
TOWARDS PROGRAMMABLE CONTEXT-
AWARE VOICE SERVICES

Kerry Jean, Nikolaos Vardalachos, Alex Galis
Department of Electronic Engineering, University College London,

Torrington Place, London, WCIE 7JE, U.K.; Tel: +44-20-7679-5752
(kjean, n v a r d a l a , a g a l i s @ e e . u c l . a c . u k

Abstract. Programmable context-ware services use context information and
programmable networks technology in the provision of easily customised and
personalised services, which can respond appropriately to changes in their en­
vironment. This paper presents one such service, which is used to enable the
provision of VoIP services in crisis situations. This service, the context-aware
VoIP (CaVoIP) service is built upon the CONTEXT platform, an innovative
middleware designed for the creation, deployment and management of con­
text-aware services. The platform consists of a programmable layer, a context-
aware service engine and a policy-based service layer. The voice services in
the Ca VoIP service are provided by a session initiation protocol (SIP) plat­
form called Siptrex. The result is an easily customised, flexible and scalable
context-ware service, which suppresses, non-essential traffic during crisis
situations allowing greater bandwidth for essential traffic.

Keywords: programmable services, programmable networks, context, and
context-aware services

1 Introduction

Context consists of the implicit and explicit information of an entity, be it an
application, network or service, which can be used to characterise it. This
context information can be used to enhance a service or application, person­
alising it, enriching it or making it more responsive to changes in its envi­
ronment or situation [1]. When a service makes use of its context, it be­
comes context-aware. Context-awareness is characterised by the ability of a
service or system to react to its changing environment. Context-aware ser­
vices can be developed through the creation of a context infrastructure on
top of a programmable network [3][6]. This paper presents a programmable
context-aware service designed to efficiently use network resources to cope
with the huge increase in voice traffic during crisis situations.

mailto:agalis@ee.ucl.ac.uk

232 K. Jean, N. Vardalachos and A, Galis

This research was carried out as part of the an EU funded project called
CONTEXT [3][4], which created the CONTEXT platform. This platform
made use of programmable networks and policy-based service management
(PBSM) for the efficient creation, deployment and management of context-
aware services. The CONTEXT project created a context-aware VoIP (Ca-
VoIP) service where context and programmable networks are used to en­
hance a VoIP service enabling it to react appropriately to crisis situations
such as terrorist attacks or major disasters. During a crisis there is a huge
strain on a network due to the great increase in voice traffic, both essential
from the emergency services, doctors, hospitals) and non-essential (from
general public). Without proper management, there is less bandwidth avail­
able for essential traffic (resulting in a degradation of the quality of the ser­
vice. The aim of the CaVoIP service is to suppress non-essential traffic and
only allow traffic from priority users to be carried on the network. This ser­
vice would monitor for different crisis conditions and enable the network to
respond appropriately. In the CaVoIP service a session initiation protocol
(SEP) [2] VoIP platform called Siptrex [5] is used to provide voice services.

The next section, the background, provides an overview of the technologies
used to create the service namely programmable networks, context and con­
text-awareness. Then the service specifications, realisation, components and
interactions of the CaVoIP service are detailed. A service scenario and
evaluation is then presented. This paper ends with the conclusions.

2 Background

2.1 Context and Context-awareness

Context is defined as any information that can be used to characterise the
situation of an entity, where an entity can be a person, place, physical or
computational object. Typical examples of context information are: (1) user
location information (e.g. outdoors/indoors, street, city, etc.); (2) social con­
text (e.g. role -student/staff/faculty; wife; boss; colleague, etc.); (3) personal
preferences (e.g. food preferences, favourite sports, etc.); (4) user's behav­
iour (e.g. task, habits); (5) device and network characteristics (e.g. network
elements, bandwidth).

A system is context-aware if it uses context to provide relevant information
and/or services to the user. The user here can be a human end user or an-

Towards Programmable Context-aware VoIP Services 233

other application, service or system. Context-awareness enables a new class
of computing and network services [3]. These services can be easily person­
alised to help users find nearby services or devices, decide the best devices
to use, receive messages in the most useful and least intrusive manner, and
can enable systems to react appropriately to certain situations etc. As the
CaVoIP service is context-aware, it uses network information to respond
appropriately to a crisis and can be easily personalised.

2.2 Programmable/Active Networks

Traditional networks passively transport data packets from one host to an­
other via routers. Each node performs only the processing necessary to for­
ward packets towards their destination. In programmable or active networks,
the packets contain code, which can be executed by active routers. Active or
programmable routers are network nodes that execute the code contained in
an active packet [10]. This code can be used to make the network nodes
more intelligent and programmable. Active network architectures enable a
massive increase in the complexity and customisation of the computation
that is performed within the network [14].

