and test environment has been developed to automatically synthesize test
programs to test non-programmable cores of SoCs. Some benchmarks
ISCAS85 and ISCAS89 are used to evaluate the proposed methodology.

Key words: SoC test; Software-based test; computer aided test (CAT); LFSR reseeding.

1. INTRODUCTION

In recent SoC based systems the amount of test data transferred between
automatic test equipments (ATEs) and devices under test is becoming too
large. Even expensive state-of-the-art ATEs restrict the SoC test as a result
of limited memory resources, narrow channel bandwidth and low speed.

Please use the following format when citing this chapter:
Amory, Alexandre, M., Oliveira, Leandro, A., Moraes, Fernando, G, 2006, in IFIP
International Federation for Information Processing, Volume 200, VLSI-SOC: From
Systems to Chips, eds. Glesner, M., Reis, R., Indmsiak, L., Mooney, V., Eveking, H.,
(Boston: Springer), pp. 165-179.

166 Alexandre M. Amory, Leandro A. Oliveira and Fernando G. Moraes

One known approach to overcome ATE limitations is to use hardware-
based test (i.e. built-in self-test BIST) to generate patterns and to analyze the
results at -speed. This approach reduces the ATE constraints and the test
cost. However, BIST has some drawbacks^ (i) some circuits are resistant to
random patterns, resulting into a low fault-coverage; (ii) since new modules
are inserted into the system, the total area, operation frequency and power
consumption are negatively affected.

Software-based test is an alternative approach to BIST and ATE. SoC
devices usually contain, at least, one embedded processor and use bus-based
interconnection to integrate several IP cores. We propose a test methodology
to test non-programmable IP cores using an embedded processor. Since there
are no new test modules added to the system, figures as area usage, speed
and power are not changed. A possible drawback of the software-based test,
when compared to the hardware-based test is the longer time needed to apply
the patterns and/or analyze the results \

This work has two main objectives. The first one is the evaluation of
software-based against hardware-based test. The second objective is to
present the developed Computer Aided Test (CAT) tool to synthesize the test
program and to integrate IP cores in the SoC.

Unlike previous approaches '̂̂ '" ,̂ this paper presents a new tightly
integrated design and test methodology, including commercial and in-house
tools. Moreover, the evaluation compares software-based test with hardware-
based test, unlike^ which compares software-based test with boundary scan.

This paper is organized as follows. Section 2 presents the state-of-the-art
in software-based test. Section 3 presents the bus-based SoC architecture.
Section 4 details the developed CAT environment. Section 5 focuses on the
software-based test evaluation based on some ISCAS85/89 benchmarks.
Section 0 concludes this paper and presents some directions for ftiture work.

2. SOFTWARE-BASED TEST

Software-based test can minimize some of the BIST drawbacks discussed
before. The following is a list of advantages of this approach:
• Ease to reuse and to modify the test strategy as it is implemented in

software;
• No specific test controller is required, since a generic embedded

processor is responsible for the test control and execution;
• Reduced (or none) area overhead due to the test patterns generation and

response compaction implemented in software;
• Reduced (or none) speed/power degradation, as there are no additional

test modules;

Software-Based Test for Cores in Bus-Based SoC Architectures 167

• Can be applied to test processors, memories, general cores and
interconnection (bus);

• Reduced design time compared to BIST even considering automated
tools since there is an additional manual process required to make the
target core become BIST-ready^;

• Test occurs in normal operational mode, eliminating the extra power
consumption of BIST^;

• Can apply and analyze at-speed test signals^ to detect delay faults,
alleviating the need of high-speed tester. Moreover, since the test is
applied in normal operational mode, the system is not over-tested.
Possible drawbacks of the software-based test are:

• The SoC must have an embedded processor;
• Additional time to create the test program;
• Extra memory needed to store the test program and the deterministic test

patterns;
• Licreased test time when comparing to hardware-based test. BIST usually

generates patterns/ compact responses in just one clock cycle. However,
in software-based test patterns are provided by the processor to the cores,
taking longer to execute the same task than BIST modules. On the other
hand, software-based test may be faster than ATE based test due to the
limited bandwidth^
Thus, the goal of this work is to automate the test program generation,

reducing the project time and to evaluate quantitatively the last two
drawbacks (i.e. the increased test time and memory requirements).

