
DECOUPLING COMPONENTS OF
AN ATTACK PREVENTION SYSTEM
USING PUBLISH/SUBSCRIBE*

Joaquin Garcia\ Michael A. Jaeger^, Gero Mühl^, and Joan BorrelP

Autonomous University of Barcelona,
Dept. of Information and Communications Engineering,
Edifici Q, 08193 Bellaterra, Spain
{ j g a r c i a , j b o r r e l l } @ c c d . u a b . e s

Technical University of Berlin,
Institute for Telecommunication Systems,
Communication and Operating Systems Group,
EN6, Einsteinufer 17, D-10587 Berlin, Germany
{michael. j a e g e r , gjnuehl}@acm. org

Abstract Distributed and coordinated attacks can disrupt electronic commerce applica­
tions and cause large revenue losses. The prevention of these attacks is not
possible by just considering information from isolated sources of the network.
A global view of the whole system is necessary to react against the different
actions of such an attack. We are currently working on a decentralized attack
prevention framework that is targeted at detecting as well as reacting to these
attacks. The cooperation between the different entities of this system has been
efficiently solved through the use of a publish/subscribe model. In this paper
we first present the advantages and convenience in using this communication
paradigm for a general decentralized attack prevention framework. Then, we
present the design for our specific approach. Finally, we shortly discuss our
implementation based on a freely available publish/subscribe message oriented
middleware.

1. Introduction

When attackers gain access to a corporate network by compromising autho­
rized users, computers, or applications, the network and its resources can be-

*This work has partially been funded by the Spanish Ministry of Science and Technology (MCYT) through
the project TIC2(X)3-02041 and the Catalan Ministry of Universities, Research and Information Society
(DURSI) with its grant 2003FI-126.

88 J. Garcia, M. A. Jaeger, G. Milhl and J. Borrell

come an active part of a globally distributed or coordinated attack. Such an
attack might be a coordinated port scan or distributed denial of service attack
against third party networks — or even against computers on the same net­
work. Both, distributed and coordinated attacks, rely on the combination of
actions performed by a malicious adversary to violate the security policy of a
target computer system. To prevent these attacks, a global view of the system
as a whole is necessary. Hence, different events and specifi c information must
be gathered and combined from all the sources. This affects, for example, in­
formation about suspicious connections, initiation of processes, and addition
of new fi les.

We are currently working on the design and development of an attack pre­
vention framework that is targeted at detecting as well as reacting to distributed
and coordinated attack scenarios [Garcia et al., 2004]. Our approach is based
on gathering and correlating information held by multiple sources. We use
a decentralized scheme based on message passing to share alerts in a secure
communication infrastructure. This way, we can detect and prevent these kind
of attacks performing detection and reaction processes based on the knowledge
gained through alert correlation.

In this paper we propose a decentralized infrastructure to share alerts be­
tween components. The information exchange between peers is intended to
achieve a more complete view of the system in whole. Once achieved, one can
detect and react on the different actions of a coordinated or distributed attack.

The rest of this paper is organized as follows: We start with an introduc­
tion to the publish/subscribe communication paradigm in Section 2 where we
present the advantages and convenience in using this model for our problem
domain and analyze related work. In Section 3, we discuss the communica­
tion mechanism used to exchange information among the components of our
system using xmlBlaster, an open source publish/subscribe message oriented
middleware [Ruff, 2000] and present the current state of our implementation.
We close with conclusions and give an outlook on future work in Section 4.

2. Publish/Subscribe Model

The publish/subscribe communication model is intended for group communi­
cation, i.e. for situations where a message {notifications) sent by a single entity
is required by, and should be distributed to, multiple entities. It is often used for
effi cient and comfortable information dissemination to group members which
may have individual interests in arbitrary subsets of messages published. In
contrast to multicast communication, clients have the possibility to describe
the events they are interested in more precisely (e.g. based on the contents of
the notifi cation). Clients can choose to either subscribe or unsubscribe to mes­
sages as time goes by, and all the subscribers are independent of each other.