There exist two main approaches to realise active networks: programmable
nodes and encapsulation. In the first approach, the user injects programs
into the programmable node separately from the actual packet using existing
network packet formats and providing a discrete mechanism for download­
ing programs to the active nodes. The program is executed when data pack­
ets associated with it arrive at the node [10] [13].

In contrast, in the capsule approach, a program is integrated into every
packet. Encapsulation replaces existing packet structures with programs that
are encapsulated within the transmission frames. In this approach, the active
node has a built-in mechanism to load the encapsulated code, an execution
environment to execute the code and semi-permanent storage where cap­
sules can retrieve or store information [13].

3 The Context-aware VoIP Service

3.1 Ca VoIP Service Specification

The CaVoIP service is a programmable network service which uses context-
awareness and PBSM to deal with crisis situations in VoIP networks. These

^34 K. Jean, N, Vardalachos and A. Galis

situations cause an upsurge in network traffic. This upsurge has to be man­
aged carefully to ensure that the quality of the essential traffic (from emer­
gency services, police, hospitals, government etc) is not compromised. The
solution is to terminate all non-essential traffic when a crisis occurs and
from then on only allow essential traffic. The CaVoIP service is built on top
of the CONTEXT platform, a programmable, policy-based network plat­
form. The CONTEXT service creation subsystem creates the service spe­
cific code and policies for the CaVoIP service. The network is monitored for
a crisis using context-aware service code. The PBSM along with the pro­
grammable network is used to deploy and manage the service. To fulfil
these objectives, the service needs:

• A means of obtaining and analysing context information
• A means of interacting with the underlying programmable network
• A means of interacting with the PBSM used to manage the service.
• A means of accessing the Siptrex platform.

3.2 CaVoIP Service Realisation

The CaVoIP service works as follows. A context computational object
(CCO) monitors the network, computes context from local information and
publishes it to the Context broker. The Context broker is a programmable
network interface which allows the CaVoIP service to interact with the pro­
grammable network and obtain context information. A service execution
condition evaluator (SICE) subscribes to this information and determines
when a crisis has occurred. A SICE monitors a particular condition to de­
termine when a service should start. A crisis is defined as the moment when
calls made to the emergency number (911) have passed a predefined thresh­
old in a fixed period of time. When a crisis occurs the SICE informs the
PBSM and certain execution policies are invoked resulting in the deploy­
ment of a service level object (SLO) to the nodes in the crisis area. A SLO is
a programmable application that provides a context-aware service. This
SLO begins executing by terminating all non-essential calls to and from the
crisis area. It then takes over call admission control from the SIP servers and
only allows privileged callers access to the network. When the crisis is over
the SLO stops executing, relinquishes call admission control and the Ca­
VoIP service reverts to its default state.

Towards Programmable Context-aware VoIP Services 235

The CaVoIP service is realised through the service code (the SICE, SLO and
CCO), the Siptrex and CONTEXT platforms and the SIP and Context bro­
kers. The CONTEXT platform is used to create, deploy and manage con­
text-aware services. The brokers serve as interfaces between the program­
mable network and the service code. They allow programmable entities
access to the network and context information and enable them to perform
network reconfigurations needed to implement services. The user agents and
SEP (session initiation protocol) servers of the Siptrex platform were modi­
fied to interface with the SIP broker and the service code. The Siptrex and
CONTEXT platforms, brokers and service code are all described below.

3.2.1 Context Platform

The CONTEXT project [4] designed and developed an innovative platform
and middleware solution to efficiently provide context-aware services mak­
ing use of programmable networks technology and PBSM.

Subscri
ption

Policy-based
Service

IVIanagement
Service Support Layer

DINA Active Application Layer

IPv4 IPv6 IP layer
Network Element Abstraction

(Ethernet) (G P R S) (WLAN

Figure 1: CONTEXT framework architecture

Figure 1 illustrates the high level architecture of the CONTEXT platform
[3]. It consists of a distributed service execution environment (EE) on top of
a transport layer. The EE is composed of two layers, the service support
layer (SSL) and the programmable application layer AAL. The features
provided by these two layers are applied throughout the service creation,
deployment, and operation phases of the service lifecycle.

236 K. Jean, N. Vardalachos and A. Galis

The AAL provides the programmable network functionality to the higher
layers. A programmable platform, DINA, was developed based on concepts
used in ABLE [7][8] [9]. DINA is a programmable middleware, which can
be attached to different types of routers to make them programmable routers
[10]. It enables the deployment of programmable services on network nodes.
The APIs of the DINA platform allow the service code access to local, net­
work, and context information, allowing it to perform actions (such as net­
work level configurations) as needed. The ABLE platform was chosen, as it
was lightweight, scalable and easily extensible. ABLE's extensibility and
scalability results from the use of brokers, software components which en­
able access to all sorts of services and technologies e.g. SIP, context, QoS,
GPRS etc. The creation of DINA was achieved by rewriting much of the
ABLE C code in Java (to enable interoperability). During this process secu­
rity was improved and support for context-aware services and IPv6 were
provided.

