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Abstract An appealing feature of interior methods for linear programming is that the num- 
ber of iterations required to solve a problem tends to be relatively insensitive 
to the choice of initial point. This feature has the drawback that it is difficult 
to design interior methods that efficiently utilize information from an optimal 
solution to a "nearby" problem. We discuss this feature in the context of general 
nonlinear programming and specialize to linear programming. We demonstrate 
that warm start for a particular nonlinear programming problem, given a near- 
optimal solution for a "nearby" problem, is closely related to an SQP method 
applied to an equality-constrained problem. These results are further refined for 
the case of linear programming. 

keywords: nonlinear programming, linear programming, interior method, 
warm start. 

1. Introduction 
This paper concerns the solution of a nonlinear program in the form 

minimize f (x) 
XEW 

subject to c(x) 2 0, 

where f : Rn + R and c : Rn -+ Rm are twice-continuously differentiable. 
Our interest is the situation where we want to solve (1) given the solution to 
a "nearby" problem. This situation is commonly referred to as warm start. It 
may for example be the case that one is interested in resolving the problem 
when only some constraints have been changed. Our discussion specifically 
concerns interior methods. We will study properties of the search directions 
generated for the nonlinear programming case, and then specialize further to 
linear programming. For related discussions concerning linear programming, 
see, e.g. Jansen et al. [I I], Kim, Park and Park [12], Gondzio and Grothey [9], 
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Yildirim and Todd [18, 191, Yildirim and Wright [20], Gonzalez-Lima, Wei 
and Wolkowicz [lo]. For extensions to linear sernidefinite programming, see 
Yildirim [17]. 

2. Background 
Methods for solving ( I )  all have to solve a combinatorial problem of identi- 

fying the constraints that are active at the solution. This can roughly be done 
in two ways: (i) by a "hard" estimate of the active constraints at each iteration 
or by (ii) a "soft" estimate. Our focus is interior methods, which belong to 
the latter class. However, in the discussion, sequential quadratic programming 
methods, which belong to the former type of methods, arise too. In this section, 
we review basic properties of these methods, and also give a brief review of 
optimality conditions. 

2.1 Optimality conditions 
Given a suitable constraint qualijcation, an optimal solution x to (I) ,  to- 

gether with a Lagrange multiplier vector X E X m ,  has to satisfy thefirst-order 
necessary optimality conditions associated with (1). These conditions may be 
written in the form 

where g(x) = V f (x), A(x) = ct(x) and e is an m-dimensional vector of 
ones. Here, and throughout the paper, we denote by upper-case letters Y and 
S, the diagonal matrices formed by y and s respectively. In (2)-(4) we have 
introduced the slack variables s associated with the constraints c(x) > 0. They 
need not be present, since s may be eliminated from (3). They do not affect the 
discussion, but simplify the notation. The analogous discussion could be made 
without introducing s. A constraint qualification ensures that a linearization of 
the constraints around a point of interest gives a suitable approximation to the 
constraints. We will throughout the paper assume that a constraint qualifica- 
tion holds at all points which we consider. For a more detailed discussion of 
constraint qualifications in the context of interior methods, see, e.g., Forsgren, 
Gill and Wright [6, Section 2.21. 

Second-order optimality conditions typically involve the Hessian of the La- 
grangian L(x, y) with respect to x, where L(x, y) = f (x) - yTc(x). We 
denote this Hessian by H(x, y), i.e., 
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Given a suitable constraint qualification, the curvature of the objective function 
on the surface of the active constraints is captured by the curvature of H ( x ,  y) 
on the tangent surface of the active constraints. For further discussion, see, e.g., 
Forsgren, Gill and Wright [6, Section 2.21. 

2.2 Interior methods 
The interior methods of interest to this paper are based on approximately 

following the barrier trajectory. This trajectory is defined as the set of solutions 
to the perturbed optimality conditions 

s ( x )  - A ( X ) ~ Y  = 0, 
c(x) - s = 0, 

YSe = pe,  

where y > 0 and s > 0 are held implicitly. Here, p is a positive parameter, 
referred to as the barrier parameter. As in (2)-(4) , we have introduced slack 
variables s. This slack reformulation is not of importance for the discussion, 
but convenient for the notation. 