Decoupling Components of an Attack Prevention System Using Publish/Subscribe 89

Publish/Subscribe Systems

A publish/subscribe system consists of at least one broker forwarding notifi -
cations published by clients to other clients that are interested in them. For
scalability reasons, it is common to implement a distributed broker network
that forms a so-called notification service through an overlay network consist­
ing of brokers. This service provides a distributed infrastructure for notifi cation
routing which includes the management of subscriptions and the dissemination
of notifi cations in a possibly asynchronous way. Clients can publish notifi ca­
tions and subscribe to fi Iters that are matched against the notifi cations passing
through the broker network. If a broker receives a new notifi cation it checks if
there is a local client that has subscribed to a fi Iter that matches this notifi cation.
If so, the message is delivered to this client. Additionally, the broker forwards
the message to neighbor brokers according to the applied routing algorithm.
We refer to [Mühl, 2002] for a good survey on the fi eld.

An example of a simple centralized publish/subscribe system is shown in
Figure 1(a). Here, five clients are connected to a single broker: three clients
that are publishing notifi cations and two clients that are subscribed to a sub­
set of the notifi cations published on the broker. Subscribers can choose to
subscribe to the notifi cations available through the broker or cancel existing
subscriptions as needed. The broker matches the notifi cations it received from
the publishers to the subscriptions, ensuring this way that every publication is
delivered to all interested subscribers.

Publisher 1

Published
information
is subscribed to
and received by
the subscribers

I Publisher 2 I Publisher 3

Subscriber 1

Publisher 2

rr 1 ^
or j ^

Subscriber 2

.̂

^
Publisher 3

. ^

f N
Subscriber 3

(a) Simple publish/subscribe system. (b) Extended pub/sub system.

Figure 1. Examples for publish/subscribe environments.

This very basic publish/subscribe setup can be extended by connecting mul­
tiple brokers (cf. Figure 1(b)), enabling them to exchange messages. The ex­
tended design allows subscribers on one of the brokers to receive messages
that have been published on another broker, further freeing the subscriber from
the constraints of connecting to the same broker the publisher is connected to.
Most available implementation make this transparent for the programmer by
keeping the same interface operations as in the centralized design. This way,

90 J. Garcia, M. A. Jaeger, G. Mühl and J. Borrell

an application can easily be distributed. The subscribers are able to formu­
late their interests based e.g. on the contents of the notifi cations and a special
attribute they carry. This is known as content-based and topic-based subscrip­
tion, respectively.

Topic-based subscriptions are easier to handle than content-based subscrip­
tions. Subscribers specify their interest in a topic and receive all messages
published on this topic. Two different matching mechanisms are commonly
used here. One matches subscriptions successfully to notifi cations if the topic
of the subscription exactly matches the topic under which the notifi cation is
published. Using this mechanism, topics become equivalent to "channels".
The other mechanism arranges topics in a subject tree such that subscriptions
not only match notifi cations if the topics are the same, but also if the topic of
the subscription is an ancestor of the notifi cation topic in the subject tree (in
this case, a topic becomes equivalent to a "theme").

Content-based subscriptions allow more sophisticated subscriptions on the
cost of higher matching load and more complex routing decisions. Here, a
subscription can be formulated extremely fi ne-grained based on the content of
notifi cations using a query language that can be arbitrarily complex. Moreover,
there does not have to be a system wide agreement on the set of topics as it is
generally a good idea for topic based routing.

Related Work
Traditional client/server solutions for the prevention of distributed and coor­
dinated attacks can quickly become a bottleneck due to saturation problems
associated with the service offered by centralized or master domain analyzers.
A master domain analyzer is the entity on top of a hierarchy of IDSs consisting
of multiple analyzers and different domains to analyze. Centralized systems,
such as DIDS [Snapp et al., 1991] and NADIR [Hochberg et al., 1993], use
this approach to process their data in a central node although the collection
of data is distributed. These schemes are straightforward as they simply push
the data to a central node and perform the computation there. Hierarchical ap­
proaches, such as GrIDS [Staniford-Chen et al., 1996] and NetSTAT [Vigna
and Kemmerer, 1999], have a layered structure where data is locally prepro-
cessed and fi Itered. Although they mitigate some weaknesses present in cen­
tralized schemes, they still cannot avoid bottlenecks, scalability problems, and
fault tolerance issues due to vulnerabilities at the root level.