The SSL consists of two main subsystems, the context-aware service (CAS)
creation and customisation subsystem and the PBSM subsystem. The former
enables context-aware service creation and customisation and also contains
a service subscription server. The PBSM contains the policy management
infrastructure. This consists of the policy manager, the code and policy re­
pository as well as the code distributor and the code execution controller.
Policies are used for service creation, deployment and operation.

The CONTEXT solution is characterised by three phases:

• Service Creation and Customisation Phase: In this phase, the behav­
iour of a context-aware service is defined based on the capabilities of
the AAL. This behaviour is modelled as a set of policy rules in XML.
Based on that model and the capabilities of the AAL, the service code
and policies are then generated using a code generator. The generated
service code and policies are then customised according to the cus­
tomer's specifications.

• Service Deployment Phase: The code and policies are stored in code
and policy repositories respectfully. According to the code distribution
policies for the CaVoIP service, the customised code and policies are
distributed throughout the network to the code storage and execution
points (DINA nodes).

Towards Programmable Context-aware VoIP Services 237

• Service Operation Phase: After the code has been distributed to the
execution points, the service awaits triggers, as defined by the respec­
tive code execution policies, for code execution to begin. In the Ca-
VoIP service, the trigger to start executing the service is when a crisis
has occurred. The trigger or event is raised by a service invocation
condition evaluator (SICE) when it detects the context conditions
identifying a crisis.

3.2.2 DINA Components

DINA is a modular and scalable programmable network platform that en­
ables the deployment, control, and management of programmable services
over networks entities such as routers, WLAN access points, media gate­
ways, and servers in IP-based networks. In addition, DENA provides inter­
faces (brokers) that can be used by the programmable services to retrieve
information and perform configuration operations on local nodes. Figure 2
below presents the main DINA platform components.

ASl
Sessior
Broker

Information
Broker

AS2

Figure 2: The DINA platform components

The DINA platform consists of two main components, the Session broker
and the Diverter that run in parallel on each programmable node. The Ses­
sion Broker is the core of the DINA platform. It receives and parses pro­
grammable packets, handles and manages existing services, and distributes

238 K, Jean, N, Vardalachos and A. Galis

programmable packets according to service requests. The Diverter receives
the programmable packets captured by the programmable node and forwards
them to the Session broker. In addition to these two components, other com­
ponents, called brokers, run in parallel and provide enhanced services to the
programmable sessions. These services extend the DINA platform allowing
it to integrate with other technologies and services e.g. SIP, QoS, context
etc. The following are two DINA components created for use in the CaVoDP
service.

3.2.2.1 SIP Broker

The SIP broker is a programmable application, running on DINA, which
interfaces between the AAL and the Siptrex platform used to implement the
CaVoIP service. The broker provides to the programmable entities the abil­
ity to control and manage the SIP components such as proxy servers, and
user agents. The SIP broker also provides the service code the ability to
obtain information from the SIP server and to control aspects of call control
during a crisis situation. The SIP broker performs three primary functions;
provide information about the SEP servers, sessions and users; terminate
voice sessions; and delegate call admission control to service level objects.

3.2.2.2 Context Broker

The Context broker implements the mechanism for enabling service code to
access the necessary context information from the various context sources.
It provides the methods that enable context producers to publish their con­
text information and context consumers (service code) to retrieve it. In the
CaVoIP service, it is used to store SEP, network and user context.

3.2.3 Siptrex System

The Siptrex system [5] is a versatile and extensible platform that provides
VoIP services based on SEP. The Siptrex system software was developed in
Java using the Java API for Integrated Networks (JAIN), the Java Media
Framework (JMF) and a SEP parser from the National Institute of Science
and Technology (NIST). The Siptrex platform was chosen to use in the Ca­
VoIP service due to its simplicity, easy extensibility and interoperability.

The Siptrex system is of a client server design. The Siptrex clients (user
agents) are SEP software phones (softphones) through which Siptrex users

Towards Programmable Context-aware VoIP Services 239

access the Siptrex services (through the Siptrex server) and are used to initi­
ate and terminate SIP sessions. Siptrex service deployment is supported
through the provision of a Siptrex API. The Siptrex platform components
were modified to allow the SIP broker access to information from the Sip­
trex system enabling call admission control delegation and session termina­
tion.

3.2.4 Ca VoIP Service Components

3.2.4.1 Service Invocation Condition Evaluator (SICE)

The SICE for the CaVoEP service is the SIP_SICE. It is configured to detect
a crisis. It queries the Context broker to determine whether the number of
SIP calls from a SEP domain has exceeded a certain threshold. When this
threshold has been passed, a crisis is deemed to have occurred. The
SIP_SICE then sends an event to the PBSM notifying it of an observed cri­
sis.