2.1 Processor Test

The first works on software-based test for processors were conducted in
the 70s by Thatte and Abraham^. Software-based self-test of processors is a
challenging issue due to: (i) the number of different hardware modules to be
tested; (ii) the limited number of pins to access the processor; (iii) the
existence of modules that can not be accessed directly, as interrupt
controller, flag, exception handler; (iv) the huge variation of
implementations and architectures. Recent works on software-based
processor test can be found in '̂̂ ,

2.2 Memory Test

Memory test is very simple to be implemented by a processor due to its
regular structure. Well-know algorithms^ using deterministic patterns, e.g.
55h and AAh, are used. Zorian and Ivanov^ consider a ROM as a
combinational circuit, where the address is the input and the memory content

168 Alexandre M. Amory, Leandro A. Oliveira and Fernando G. Moraes

is the output. An exhaustive test is performed reading all memory contents
and compacting the output.

2.3 Non-Programmable Core Test

The embedded processor can execute a specific program to test each core
of the SoC, which is the goal of this paper. This program has the following
functions: (i) generate the test patterns; (ii) send these patterns to the cores
through the communication path (e.g. bus or TAM); (iii) read the test
responses; (iv) compact these responses. Since it is a software-based test, it
is possible to use different algorithms to test each core.

The test program can emulate the behavior of a LFSR and MISR in
software, generating pseudo-random patterns and compacting responses^^. A
disadvantage of emulating a LFSR or a MISR in software is the increasing
test time, since it may need several clock cycles to produce one pattern.
Other approaches using adders, subtractors and multipliers to generate
patterns and/or to compact responses can be used. In ^Mt is shown that these
modules can be used to substitute LFSR, generating comparable fault
coverage, with the advantage of generating a pattern for each instruction
(e.g. add).

Huang et al ^ developed a bus-based architecture with MIPS processor,
PCI bus and VCI interface. Using this architecture, they evaluated the test
time and fault coverage of some ISCAS89 benchmarks. Lai and Cheng"* used
the same architecture presented in ^ to evaluate test programs generated for
four ISCAS89 benchmarks, using the DLX processor. The test program
length is from 40 to 27000 bytes. The test time is from 94 to 30430 clock
cycles. The results point to important test memory requirements and test
time compared to hardware-based test.

Hwang and Abraham^ developed a bus-based architecture with an ARM
processor and Wishbone interface. The authors compared the test time and
area overhead between software-based test and boundary scan. In both cases,
the software-based test presented better results.

3. SOC ARCHITECTURE AND TOOLS

This work targets SoCs employing a bus to connect a processor to
memory and IP cores. The proposed approach is prototyped in FPGAs using
the Excalibur"^^ environment^^. Figure 1 presents the target SoC architecture.
A PC is used as the external tester, responsible for loading the test program
and deterministic patterns into the memory through the serial interface.

Software-Based Test for Cores in Bus-Based SoC Architectures 169

FPGA
Data Memory

test data

JLFSRconfiguration \

ATPG patterns

M—H

; expected s l g n a t u r — ~ - — K - ^

application data '-
Memory

u
K-H

CPU
(Nios32)

Instruction Memory

test program
Instruction
Memory

application program

k~«

UART ^

wrapper

C1908

wrapper

C1355

wrapper

,81196

wrapper

C3640

RS232

/«S^^!iiI\

Figure J. Target SoC architecture.

The embedded processor used is the 5-stage pipeline Nios32^^. The 32-bit
Avalon™ bus is used to connect the SoC components. The cl908, cl355,
c3540 and si 196 benchmarks, randomly chosen, are used to evaluate the
proposed test method and the CAT tool. Each core connected to the bus is
wrapped. Using a uniform wrapper, the same test procedures can be applied
to all cores under test.