In contrast to these traditional designs, alternative approaches try to elimi­
nate the need for dedicated elements. The idea of distributing the detection pro­
cess has some advantages regarding centralized and hierarchical approaches.
Mainly, decentralized architectures have no single point of failure and bottle­
necks can be avoided. Some message passing designs, such as CSM [White

Decoupling Components of an Attack Prevention System Using Publish/Subscribe 91

et al., 1999] and Quicksand [Kruegel, 2002], try to eliminate the need for ded­
icated elements by introducing a peer-to-peer architecture. Instead of having
a central monitoring station to which all data has to be forwarded, there are
independent uniform working entities at each host performing similar basic
operations. To detect coordinated and distributed attacks, the different enti­
ties have to collaborate on the detection activities and cooperate to perform a
decentralized correlation algorithm.

These designs seem to be a promising technology to implement decentral­
ized architectures for the detection of attacks. However, the presented systems
still exhibit very simplistic designs and suffer from several limitations. For
instance, in some of them, every node has to have complete knowledge of the
system: All nodes have to be connected to each other which can make the ma­
trix of the connections, that are used for providing the alert exchanging service,
grow explosively and become very costly to control and maintain. Another im­
portant disadvantage present in this design is that the different entities always
need to know where a received notifi cation has to be forwarded (similar to a
queue manager). This way, when the number of possible destinations grows,
the network view can become extremely complex, which leads to a system that
is not scalable. Other designs are based on flooding which makes the system
easier to maintain on the cost of scalability, as the message complexity grows
fast with the number of brokers.

Most of these limitations can be solved effi ciendy by using a publish/sub­
scribe based system. The advantage of this model for our problem domain
over other communication paradigms is on the one hand that it keeps the pro­
ducer of messages separated from the consumer and on the other hand that the
communication is information-driven. This way, it can avoid problems regard­
ing the scalability and the management inherent to other designs, by means
of a network of publishers, brokers, and subscribers. A publisher in a pub­
lish/subscribe system does not need to have any knowledge about any of the
entities that consume the published information. Likewise, the subscribers do
not need to know anything about the publishers. New services can simply be
added without any impact on or interruption of the service to other users.

3. Alert Communication Infrastructure
This section describes the alert communication infrastructure and implementa-
tional details of our approach. As our motivation is not targeted on developing
a new publish/subscribe system, we try to reuse as much available code and
tools as possible. For our experiments we used xmlBlaster, an open source
publish/subscribe message oriented middleware [Ruff, 2000]. It connects a set
of nodes that build up the infrastructure for exchanging alerts using the inter­
face operations offered by the underlying middleware.

92 J. Garcia, M. A. Jaeger, G. Müh! and J. Borrell

Alerts are formulated using XML as this is the standard format in xml-
Blasten Each message consists of a header fi Itering can be applied to, a body,
and a system control section. Filters are XPath expressions that are evaluated
over the header to decide if a message has to be delivered to a subscriber. We
discuss the essential interface operations offered by xmlBlaster in the follow­
ing section.

Interface Operations

Conceptually, the alert communication infrastructure offered through xmlBlas­
ter can be viewed as a black box with an interface. It offers a number of op­
erations, each of which may take a number of parameters. Clients can invoke
input operations from the outside, and the system itself invokes output opera­
tions to deliver information to clients. We list the main operations that are of
interest for our work in Figure 2.

ts
f" ' ' '>

Inte

r
raction

/• "N

k
not

...[
fy(a)

Interface

Publish /Sub 3crib€ J System

1

sub(F)
unsub(F)

^ pub(a)

^
-I

Figure 2. Black box view of a publish/subscribe system.

To publish alerts, clients invoke the pub(a) operation, giving the alert a as
parameter. The published alert can potentially be delivered to all clients con­
nected to the system via an output operation called notify(a). Clients register
their interest in specifi c kinds of alerts by issuing subscriptions via the sub(F)
operation, which takes a fi Iter F as parameter. Each client can have multiple
active subscriptions which must be revoked separately by using the unsubQ
operation.

All these operations are instantaneous and take parameters from the set of
all clients C, the set of all alerts A, and the set of all fi Iters J'. Formally, a fi Iter
F G ^ is a mapping defi ned by

F \ a —> {true, false} "iae A

We say that a notification n matches filter F G ^ iff F{a) = true. We also
assume that each alert can only be published once and that every fi Iter is as­
sociated with a unique identifi er in order to enable the alert communication
infrastructure to identify a specifi c subscription.