A primal-dual interior method computes approximate solution to (5)-(7) for 
decreasing values of p by Newton's method. This means that the steps Ax, A s  
and Ay are computed from the linear equation 

Equivalently, we may eliminate A s  and solve 

Note that there is no loss in sparsity when forming (9) from (8), since Y is 
diagonal. Local convexity is typically deduced by the inertia of the matrix of 
(9). If the inertia is such that the matrix has n positive eigenvalues and m 
negative eigenvalues, the equations are solved. Otherwise, some modification 
is made. The solution of this equation can either be done by factorization 
methods or by iterative methods. See, e.g., Forsgren [4] and Forsgren, Gill and 
Griffin [5] for a discussion of these issues. 

In order to enforce convergence of the method, typically a linesearch strategy, 
a trust-region strategy or a filter strategy may be used. We shall not be concerned 
with the precise method, but focus on the linear equations to be solved. For more 
detailed descriptions on interior methods, see e.g., Forsgren, Gill and Wright [6] 
or Wright [15]. Note that for a solution of (5)-(7) , no constraints are active, 
since p > 0. Hence, the active constraints at the solution are determined 
implicitly as ,LL tends to zero. 



2.3 Sequential quadratic programming methods 

In contrast to an interior method, where one system of linear equations is 
solved at each iteration, a sequential programming method has a subproblem 
which is an inequality-constrained quadratic program on the form 

minimize i p T ~ ( x ,  y)p + g(x)Tp 
p€Rn 

subject to A(x)p _> -c(x). 

If the problem is locally convex, this subproblem is well defined. Otherwise, 
some modification is made. We will assume that local convexity holds in 
our discussion, and not consider the modifications. If p* denotes the optimal 
solution of (10) and y* denotes the corresponding Lagrange multiplier vector, 
then the next iterate for solving (1) is given by x + p*, and the next Lagrange 
multiplier estimate is given by y*. Again, some strategy is required to ensure 
convergence, but the basis of the subproblem is the solution of a quadratic 
program on the form (10). Note that the prediction of the constraints that are 
active at the solution of (1) are given by the constraints active at the solution of 
(10). For a thorough discussion on sequential quadratic programming methods, 
see, e.g., Nocedal and Wright [13, Chapter 181. 

3. Warm starts of interior methods for nonlinear 
programming 

We now return to the issue of solving (I)  by a primal-dual interior method. 
Specifically, we consider the warm-start situation. Assume that the initial point 
is given as a near-optimal solution on the trajectory to a different problem 

minimize f (x) 
x€Rn  

subject to ?(x) 2 0, 

where f and 2 have the same properties as f and c of (1). We denote this point 
by 5. This means that for a small barrier parameter fi, we assume that 5, .5 and 
f i  solve 

where y(5) = ~ f ( 2 )  and A(5) = ?I(?). Throughout the paper, we will 
consider quantities related to matrices that are implicitly dependent on fi. The 
notation O(fi) will be used to denote a quantity that converges to zero at least 
as fast as fi. Analogously, O(fi) denotes a quantity that converges to zero at the 
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same rate as b ,  @ ( I )  denotes a bounded quantity that is bounded away from 
zero as fi -t 0 and Q(l/,G) denotes a quantity whose inverse converges to zero 
at least as fast as ,h. 

From the point given by ( I  I), we want to take a primal-dual interior step 
towards solving (1) for a given barrier parameter p. By (8) and (1 2)-(14), the 
Newton equations take the form 

In order to make a more detailed analysis, we assume that the set {1 ,2 ,  . . . , m )  
can be partitioned into two sets, A and I, according to which constraints of (1 I)  
that are "almost active" at 2 ,  and which constraints that are "not almost active" 
at 5 .  This means that A U I = (1,. . . , m}, where A = {i E { 1 , 2 , .  . . , m )  : 