In the data memory, each core has its LFSR configuration (i.e. the
multiple seeds and polynomials) chosen in a manual process, the ATPG
patterns generated by a commercial tool, the expected signatures and the
application data. The instruction memory contains the synthesized test
program used to test all non-programmable cores and the application
program.

4. CAT TOOL ENVIRONMENT

The CAT environment developed has four main functions: (i)
automatically synthesize test programs in C language; (ii) automatically
synthesize the VHDL wrappers to each core; (iii) insert scan chains when
necessary; (iv) automatically synthesize the SoC interface to integrate the
cores. Figure 2 and Figure 4 present a design flow divided in two parts: the
SoC generation and the test program generation.

170 Alexandre M. Amory, Leandro A. Oliveira and Fernando G. Moraes

Scan-Chain

(

SoC Generator

x-

r

Wrapper

|Core 1 1

Wrapper

|Core2|

Wrapper

ICoren] '~E

Interface

Wrapper

1 CPU I

. ; . - . ^ A • • • • .

u s : ': •^••.i\-]. ••:

) (b)

to Test Code Generator

Figure 2. SoC generation CAD flow.

QT (http://www.trolltech.com) is used to build the graphical interface of
this environment. The CAT tool synthesizes ' C and 'VHDL' descriptions
from pre-validated templates, integrates commercial CAD tools (Leonardo,
ModelSim, FlexTest, FastScan, DFTAdvisor) and guides the user through
the design and test flow.

4.1 SoC Generation

The SoC generation flow starts with a tool called core extraction -Figure
2(a). This tool extracts the core interface (input/outputs) and may insert scan
chains when required. Scan chains are inserted using the DFT Advisor tool.
In the interface extraction, some of the extracted data are: (i) the name of the
core; (ii) the type of the core - core, processor or memory, (iii) the files
composing the core; (iv) the top entity; (v) the ports and generics of the top
entity. The user must specify the port usage for each port of the core. Port
usage means how the port is used in the system (e.g. data, clock, reset,
enable, external). This is a key piece of information, since it enables the SoC
generator tool to automatically synthesize the wrapper for this core and the
SoC interface.

Software-Based Test for Cores in Bus-Based SoC Architectures 171

wrapper [w i r j ^

Lbfi
datain

core/7
- A ^ CO H

^ n
R

-32

dataout

Figure S. Wrapper scheme.

The next step is the SoC generation, Figure 2(b). The following actions
are executed during this step: (i) selection of the cores and the processor; (ii)
selection of the communication media; (iii) wrapper synthesis for each core;
(iv) SoC interface synthesis.

The cores are selected from a library created in the first step {core
extraction). After that, the user defines the communication architecture.
Different communication architectures can be easily integrated to the
environment, but presently only bus-based is allowed.

Once the communication architecture is defined, the wrapper is
automatically synthesized for each core. Wrappers are synthesized after the
communication architecture selection since the communication protocol and
the wrapper interface are associated to the communication media, in this
case, a bus.

Figure 3 presents an example of wrapper for a bus-based architecture.
The wrapper has shift-registers adapting the bus width (32-bit) to the core
input/output widths, represented by ci and co registers. The test is executed
in two steps: patterns loading and response reading. The six least significant
bits of the addr port are used to set the test mode, i.e. pattern loading or
response reading.

When the wrapper is in test mode and a write operation is required (wr
port), the internal clockEnb is asserted during one clock cycle to process the
incoming test patterns. Note that the clockEnb assertion occurs only when
the last part of the incoming pattern is written into the input shift-register.

172 Alexandre M. Amory, Leandro A. Oliveira and Fernando G. Moraes

The responses are stored into the output shift-registers one clock cycle
after clockEnb assertion. The processor reads the responses when the rd port
is asserted.

