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Abstract An approach for the Mixed Discrete Non-Linear Problems (MDNLP) by Particle 
Swarm Optimization is proposed. The penalty function to handle the discrete 
design variables is employed, in which the discrete design variables are treated 
as the continuous design variables by penalizing at the intervals. By using the 
penalty function, it is possible to handle all design variables as the continuous 
design variables. Through typical benchmark problem, the validity of proposed 
approach for MDNLP is examined. 
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1. Introduction 
Particle Swarm Optimization (PSO), which mimics the social behavior, is an 

optimization technique developed by Kennedy et. al. [I] .  It has been reported 
that PSO is suitable for the minimization of the non-convex function of the 
continuous design variables through many numerical examples. Few researches 
of PSO have been reported about the discrete optirnizaton [Z]. These researches 
handle the discrete design variables as the continuous ones, directly. That 
is, firstly all design variables may be handled as the continuous ones, and 
optimized. Finally, the round-off or cut-off are applied to get the discrete 
optimum. These approaches may be valid in a sense, but some problems are 
included as shown in Fig.l(a), (b). 

Fig.l(a) shows a case. XL represents the optimum of the continuous design 
variables. Point A and B represent the discrete design variables close to XL. 
In this case, Point B is chosen as the neighborhood of XL by the round-off. 
However, the objective function at Point B makes a change of the function 
value worse, when compared with the objective function at Point A. [3] Another 
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Figure I .  The nature of discrete optimization 

case shown in Fig.l(b) is well known. That is, the optimum obtained by the 
round-off or the cut-off does not satisfy all feasibilities [4]. 

PSO is suitable for the global optimization of the non-convex function of the 
continuous design variables. Therefore, all design variables should be handled 
as the continuous ones whenever PSO is applied to the mixed or discrete design 
variables problems. 

In this paper, the penalty function approach to handle the discrete design 
variables is proposed. By using the penalty function for the discrete design 
variables, it is possible to handle the discrete design variables as the continuous 
ones. Through typical MDNLP, the validity of proposed approach is examined. 

2. Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is one of the global optimization meth- 

ods for the continuous design variables [6] .  PSO does not utilize the gradient 
information of function like Genetic Algorithm. In PSO, each particle has the 
position and velocity, and they are updated by a simple addition and subtraction 
of vectors during search process. 

The position and velocity of particle d are represented by x: and v:, respec- 
tively. k represents iteration. The position and velocity of particle d at k+ l  th 
iteration are calculated by following equations. 

in which the coefficient u1 is called as inertia term, and rl and 7-2 denote random 
number between [0,1). The weighting coefficients cl and c;, are parameters. 
In general, cl = c;, = 2 is often used. p$, called as pbest, represents the best 
position of particle d till k th iteration, and p: called as gbest, represents the 
best position in the swarm till k th iteration. That is, pi is chosen among p;. 
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The inertia term in Eq.(2) gradually decreases during the search iteration. 

Wmaz - Wmin w = wmax - x k  
kmaz 

(3) 

in which, w,,, and wmi, represent the maximum and minimum value of inertia. 
k,,, represents the maximum number of search iteration. In general, w,,, = 
0.9 and wmin=0.4 are recommended [7]. 

2.1 PSO as an Optimization Technique 
From Eq.(l) and Eq.(2), the following equation can be obtained. 

%k+l d = X ~ + W  k x ~ ; f c r ( q - ~ ; )  (4) 

in which cr and q are represented as follows, respectively. 

From Eq.(4), it is possible to interpret that q - xi  represents the search direction 
when we imagine the similarity to the gradient methods. cr in Eq.(4) also may 
be regarded as stochastic step-size, in which its lower and upper bounds are 
0 and el+e2, and the mean value is (el + c2)/2. From these relationships, 
it is possible to consider that PSO has a search direction vector and stochastic 
step-size even though PSO does not utilize the gradient information of function. 

3. Penalty Function Approach for MDNLP by PSO 

3.1 Problem Definition 
In general, the Mixed Discrete Non-Linear Problem (MDNLP) is described 

as follows [5]: 
f (x) i m i n  (7) 

gk (x )  5 0 k = l , 2 ,  . . .  ,ncon (10) 

where x represents the design variables, which consist of the continuous and 
discrete design variables. f (x)  is the objective function, and gk(x) is the behav- 
ior constraints. neon represents the number of behavior constraints. xi denotes 



the continuous design variables, and m is the total number of continuous design 
variables. xt and xy denote the lower and upper bounds of continuous design 
variables, respectively. On the other hand, n is the total number of discrete 
design variables. Di is the set of discrete values for the i-th discrete design 
variable. di is the j-th discrete value for the i-th discrete design variables. q 
represents the number of discrete values. 