Ci(5) = @(fi)) and I = {i E { 1 , 2 , .  . . , m }  : E,(5) = @(I)}. This would 
typically be the case in the neighborhood of a local minimizer of ( I )  where 
strict complementarity holds. We will throughout this section let subscript "A" 
denote quantities associated with A, and similarly for I. For example, the matrix 
A(?) is partitioned into AA(5)  and AI(5).  By the above assumption, it follows 
that GI = @(,G), and that SA = @(p). We will also make the assumption that 
AA(5)  has full row rank, and that H ( Z )  fj) is positive definite on the nullspace 
of AA(5) .  With this partition, (15) may be written as 

We may now approximate these equations by ignoring the @ ( b )  terms in the 
matrix, which gives a related system of equations 



where v~ and AyI may be eliminated so as to give the equivalent equations 

From (16)-(19), we may identify u and i j ~  + z~ as the solution and Lagrange 
multipliers of an equality-constrained quadratic program. By our assumptions, 
the difference between Ax, As, Ay, and u, v and z ,  respectively, is O(F) ,  as 
the following lemma states. 

L E M M A  1 Let ?,ij, and 3 satisjj (12)-(14). Assume that ( i )  AA ( 5 )  hasfid1 row 
rank, ( i i)  that H ( 5 , e )  is positive definite on the nullspace of AA(5) ,  (iii) that 
i j I  = O(fi) ,  and ( iv)  that S A  = O(,G). Further, let Ax, As and Ay satisJ(1(15), 
and let u, v and z satisjj (16)-(19). Then, Ax = u + O(fi) ,  As = v + O ( b )  
and Ay = z + O(fi) .  

Proof The quantities u, v and z are solutions of a system of linear equations 
whose matrix is bounded and nonsingular as ,G -, 0, by our assumptions. 
Hence, since Ax, Ay and As satisfy (12)-(14), where the only difference is 
that some O(f i )  elements have been added to the matrix, the result follows. I 

This means that we may use properties of u, v and w to deduce properties of 
our desired quantities Ax, As and Ay, as stated in the following proposition. 

THEOREM 2 Let 5, i j ,  and 3 satish (12)-(14). Assume that ( i )  AA(5)  has 
full row rank, ( i i )  that H ( 5 ,  i j )  is positive definite on the nullspace of AA(5) ,  
(iii) that GI = O(,G), and ( iv)  that S A  = O@). Further, let Ax, As and 
Ay satisfy (15). Then, Ax differs by O(,G) from the optimal solution to the 
equality-constrained quadratic program 

1 T minimize ipT~(lt., ~ ) p  + (g (2)  - ( p  - ,G)AI ( z ) ~ S ~  e) p 
p€Rn (20)  

subject to AA(5)p  = - c A ( ~ )  + ( p  - / 2 ) Y i 1 e ,  
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and V A  + A ~ A  differs by O ( b )  from the associated Lagrange multipliers. 

Proof The optimality conditions for (20) are given by 

T --1  H  ( 2 ,  G)p* + g(2)  - ( p  - @)A1 ( 2 )  SI  e = AA ( z ) ~ x > ,  (2 1) 

A ~ ( 2 ) p *  = -cA ( 2 )  + ( p  - p ) P i l e ,  (22) 

for an optimal solution p* together with a Lagrange multiplier vector X i .  Re- 
arrangement of (21)-(22), taking into account that 2 ,  S and g satisfy (12)-(14), 
gives 

By comparing these conditions with (18), it follows that p* = u and X i  - g A  = 
ZA. Lemma 1 now gives Ax = p* + 0 ( b )  and XI - fjA = AyA + O(,G), as 
required. I 

A consequence of Theorem 2 is that if p  = p, then the step is near-optimal to 
the equality-constrained problem where the active constraint are set as equali- 
ties, as summarized in the following corollary. 