At this step of the flow, two VHDL files are created for each core:
wrapper and testbench. The testbench is used to validate the wrapper. The
test patterns for this testbench can be internally generated from a
configurable LFSR or read from patterns stored in an external file. When
read from external files, it can be used to validate the test patterns and
generate the expected signature.

The last step is the SoC interface generation, which is obtained from the
data extracted from each core. When the port usage is specified as external,
it is connected to the SoC interface. The wrapped core has ports connected to
the communication interface and external ports connected to the SoC
interface.

These external ports impose modifications (addition of ports) in the
wrapper and in the SoC interface.

4.2 Test Program Generation

Once the SoC is built, the next step is to create the test program. The test
program generates the test vectors, compacts the responses and evaluates the
signature of each core. The selected test pattern generation approach is based
on Hellebrand's approach'^, which uses different LFSR configurations to
increase the fault coverage obtained from pseudo-random patterns.
Therefore, fewer deterministic patterns are stored in the memory. The main
advantage of this approach is the minimization of technological requirements
of the external tester, such as bandwidth, memory and frequency. However,
the challenge is to find a tradeoff between run-time for pseudo-random test
and the memory requirements for deterministic test. The test program
generation flow is presented in Figure 4.

The first action of the test program generator (Figure 4(a)) is to select
the polynomials and seeds to generate patterns to each core. Multiple
polynomials can be selected and each polynomial may have several seeds.
The environment supports generic modular LFSR and MISR descriptions. A
reseeding tool like^^ could present better encoding efficiency, i.e. more
compact test pattern set to achieve higher fault coverage. However, the
LFSR configuration was randomly chosen since this kind of tool is not
available, at the moment.

Each LFSR configuration is simulated, creating the test patterns for each
core - Figure 4(b). The generated patterns are translated to the fault simulator
format (Flextesf^Wastscan"^^) and the fault coverage is evaluated, using the
synthesized description of the cores. If the resulting fault coverage is not

Software-Based Test for Cores in Bus-Based SoC Architectures 173

sufficient, the user may run the ATPG tool to generate the remaining test
patterns or choose other LFSR configuration, restarting the process. At the
end of this process, the user has all the necessary patterns to test each core.
Thus, the expected signature can be generated using a logic simulator -
Figure 4(c).

Finally, these patterns (pseudo-random and/or deterministic) are
translated to the test program in C language - Figure 4(d). After the program
generation, the user can evaluate the required test time using a
hardware/software co-simulation tool - Figure 4 (e). The co-simulation tool
is provided by the Excalibur environment. Figure 5 presents an example of
pseudo test program.

The core under test in Figure 5 is memory mapped, which means that the
processor accesses cores with load and store instructions. This can be
observed by the "^cutPtr pointer, in the third line.

^ from SoC Generator

Test Code Generator

Select
Polynomials and

Seeds
(a)

Simulate LFSR
Configuration

X

(b)

Fault Simulation |<

i
ATPG

Core
j ~ l _ J Description

(EDIF)

Fault Simulation k -

j , good fault coverage

(c)
Signature

Generation

Test Code
Generation (d)

Test Code
Simulation in the
Soc Description

N S5C
Description

(VHDLl

Figure 4. Test program generation CAT flow.