3.2 Penalty Function 
In this paper, the following penalty function suggested by [8] is adopted. 

where x&+~ is the continuous design variables between dij and di,j+l. Then 
the augmented objective function F ( x )  is constructed by using above penalty 
function as follows: 

ncon 

in which s and r denote the penalty parameters for Eq.(l I)  and Eq.(lO), respec- 
tively. Finally, MDNLP is transformed into the following continuous design 
variables problem. 

Fix) -, min (13) 

For the simplicity, the design variables are supposed as the discrete design 
variables in the following discussion. In the case of the mixed design variables, 
we discuss at section 3.7 separately. 

3.3 Characteristics of Penalty Function 
The value of Eq.( l l )  becomes small around the neighborhood of discrete 

value. On the other hand, the value of Eq.(l I )  becomes large, turning from 
discrete value. When p! satisfies the following equation, the discrete value 
resides around the neighborhood of p!. 

E in Eq.(16) represents small positive value. As a result, the penalty parameter 
s in Eq.(12) must be updated so that Eq.(16) is satisfied. In order to examine the 
effect of the penalty parameter s, let us consider a following simple problem. 
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8 
f ( x )  = x4 - - - 

3 
2x2 + 8x + rnin (17) 

In this simple example, the objective f ( x )  and the augmented objective 
function F ( x )  are shown in Fig.2. 

Augmented objective function 

Figure 2. Behavior of the augmented objective function 

From Fig.2, it is apparent that F ( x )  becomes non-convex and continuous. 
Additionally many local minima are generated around the neighborhood of 
the discrete values. As a result, the problem to find the discrete optimum is 
transformed into finding global minimum of F (x ) .  Additionally, the discrete 
values are given at the point, where the relative error between f (x )  and F ( x )  
becomes small. The following equation is utilized as terminal criteria. 

PSO does not use the gradient information of function, so that it is difficult 
to satisfy Eq.(16) strictly. Then, Eq.(19) is used instead of that. 

Behaviors of F ( x )  for various penalty parameter s are shown in Fig.3. From 
Fig.3, it is found that to determine a penalty parameter s in advance is very 
difficult. 

3.4 Initial Penalty Parameter s 

An initial search point x d  of particle d is determined randomly. Then the 
value of penalty function in Eq.(l1) is calculated for each particle. The penalty 
parameter s is determined as follows. 

where sd represents the penalty parameter of particle d. agent in Eq.(20) is the 
total number of particles. And initial penalty parameter si,iti,l is determined 
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Figure 3. Behavior of the augmented objective function for some parameter 

At the initial stage to search the optimum, F ( x )  is actively transformed 
into non-convex and continuous function, and many local minima are enerated 
around the neighborhood of the discrete value. 

3.5 Update Scheme of Penalty Parameter s 

The following equation is used to update the penalty parameter s. 

The behavior of F ( x )  by updating the penalty parameter s is shown schemat- 
ically in Fig.4. 

In Fig.4, solid line shows F ( x )  at k th iteration, and dotted line shows F ( x )  
at k + l  th iteration. As shown in Fig.4, F ( x )  at k+ l  th iteration becomes highly 
non-convex function in comparison with F ( x )  at k th iteration. For example, 
point .A in Fig.4 corresponds to the point p$ at k th iteration. By updating 
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Figure 4. Update of penalty parameter s 

penalty parameter s, pi  corresponds to the point A' on the dotted line. As 
discussed in section 2.1, PSO has similar structure to the gradient methods, so 
that it is expected that p: moves to the direction in Fig.4. Finally. it is also 
expected that pi  will satisfy Eq.(19). 

3.6 Initilization of Penalty Parameter s 

When Eq.(19) is satisfied, the discrete value around the neighborhood of p: 
resides. Then an initial penalty parameter by Eq.(21) is utilized in order to find 
another discrete value, because F ( x )  becomes highly non-convex function by 
updating the penalty parameter s. It is assumed that p! fails to escape from 
local minimum. In such occasions, F ( x )  is relaxed by using an initial penalty 
parameter when Eq.(19) is satisfied. As a result, it is expected that p; can 
escape from local minimum. 

3.7 In the Case of Mixed Design Variables 
The component of p: can be expressed as follows: 

where xcGnt and xdiSCrt represent the components of the continuous and discrete 
design variables, respectively. Then, the components of the continuous design 
variables xcGnt in p: are neglected when the terminal criteria by Eq.(19) is 



applied. That is, only the components of the discrete design variables xdiScTt 
in p: are checked when the terminal criteria by Eq.(19) is utilized. 