COROLLARY 3 Let 2, Q, and S satisfy (12)-(14). Assume that ( i )  A A ( 2 )  has 
full row rank, ( i i )  that H ( 5 ,  ij) is positive dejnite on the nullspace of AA(2) ,  
(iii) that GI = O ( p ) ,  and (iv) that SA = O(j3). Further, let Ax, As and Ay 
satisfy (15) for p  = p. Then, Ax differs by O ( @ )  from the optimal solution to 
the equality-constrained quadratic program 

minimize i p T ~  ( 2 ,  G)p + g ( 2 ) T p  
peRn 

subject to AA ( 2 ) p  = -cA ( 2 ) ,  

and $A + AYA differs by O ( p )  from the associated Lagrange multipliers. 

Another consequence is that for p  = p,  the step is near-optimal to the 
"appropriate" inequality-constrained quadratic programming problem. 

COROLLARY 4 Let 2, Q, and S satisfy (12)-(14). Assume that ( i )  A A ( 2 )  has 
full row rank, ( i i)  that H ( 2 ,  G) is positive dejnite on the nullspace of AA(2) ,  
(iii) that ijI = O ( p ) ,  and (iv) that S A  = O@). Further, let Ax, As and Ay 
satisfy (15) for p  = p. Then, Ax differs by O ( p )  from the optinzal solution to 
the equality-constrained quadratic program 

minimize i p T ~  ( 2 ,  G)p + g ( ~ ) ~ p  
p m n  

subject to a ( 2  2 - ( 2  i E I:, (23) 
a i ( 2 ) T p - c i ( 2 ) ,  icIA\IAf, 



and $ + fly differ by O(b )  from the associated Lagrange multipliers, where 
I; = {i E A : Qi + ti > 0 ) ,  where z is given by (16)-(19). 

The conclusion is that if p is small, of the order of b, the primal-dual step 
behaves like the sequential quadratic programming step, i.e., for small pertur- 
bations we may expect the step to give a near-optimal solution, but for larger 
perturbations, the step is likely to violate both inactive constraints (that are ig- 
nored) and nonnegativity of the multipliers. In addition, we have not taken into 
account the implicit requirement that y and s have to be maintained positive. 

4. Warm starts of interior methods for linear 
programming 

The above analysis applies also to linear programming. However, linear 
programming is special in the sense that there always exists a strictly comple- 
mentary optimal solution, if an optimal solution exists, and the analysis may be 
specialized further. TG be consistent with the discussion in Section 3, we will 
consider the linear program 

minimize dTx 
xGRn 

subject to Ax 2 b, 

and a near-optimal solution to the related linear program 

minimize aTx 
xEEn 

subject to Ax 2 b. 

An underlying assumption is that the constraint matrix A has full column rank. 
Our analysis is "classical" sensitivity analysis in the sense that the constraint 
matrix A is assumed fixed, whereas the cost coefficients and the right hand sides 
may differ. 

The analysis of the previous section applies. However, here we need not 
make any assumption about nonsingularity of the resulting limiting Newton 
system. Again, we assume that a "small" barrier is given, and that 2,  3 and $ 
solve 

In addition to the assumption on full column rank of A, we make the assumption 
that the barrier trajectory for the perturbed problem (25) is well defined, i.e., 
( (2 ,  s )  : Ax - s = b; s > 0 )  # 0 and {y : ATlJ = E,y > 0 )  # 0. 
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From the initial point given by 2,  S and y, we want to take a primal-dual 
interior step towards solving (1) for a given barrier parameter p. The Newton 
equations may be written as 

If As is eliminated from (29), the resulting equivalent system of equations 
becomes 

where w = ,!?-IF. By further eliminating Ay, we obtain 

From this latter system, we obtain explicit expressions for Ax, Ay and As as 

where Z is a matrix whose columns form a basis for Note that (37) 
is obtained from (36) from the relations 

A special property of linear programming is that the elements of 6 can be 
split into "large" and "small" elements, denoted by A and I in consistency with 
the analysis of Section 3, as stated in the following lemma. 



L E M M A  5 Assume that {(x, s )  : Ax - s = 6, s  > 0) # 0 and {y : ATg = 

E ,  y > 0) # 0. Let 2, 9 and 5 satish (26)-(28). Then, we may partition 
(1, . . . , m )  = A U I, with A n I = 8, such that 

where Gi = gi/Si, i = 1,.  . . , m. 