174 Alexandre M. Amory, Leandro A. Oliveira and Fernando G. Moraes

1) #define nCores 5
2) const coreTyp coreCfg[nCores] = {{expectedSig,corePtr},{),{}} ;
3) const unsigned detVet[nCores]={{},{},{},{},{}};
4) const unsigned lfsrCfcr[nCores3={ {},{},{},{},{} };
5) void lfsr{ unsigned polynomial, int *state);
6)
7) void ApplyPseudoRandoinPattom(volatile void *hwif) {
8) for each polynomial {
9) poly = lfsrCfg[ind];
10) n_seed = lfsrCfg[ind+l];
11) ind+=2;
12) for each seed {
13) value = lfsrCfg[ind];
14) n_patterns = lfsrCfg[ind+l];
15) ind+=2;
16) for each pattern {
17) *hwif = value; // send pattern to CUT
18) lfsr(poly;&value); // generate new pattern
19) }}}}
20) void ApplyDeterministicPattoimlvolatile void *hwif){
21) for each pattern {
22) *hwif = detVet[i]; // send det. pattern to CUT
23) }}
24) int ExecuteTest(void){
25) volatile void *cut;
26) for each core {
27) cut = coreCfg[core].cutPtr;
28) ApplyPseudoRandomPattern(cut);
29) ApplyDeterministicPattern(cut);
30) genSignature = *cut; // read signature from the
31) // CUT - MISR in hardware
32) if (genSignature != coreCfg[core].expectedSig)
33) abortTestO;
34) }

35) }}

Figure 5. Pseudo test program example. LFSR implemented in software (Ifsr ftinction) and
MISR in hardware.

The first lines define the expected signature, the deterministic test vectors
generated by the ATPG and the LFSR configuration. The ExecuteTest
procedure is the main test function. For all cores of the system this function
applies the pseudo-random patterns and the deterministic patterns.
Depending on the test time requirements, the test designer may implement
the MISR in hardware (line 28) to speed-up the test, as presented in this
example. Each core has an embedded MISR, which is read by the software at
the end of the core test. The returned signature is compared against the
expected one (lines 30-31). When the test code is generated to each core, the
system (hardware and software) is prototyped on a development board for
the final validation.

5. RESULTS AND DISCUSSION

The features evaluated using the ISCAS85/89 benchmarks are fault
coverage, test time and memory requirements to store the test program
(instruction memory) and deterministic patterns (data memory). Table 1
presents some additional information of the benchmarks.

Software-Based Test for Cores in Bus-Based SoC Architectures 175

Table J. Benchmarks general information.

Core Inputs Outputs Core area

C1908 33 25 286 843
C1355 41 32 271 948
c3540 50 22 756 1499
S1196 14 14 476 854

The benchmarks are mapped to a 0.35 library and the area is presented in
nand2 equivalent gates. The cores evaluated are small and do not represent
real case cores. Using complex benchmarks, the wrapper overhead will be
reduced since it is a function mainly of the number of inputs and outputs.

Table 2 presents the fault coverage (FC) obtained and the number of
patterns for the mixed patterns approach. For example, core cl908 obtained
67.94% fault coverage using only pseudo-random patterns. Deterministic
patterns, generated by a commercial ATPG, increased the fault coverage to
99.52%. The last two columns present the number of patterns (pseudo­
random and deterministic) used.

Table 3 presents the data memory requirements to store the LFSR
configuration {random size) and the ATPG patterns (deterministic size) in
bytes. As can be observed, the number of bytes to store a LFSR
configuration is much smaller than deterministic patterns, as stated in ^̂ .
However, a significant number of deterministic patterns had to be used to
reach acceptable fault coverage. Those remaining deterministic patterns can
be reduced even more using embedded compression algorithms or using a
tool to select the best seeds and polynomials for each core. Using
compression algorithms will obviously reduce the test data and the time to
download them. However, this can have a negative impact in the test time,
since the patterns had to be decompressed before being sent to the core. On
the other hand, using a tool to select seeds can increase the quality of the
pseudo random patterns (i.e. increase the number of useful patterns)
reducing the need of deterministic pattems^^.

The mixed test pattern approach (i.e. deterministic and pseudo-random)
was partitioned into four different hardware/software test configurations. In
the first partition, the LFSR, the MISR and the control structure used to
apply deterministic patterns are implemented in hardware (hardware
partition). In the second partition, all test modules are implemented in
software (software partition). The third partition implements the LFSR in
software and the MISR in hardware (misr hardware partition). In the fourth
partition, the test patterns are generated using arithmetic functions (adders
software partition) provided by the processor and the MISR is implemented
in hardware^ ̂ The fault coverage using adders is not evaluated.