3.8 Difference between Traditional and Proposed Method 

The penalty function of Eq.(l 1) is the same as [8]. However, its approach 
is very different from each other. Shin et. al. have searched an optimum by 
regarding all design variables as the continuous at the initial stage, the penalty 
parameter s in Eq.(12) has been set as zero. After the optimum obtained by 
regarding all design variables as the continuous has been found, the penalty 
function of Eq.( l l )  has been introduced to avoid the search procedure of global 
minimum among many local minima of F(x ) .  

On the other hand, the penalty parameter s is actively introduced at the initial 
stage in our approach. Obviously F ( x )  becomes non-convex and continuous. 
However, this is not serious problem because PSO is applied to F (x ) .  The 
new update scheme of penalty parameter s by Eq.(22) is proposed. In the past 
reports [4, 81, the constant positive number is used to update the penalty para- 
meter. However, the constant positive number depends on the problems. On 
the other hand, the penalty parameter s may always changes in our approach 
because the value of $ ( p i )  is utilized. It may be expected that flexible appli- 
cations may be possible. Finally, the initialization of the penalty parameter s 
is also introcuded in order to relax F(x) .  As a result, it is expected that pi can 
escape from local minimum. 

Binary PSO is also easy to handle the discrete design variables [9, 101. 
However, the search process of binary PSO is stochastic. Additionally, no 
proof that the objective or design domain is continuous is given. On the other 
hand, our approach adopted here utilizes the characteristics of PSO and the 
penalty function of Eq.(l I), in order to find optimum. That is, our approach 
may be deterministic, when compared with binary PSO. 

3.9 Algorithm 
The proposed algorithm for MDNLP by PSO is shown in Fig.5. 

4. Numerical Example 
To examine the validity of proposed approach, let us consider the optimum 

design of pressure vessel as shown in Fig.6. 
This problem is one of the most famous benchmark for MDNLP [9, 11- 

141. Several results are shown in table 1. From table 1, it is very difficult 
to find optimum solutions even though this problem consists of only 4 design 
variables. The design variables are 1) Radius R (continuous design variables: 
xl) ,  2) Length L (continuous design variables: xs), 3) Thickness Ts (discrete 
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1 Calculation of position and velocity for each particle, randomly. k=l 1 + 
Calculation of penalty parameters by Eq. (20), for each particlc 
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Figure 5. The algorithm for MDNLP by PSO 

Figure 6. Optimum Design of Pressure Vessel 

design variables: x3) ,  and 4) Thickness Th (discrete design variables: x4) .  An 
optimization problem is defined as follows. 

f (x) = 0 . 6 2 2 4 ~ ~ ~ ~ ~ ~  + 1 . 7 7 8 1 ~ : ~ ~  + 3 . 1 6 6 1 ~ ~ ~ :  + 1 9 . 8 4 ~ ~ ~ ~  -+ min 
(24) 



in which x3 and x4 are the discrete design variables, 
of 0.0625 inch. 

i 0 (30) 

and are integer multiples 

Behavior constraints from Eq.(27) to Eq.(30) are handled as penalty function 
by using Eq.(12) The penalty parameter r is set as 1.0 x lo8. The number of 
particle is set as 50, and the maximum number of search iteration k,,, is also 
set as 500. 10 trials are performed with different random seed. The best result 
during 10 trials is shown in the last column "Kitayama" in table 1. From table 1, 
best result could be obtained by our proposed method. The average of function 
calls through 10 trials is 22500. 

Table 1. Comparison of results 

Sandgren Qian Kannan Hsu He Kitayama 
R[inch]: xl  47.00 58.31 58.29 N/A 42.10 42.37 
L[inch]:xz 117.70 44.52 43.69 N/A 176.64 173.42 
T,[inch]: 2 3  1.125 1.125 1.125 N/A 0.8125 0.8125 
Th[inch]: 24 0.625 0.625 0.625 N/A 0.4375 0.4375 

91 (x) -0.19 0.00 0.00 N/ A 0.00 0.00 
g2 (x) -0.28 -0.1 1 -0.1 1 N/A -0.08 -0.08 
g3 (x) -0.51 -0.81 -0.82 N/A -0.26 -0.28 
g4 (XI 0.05 -0.02 -1.1 1 N/A 0.00 0.00 

Obiective 8129.80 7238.83 7198.20 7021.67 6059.71 6029.87 

5. Conclusions 

In this paper, PSO has been applied to MDNLP. The penalty function for 
the discrete design variables is introduced, in order to handle as the continu- 
ous design variables. The augmented objective function becomes non-convex 
function of continuous design variables, by introducing penalty function. As 
considered that PSO is naturally suitable for the global search of non-convex 
function of the continuous design variables, our proposed approach may be 
valid. A method to determine the penalty parameter s and new update scheme 
of penalty parameter s have been also proposed. Through typical benchmark 
problem, the validity has been examined. 
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