Proof See, e.g., Wright [16, Lemma 5.131. 1 

We may get a further description of Ax,  A s  and Ay by utilizing the follow- 
ing result, which essentially states that we may obtain (ATwA)- 'ATw as a 
convex combination of solutions obtained from nonsingular n x n submatrices 
of A. 

THEOREM 6 ( D I K I N  [2])  Let A be an m x n matrix offull column rank, let 
g be a vector of dimension m, and let D be a positive dejinite diagonal m x m 
matrix. Then, 

( A ~ D A - A ~ D ~  = ( 
det ( D j )  det ( A J ) ~  

A J ' ~ J ,  
JEJ(A) C K ~ J ( . A )  d e t ( D ~ )  d e t ( A ~ ) '  

where J(A) is the collection of sets of row indices associated with nonsingular 
n x n submatrices of A. 

Proof See, e.g., Ben-Tal and Teboulle [ I ,  Corollary 2.11. 1 

Note that an implication of Theorem 6 is that 1 )  (AT W A)-' AT w 1 1  is bounded 
when varies over the set of positive definite and diagonal matrices. For fur- 
ther discussions on this issue, see, e.g., Forsgren [3] and Forsgren and Sporre [7]. 

In order to give the results on the search directions, we first need a result 
on the behavior of (ATwA)- ' (2-  d).  As in the previous section, we will let 
subscript "A" denote quantities associated with A, and similarly for I. 

LEMMA 7 It holds that \ / (ATwA)- ' (2-  d) / /  = O(b)  i j d -  d E range(Az) 
and 1 1  (ATWA)-'(d - d) / /  = R( l / f i )  otherwise. 

Proof First assume that d - d E range(A2). Then, d -  d = Azu  for some 21. 

We then get 
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where IA is the diagonal matrix with ones in diagonals corresponding to A 
and zeros in diagonals corresponding to I.  Taking norms in (40), taking into 
account that 1 1  w-lIAll = lII?/A1 11, gives 

Theorem6gives I I ( A ~ w A ) - ~ A ~ w ~ ~  = 0 ( 1 ) ,  Lemma5 shows that 1 1  r?/ i l / I  = 

0 ( p )  and u is a fixed vector. Consequently, (41) gives I J  (ATwA)- l  (2- d )  / /  = 
0 ( p )  , as required. 

Now assume that d - d $! range(A;). Then, Z Z ( ~  - d )  # 0, where 
ZA is a matrix whose columns form a basis for the null space of AA. Let 
fi = (ATwA)- ' (2  - d), i.e., 6 solves 

Premultiplication of (42) by 2; gives 

T T -  zAAI  WIA16 = z , T ( ~  - d ) ,  

and consequently 

Lemma 5 shows that I I Z Z A T W ~ A ~  / I  = O(fi). Since ZZ(d- d )  # 0, it follows 
from (43) that lj6ll = R( l / f i ) ,  as required. I 

Analogously, a result on the behavior of W ( I  - A ( A ~ w A ) - ~ A ~ w )  ( b  - 6 )  
is needed. 

L E M M A  8 It holds that / ~ w ( I  - A ( A ~ w A ) - ~ A ~ w ) ( ~  - b ) / /  = O(p) if 
bA - bA E range(AA) and ~ I w ( I  - A ( A ~ w A ) - ~ A ~ w ) ( ~  - b)/ l  = R ( l / p )  
otherwise. 

Proof First assume that bA - G A  E range(AA). Then, b - b = Au + r for 
some u and r with rA = 0. We then get 

Talung norms in (44) gives 



Theorem 6 gives I /  I - W A ( A ~ W A ) - ' A T  1 1  = O(1). Note that since r~ = 0, 
we obtain i/wrI/ = /ir?/lrI/l. Lemma 5 shows that = 0 ( b )  and r is a 
fixed vector. Consequently, (45) gives / /  W ( I  - A(AT W A ) - ' A ~ W ) ( ~ -  b )  / /  = 
0 ( p )  , as required. 