176 Alexandre M. Amory, Leandro A. Oliveira and Fernando G. Moraes

Table 2. Fault coverage (FC) and number of test patterns
o n A x^r- Deterministic+
Core Random FC T̂ , ^-^

Random FC
cl908 67.94
C1355 88.89
c3540 75.22
S1196 53.41

99.52
100.00
97.48
94.57

for mixed test
Random
Patterns
40
66
105
159

patterns approach.
Deterministic
Patterns
68
29
184
459

Table 3. Data memory requirements, in bytes, for each core.
Core
C1908
cl355
C3540
sl l96

Random Size
9
17
21
15

Deterministic Size
137
59
369
460

Table 4 compares the instruction memory requirements to store the test
program (each instruction uses two bytes) for three partitions. The test
program is the same for all cores. As can be noted, since the test program is
simplified (i.e. moved from LFSR to adder to generate pattems) the test
program obviously is reduced in size. As can be seen in Table 4 the
instruction memory requirements, i.e. bytes necessary to store the test
program, are relatively small. The instruction memory requires less than
1Kbyte to store a test program to test all the non-programmable cores. This
shows that the memory requirements to store the test program are not a
constraint for software-based test applied to non-programmable core.

Table 5 presents the number of clock cycles between the generation of
two patterns. In the hardware partition, the pseudo-random pattems are
generated cycle by cycle and the deterministic pattems are estimated to 10
clock cycles, due to the time to access the test memory. The software
partition takes 185 cycles to apply a pseudo-random pattern and 175 cycles
to apply a deterministic pattern, due to the test serialization. Since part of the
test has been removed from the software (i.e. response compaction moved to
hardware), the time is reduced. In the last partition, it is possible to see that
the test time is even more reduced, confirming" '̂̂ \ which suggest the use of
specific test instructions to reduce the test time and test program length.

Table 6 complements the test time information presented in Table 5. It
presents the total test time for the mixed test approach for the benchmarks
using the four partitions.

As expected, the software partition takes longer test time to complete the
test. This difference is due to the overhead induced by the data transfer from
the processor to the core over the bus, and the test serialization. In the
hardware approach, these steps are executed in parallel, as a pipeline
structure.

Software-Based Test for Cores in Bus-Based SoC Architectures 111

Table 4. Instruction memory requirements, in bytes, for the hardware/software partitions.
^ Q fhx/ LFSR in Software Adder in Software

MISR in Hardware MISR in Hardware
All 564 428 394

Table 5. Time in clock cycles to apply a new pattern to the UUT.
„ ,̂ ^ _, , ^ „ LFSR software Adder software
Pattern Type Hardware Software AyrTcr> u A A/TTCD U A

MISR hardware MISR hardware
Pseudo-random 1 185 102 73
Deterministic 10 175 43 43

Table 6. Total test time, in clock cycles, fox four test approach.

Core Hardware Software
LFSR software Adder software
MISR hardware MISR hardware

C1355 1400 40168 28034 18817
C1908 646 35313 23246 17552
C3540 3785 94232 61906 46790
S1196 4749 110046 53452 48723

The third and the fourth test partitions reduce the total test time. The
MISR implemented in hardware reduces the traffic in the bus, since the
responses are compacted in hardware, sending back to the processor only the
signature (see the test program in Figure 5). The test time in the last partition
was reduced by using a processor specific instruction to generate the pseudo­
random patterns. This has an advantage over the LFSR emulation because a
new pattern is created with only one instruction, reducing the test time and
the test program length" '̂'̂ The discussion of the results is presented in the
next Section.