Decoupling Components of an Attack Prevention System Using Publish/Subscribe 93

Components and Interactions
As shown in Figure 3, each node of the architecture is made up of a set of
local analyzers (with their respective detection units or sensors), a set of alert
managers (to perform alert processing and manipulation functions), and a set of
local reaction units (or effectors). These components, the interactions between
them, and the alert communication infrastructure, are described below.

Sensors H Analyzers
Cooperation

Manager

Correlation

Manager

Assessment

Manager
Effectors

sub(LA),sub(EA)
sub(CA),unsub(CA)j

unsub(EA),unsub(LA)
pub(ga),pub(ea)

nottfy(la)
notify(ea)
notify(ca)

sub(GA)
unsub(GA)

pub(aa)
pub(ca)

notify(ga) sub(AA)
unsub(AA)

Alert Communication Infrastructure

Figure 3. Overview of the Attack Prevention Framework.

Analyzers. Local elements which are responsible for processing local audit
data are called analyzers. They process the information gathered by associated
sensors to infer possible alerts. Their task is to identify occurrences which
are relevant for the execution of the different steps of an attack and pass this
information to the correlation manager via the publish/subscribe system. They
are interested in local alerts. Each local alert is detected in a sensor's input
stream and published through the publish/subscribe system by invoking the
pubila) operation, giving the local alert la as parameter.

Each notifi cation la has a unique classifi cation and a list of attributes with
their respective types to identify the analyzer that originated the alert {Analyz-
erlD), the time the alert was created (CreateTime), the time the event(s) leading
up to the alert was detected in the sensor's input stream (DetectTime), the cur­
rent time on the analyzer (AnalyzerTime), and the source(s) and target(s) of the
event(s) (Source and Target), All possible classifi cations and their respective
attributes must be known by all system components (i.e. sensors, analyzers and
managers) and all analyzers are capable of publishing instances of local alerts
of arbitrary types.

Local alerts are exchanged using IDMEF messages [Debar et al., 2005].
The Intrusion Detection Message Exchange Format (IDMEF) is proposed as a
standard data format for automated intrusion detection systems to raise alerts
about events they report as suspicious. It allows analyzers and managers to
assemble very complex alert descriptions.

94 y. Garcia, M. A, Jaeger, G. Mühl and J. Borrell

Managers. Performing aggregation and correlation of local alerts and exter­
nal events is the task of managers. While using multiple analyzers and sensors
together with heterogeneous detection techniques increases the detection rate,
it also increases the number of alerts to process. In order to reduce the number
of false negatives and distribute the load that is imposed by the alerts our archi­
tecture provides a set of cooperation and correlation managers, which perform
aggregation and correlation of both, local alerts (i.e., messages provided by the
node's analyzers) and external messages (i.e., the information received from
other collaborating nodes).

Cooperation Managers. The basic functionality of each cooperation man­
ager is to cluster alerts that correspond to the same occurrence of an action.
Each cooperation manager registers its interest in a subset >Ĉ of local alerts
published by analyzers on the same node by invoking the sub(LA) operation,
which takes the fi Iter LA as parameter, with

^ ^ \ false , otherwise.

Similarly, the cooperation manager also registers its interest in a set of related
external alerts £A by invoking the sub(EA) operation with fi Iter EA as param­
eter, and

true , a e. £a
^ ^ ^ false , otherwise.

Finally, it registers its interest in local correlated alerts CA by invoking the
sub(CA) operation with

CA{a) = l'!^' ' "̂ ,̂ ^ .̂
^ ^ [false , otherwise.

Once subscribed to these three fi Iters, the alert infrastructure will notify the
subscribed managers of all matching alerts via the output operations notify(la),
notify(ea) and notify(ca) with la E CA, ea E £A and ca E CA- All noti-
fi ed alerts are processed and, depending on the clustering and synchronization
mechanism, the cooperation manager can publish global and external alerts
by invoking pub(ga) and pub(ea). Finally, it can revoke active subscriptions
separately by using the operations unsub(CA), unsub(EA) and unsub(LA).