Now assume that bA - bA $ range(AA). Then, null(A;) # 8, and there 
is an orthonormal matrix ZA whose columns form a basis for null(A;). Since 
bA - bA $ range(AA), it holds that ZZ(bA - & A )  # 0. Moreover, there is an 
orthonormal matrix Z whose columns form a basis for null(AT) of the form 

where Z1 and Z2 are suitably dimensioned, possibly empty. It follows from 
(39) that 

Consequently, 

Let y = (.ZTT,i/-'Z)-'ZT ( b  - 6 ) .  Then ZT W - ' Z y  =: ZT ( b  - Ib), or equiv- 
alently 

The first block of equations implies that 

Consequently, 

By assumption, //Z:(bA - 6 ~ )  1 1  # 0. Lemma 5 shows that 1 1  WT' 1 1  = 0 ( p ) ,  
and Z is a fixed matrix. Consequently, (46) gives 

as required. 
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The following proposition now gives a characterization of Ax. Note that 
Ax is unbounded if d - d $ range(Az). 

THEOREM 9 Zfd - d E range(AZ), then 

Otherwise, Ax = Q(l/fi) 

Proof This is a consequence of Lemma 7 in conjunction with (35). 1 

Analogously, the following proposition now gives a characterization of Ay. 
Note that Ay is unbounded if - bA $! range(AA). 

Otherwise, Ay = R(l/fi).  

Proof This is a consequence of Lemma 8 in conjunction with (37). 1 

Finally, for the case of primal and dual nondegeneracy, it follows that both 
primal and dual steps are bounded. 

COROLLARY 11 If AA is square and nonsingulal; then 

Proof If AA is square and nonsingular, Theorem 6 in conjunction with Lemma 5 
gives 

( A ~ W A ) - ' A ~ W A = A ~ ~ + O ( , G )  and I I ( A ~ w A ) - ' I I = ~ ( , ~ ~ ) .  (47) 

Consequently, 1 1  ( A ~ W A ) - ~ A T W ~ Y ; ~  / j  = O(fi). The result for Ax now 
follows by using (47) in Theorem 9. The result for As  follows from Ax. 



Analogously, we may let 

for which 

( z ~ w - ~ z ) - ~ z ~ w ~ ~  = I + O(II,) and I I ( z ~ w - ~ z ) - ~ J I  = O(,,G). 
(48) 

Consequently, I / ( z ~ w - ~ z ) - ~ z ~ ~ ~ ~ / /  = O(,,G). The result for Ay now fol- 
lows by using (47) and (48) in Theorem 10. 1 

Corollary 11 gives the result from the nonlinear programming case, special- 
ized to linear programming, since the limiting Newton equations are nonsingular 
in this situation. 

4.1 Example linear programming problem 

Consider the example linear programming problem where A, b and d are 
given by 

- - 
Then, 2 = (0 D ) ~ ,  y = (0 ,,G l)T and S = (1 I ) ~ .  Hence, 6 = s - ' Y ~  = 
(,,G II ,  1 1 1 ) ~ .  Accordingly, 

We may use Theorem 6 to express 

In this example AA = (0 1) .  Since AA has full row rank, a combination of 
Theorem 10 and (49) gives 
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However, since AA does not have full column rank, Theorem 9 shows that Ax 
is R(l/fi) unless dl = Zl. For dl = dl, a combination of Theorem 9 and (49) 
gives 

For large-scale problems, the explicit representations from this small problem 
are naturally not available, but we have included the example to give a feeling 
of what Theorems 9 and 10 say. 

5. Summary 
We have characterized search directions that would arise in warm starts for 

interior methods, first for the general nonlinear programming case, and then 
more specialized results for the linear programming case. The difficulties in 
warm starts for interior methods are emphasized by these characterizations, 
since the directions are similar to directions what would arise in a sequential- 
quadratic-programming method applied to the active constraints only. 

The results are related to "false convergence" of interior methods on non- 
convex problems in that the iterates are close to the boundary of the inequal- 
ity constraints, but not well centered with respect to the trajectory. See e.g., 
Wachter and Biegler 1141 or Forsgren and Sporre [8], for further discussions 
on false convergence. 
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