6. CONCLUSIONS

Software-based test minimizes the two main drawbacks related to BIST:
performance degradation and additional hardware area. According to the
literature, software-based test increases test time and the test memory
requirements. This work presents a quantitative evaluation of these
drawbacks. Actually, the test time is an important drawback for
manufacturing test, since the test time using only software-based test is
much longer compared to the hardware-based test. As shown, the test time is
minimized when the test modules are partitioned into hardware/software
modules. The test time is also minimized using an adder to generate patterns.
On the other hand, the instruction memory requirement for software-based
test is low, A careful design of the test program can enable its reuse to test
different cores. It is also possible to reduce the data memory requirement
using compression algorithms in the deterministic patterns, an issue not

178 Alexandre M. Amory, Leandro A. Oliveira and Fernando G. Moraes

explored in this work. Thus, software-based test can be applied to field test
since the memory requirement, the main bottleneck to this kind of test, is
minimal.

The added area by the wrapper insertion. Table 1, is used to integrate the
cores to the bus, without test-related circuitry. The only area overhead
induced by the software-based test is the memory space used to store the test
program.

The second contribution of this work is the developed CAT environment,
integrating software-based test to a generic and simple to use SoC design
flow.

As ongoing work, the CAT environment is being validated with ITC02
benchmark. Other criterions, such as hardware overhead and power
dissipation are also being evaluated. We are also evaluating software based-
test in other communication architectures like network-on-chip'"^.

ACKNOWLEDGEMENTS

Fernando Moraes grateftally acknowledges the support of the CNPq
through research grant number 307665/2003-2.

7. REFERENCES

1. L. Chen, and S. Dey, Software-Based Self-Testing Methodology for Processor Cores.
IEEE Transactions on Computer-Aided Designs, 20(3), 369-380 (2001).

2. J.-R. Huang, M. K. Iyer, and K.-T. Cheng, A Self-Test Methodology for IP Cores in Bus-
Based Programmable SoCs. In: VLSI Test Symposium. 198-203 (2001).

3. S. Hwang, and J. A. Abraham, Reuse of Addressable System Bus for SOC Testing. In:
ASIC/SOC Conference. 215-219 (2001).

4. W. C. Lai, and K. T. Cheng, Instruction-Level DFT for Testing Processor and IP Cores in
System-on-a-Chip. In; Design Automation Conference. 59-64 (2001).

5. A. Krstic, W. C. Lai, K. T. Cheng, L. Chen, and S. Dey, Embedded Software-Based Self-
Test for Programmable Core-Based Designs. IEEE Design and Test of Computers. 19(4),
18-27(2002).

6. S. M. Thatte, and J. A. Abraham, A Methodology for Functional Level Testing of
Microprocessors. In: International Symposium on Fault-Tolerant Computing. 90-95
(1978).

7. N. Kranitis, G. Xenoulis, D. Gizopoulos, A. Paschalis, and Y. Zorian, Low-Cost Software-
Based Self-Test of RISC Processor Cores. In: Design, Automation and Test in Europe
Conference. 164-168(2003).

8. A. J. Van de Goor, Using March Tests to Test SRAMs. IEEE Design and Test of
Computers. 10(1), 8-14 (1993).

9. Y. Zorian, and A. Ivanov, An Effective BIST Scheme for ROM's. IEEE Transaction on
Computers. 41(5), 646-653 (1992).

Software-Based Test for Cores in Bus-Based SoC Architectures 179

lO.S. Hellebrand, H. J. Wunderlich, and A. Hertwig, Mixed-Mode BIST Using Embedded
Processors. In: International Test Conference. 195-204 (1996).

1 l.J. Rajski, and J. Tyszer, Arithmetic BuiU-In Self-Test for Embedded Systems (Prentice Hall,
Upper Saddle River, 1998).

12. Altera Inc. Nios Embedded Processor: 32 bits Programmer's Reference Manual, (version
2.1,2002, 124 p).

13.C. V. Krishna, and N. A. Touba, Reducing Test Data Volume Using LFSR Reseeding with
Seed Compression. In: International Test Conference. 321-330 (2002).

14. A. M. Amory, E. Cota, M. S. Lubaszewski, and F. G. Moraes, Reducing Test Time with
Processor Reuse in Network-on-Chip Based Systems. In: Symposium on Integrated
Circuits and System. 111-116 (2004).