Correlation Managers. The main task of this manager is the correlation of
alerts described in [Garcia et al., 2004]. It operates on the set of global alerts
QA published by the local cooperation manager. To register its interest in these
alerts, it invokes sub(GA), which takes the fi Iter GA as parameter with

^ ^ [false , otherwise.

Decoupling Components of an Attack Prevention System Using Publish/Subscribe 95

The alert infrastructure will then notify the correlation manager of all matched
alerts with the output operation notify(ga), ga e QA- Each time a new alert
is received, the correlation mechanism fi nds a set of action models that can
be correlated in order to form a scenario leading to an objective. Finally, it
includes this information into the CorrelationAlert fi eld of a new IDMEF mes­
sage and publishes the correlated alert by invoking pub(ca), giving the notifi -
cation ca G CA as parameter. To revoke the subscription, it uses unsub(GA).

The correlation manager is also responsible for reacting on detected secu­
rity violations. The algorithm used is based on the anti-correlation of actions to
select appropriate countermeasures in order to react and prevent the execution
of the whole scenario [Garcia et al., 2004]. As soon as a scenario is identifi ed,
the correlation mechanism looks for possible action models that can be anti-
correlated with the individual actions of the supposed scenario, or even with
the goal objective. The set of anti-correlated actions represents the set of coun­
termeasures available for the observed scenario. The defi nition of each anti-
correlated action contains a description of the countermeasures which should
be invoked (e.g. hardening the security policy). Such countermeasures are in­
cluded into the Assessment fi eld of a new IDMEF message and published by
invoking pub(aa), using the assessment alert aa as parameter.

Assessment Managers. Another manager called assessment manager will
register and revoke its interest in these assessment alerts by invoking sub{AA)
and unsub(AA), Once notifi ed, the assessment manager performs post-proces­
sing of the received alerts before sending the corresponding reaction to the
local response units.

Implementation

We deployed a set of three analyzers publishing ten thousand messages to eval­
uate our implementation of the alert communication infrastructure for the pro­
posed architecture. Therefore, we used the DARPA Intrusion Detection Evalu­
ation Data Sets [Lippmann et al., 2000] where more than 300 instances of 38
different automated attacks were launched against victim hosts in seven weeks
of training data and two weeks of test data. These messages were published as
local alerts through the communication infrastructure, and then processed and
republished in turn to three subscribed managers. The evaluation on the alert
communication infrastructure proved to be satisfactory, obtaining a throughput
performance higher than 150 messages per second on an Intel-Pentium M 1.4
GHz processor with 512 MB RAM, analyzers and managers on the same ma­
chine running Linux 2.6.8, using Java HotSpot Client VM 1.4.2 for the Java
based broker. Message delivery did not become a bottleneck as all messages
were processed in time and we never reached the saturation point. This result

96 J, Garcia, M. A. Jaeger, G. Müh! and J. Borrell

gives us good hope that using a publish/subscribe system for the communica­
tion infrastructure indeed increases the scalability of the proposed architecture.

The implementation of both analyzers and managers was based on the libid-
mef C library [Migus, 2004] which was used to build and parse compliant ID-
MEF messages. The communication between analyzers and managers through
xmlBlaster brokers was based on the xmlBlaster internal socket protocol and
implemented using the xmlBlaster client C socket library [Ruff, 2000], which
provides asynchronous callbacks to Java based brokers. The managers formu­
lated their subscriptions using XPath expressions, fi Itering the messages they
wished to receive from the broker.

4, Conclusions
We presented an infrastructure to share alerts between the components of a
prevention framework. The framework itself is targeted at detecting as well
as reacting to distributed and coordinated attack scenarios through the use
of the publish/subscribe communication paradigm. In contrast to traditional
client/server solutions, where centralized or hierarchical approaches quickly
become a bottleneck due to saturation problems associated with the service
offered by centralized or master domain analyzers, the information exchange
between peers in our design achieves a more complete view of the system in
whole. We believe that this is necessary to detect and react on the different
actions of an attack. We also introduced an implementation based on an open
source publish/subscribe message oriented middleware and conducted experi­
ments showing that the architecture is performant enough for the application
in real-world scenarios.

As future work we are considering to secure the communication partners
by utilizing the SSL plugin for xmlBlaster. This way, each collaborating node
will receive a private and a public key. The public key of each node will be
signed by a certifi cation authority (CA), that is responsible for the protected
network. Hence, the public key of the CA has to be distributed to every node
as well. The secure SSL channel will allow the communicating peers to com­
municate privately and to authenticate each other, thus preventing malicious
nodes from impersonating legal ones. The implications coming up with this
new feature, such as compromised key management or certifi cate revocation,
will be part of this work. We are also planning a more in-depth study about
privacy mechanisms by exchanging alerts in a pseudonymous manner. By do­
ing this, we hope that we can provide the destination and origin information
of alerts {Source and Target fi eld of IDMEF messages) without violating the
privacy of publishers and subscribers located on different domains. Our study
will cover the design of a pseudonymous identifi cation scheme, trying to fi nd
a balance between identifi cation and privacy.

Decoupling Components of an Attack Prevention System Using Publish/Subscribe 97

Acknowledgments

The collaboration between J. Garcia, F. Cuppens, and F. Autrel sharpened
many of the arguments presented in this paper.

The work of J. Garcia and J. Borrell is funded by the Spanish Government
CICYT Commission and the Catalan Government DURSI Ministry. Michael
A. Jaeger is funded by Deutsche Telekom Stiftung. Gero Mühl is funded by
Deutsche Telekom.

References

[Debar et al., 2005] Debar, H., Curry, D., and Feinstein, B. (January 2005). Intrusion detection
message exchange format data model and extensible markup language. Technical report.

[Garcia et al., 2004] Garcia, J., Autrel, F., Borrell, J., Castillo, S., Cuppens, F., and Navarro, G.
(2004). Decentralized publish-subscribe system to prevent coordinated attacks via alert cor­
relation. In Sixth International Conference on Information and Communications Security,
volume 3269 of LNCS, pages 223-235, Malaga, Spain. Springer-Verlag.

[Hochberg et al., 1993] Hochberg, J., Jackson, K., Stallins, C, McClary, J. F., DuBois, D., and
Ford, J. (May 1993). NADIR: An automated system for detecting network intrusion and
misuse. In Computer and Security, volume 12(3), pages 235-248.

[Kruegel, 2002] Kruegel, C (June 2002). Network Alertness - Towards an adaptive, collabo­
rating Intrusion Detection System. PhD thesis. Technical University of Vienna.

[Lippmann et al., 2000] Lippmann, R., Haines, J., Fried, D., Korba, J., and Das, K. (2000). The
1999 darpa off-line intrusion detection evaluation. Computer Networks, (34):579-595.

[Migus, 2004] Migus, A. C. (March 2004). IDMEF XML library version 0.7.3.
http://sourceforge.net/projects/libidmef/.

[Mühl, 2002] Mühl, G. (2002). Large-Scale Content-Based Publish-Subscribe Systems, PhD
thesis. Technical University of Darmstadt.

[Ruff, 2000] Ruff, M. (2000). XmlBlaster: open source message oriented middleware.
http://xmlblaster.org/.

[Snapp et al., 1991] Snapp, S. R., Brentano, J., Dias, G. V, Goan, T. L., Heberlein, L. T, Ho,
C, K. N. Levitt, Mukherjee, B., Smaha, S. E., Grance, T, Teal, D. M., and Mansur, D.
(October, 1991). DIDS (distributed intrusion detection system) - motivation, architecture
and an early prototype. In Proceedings 14th National Security Conference, pages 167-176.

[Staniford-Chen et al., 1996] Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank,
J., Levitt, J. Hoagland K., Wee, C, Yip, R., and Zerkle, D. (1996). GrIDS - a graph-based
intrusion detection system for large networks. In Proceedings of the 19th National Informa­
tion Systems Security Conference.

[Vignaand Kemmerer, 1999] Vigna, G. and Kemmerer, R. A. (1999). NetSTAT: A network-
based intrusion detection system. Journal of Computer Security, 7(1):37-71.

[White et al., 1999] White, G. B., Fisch, E. A., and Pooch, U. W. (February 1999). Cooperating
security managers: A peer-based intrusion detection system. IEEE Network, 7:20-23.

http://sourceforge.net/projects/libidmef/
http://xmlblaster.org/