3.2.4.2 Service Level Object (SLO)

The SLO for this service is the CH_Main. It is the key program in the Ca-
VoIP service. It is deployed through the programmable network to the DINA
nodes that are in the crisis area, as soon as the PBSM is informed of the
crisis. Under a crisis situation the SLO takes over call admission control
from the SEP server, allowing only privileged users access to the VoIP ser­
vice. Non-privileged callers are blocked. Furthermore, the SLO terminates
all non-essential calls when a crisis begins. It also fetches the user context
(privileges) from the Context broker to determine whether they are privi­
leged users.

3.2.4.3 Context Computational Object (CCO)

The CCO for this service is called the CH_Publisher. It collects SIP call
information, relating to 911 calls, from the SIP broker. CH_Publisher com­
piles and publishes this information as context items to the Context broker.

3.3 CaVoIP Service Interactions

3.3.1 Service Creation and Deployment

The CaVoIP service is created using the CAS creation and customisation
subsystem of the CONTEXT platform. The Siptrex and CONTEXT plat-

240 K. Jean, N. Vardalachos and A, Galis

forms are first installed. Then the Context broker, SEP broker and
CH_Publisher are installed on the DINA nodes The CAS code generator
generates the service code and policies for the Ca VoIP service. The service
code and policies are then customised to fit the requirements of the cus­
tomer (e.g. the 112 versus the 911 emergency number, definition of a crisis
situation etc.). The result is customised CH_Main and SIP_SICE, custom­
ised policies and customisation parameters for the CH_Publisher. The
SIP_SICE along with the generated policies and customisation parameters is
distributed to the code execution points (DINA nodes). This process is car­
ried out by the code distributor and is controlled by a Distrib-
ute_Service_Code policy. Other policies control service code removal and
revision.

3.3.2 Crisis Detection

The CH_Publisher registers to publish the 911 call context to the Context
broker. The SIP_SICE is configured by the PBSM with specific policies,
and subscribes to the context items associated with the statistics of the emer­
gency number, and the crisis condition. At every reporting period the
CH_Publisher asks the SEP broker running in the same domain for session
statistics detailing the number of 911 calls. This context is then exported to
the local Context broker. If a crisis condition is detected, the SIP_SICE is
notified by the CH_Publisher through the Context Broker. Then the
SIP_SICE creates a Start_CH_Main event and sends it to the PBSM. This
event contains the address of the DINA node that hosts the SIP broker re­
sponsible for the domain in which the crisis has occurred. Upon receiving
this event the PBSM distributes CH_Main to the specified DESfA nodes.
Figure 3, illustrates the interactions among the components of the CaVoEP
service involved in crisis detection.

Towards Programmable Context-aware VoIP Services 241

PBMS SIP SICE Context

Broker

CH Publis

her

newPolicy(sen/erlD) V
suk^sjcribeCserverlD, upon_cha|ige)

' H

register_new_context_object(serverlD)

u
9lTcail 1̂
threshold
passed

I delivr_notification{servrlD
• • h <

supply_context_value(serverHi))

newExecutionEvent(CH_Maih)
h < r̂

Figure 3: Sequence of interactions for the crisis detection stage

3.3.3 Service Execution

On arrival at the DINA node, CH_Main begins its execution by instructing
the SIP broker to terminate all ongoing non-essential calls to and from the
crisis domain. Then CH_Main is delegated call admission control. From this
point on, all new sessions to be established must be authorised by the
CH_Main. CH_Main checks the privileges of the callers and callees of all
new call requests, by contacting the Context broker, allowing only privi­
leged callers to make calls. When the crisis is over, CH_Main terminates
and relinquishes call admission control. Figure 4 illustrates the interactions
among components involved in the service execution stage.

242 K. Jean, N, Vardalachos and A. Galis

C ontext
B roker

S IP B roker S ip t rex
Server

te rm NessS essions(serve<ip ^)
closes essionsO

%
T newC all(caller, callee)
L^ ^

uthoriseC all(caller, calleeö

getP rivilege(caller)

callerP rivilege

authori

getP rivilege(callee)

calleeP rivilege

accept/reject

- ^ accept/reject

Figure 4: Sequence of interactions for the service execution stage

4 CaVoIP Service Evaluation

4.1 Service Scenario

A scenario can be envisaged where a terrorist bomb has exploded at a train
station in a city. The scene is horrific and there are casualties. An eyewit­
ness calls the emergency services. Many people gather at the site and there
is a flurry of calls from them as well as other neighbourhood residents. The
emergency services and police arrive and try to get the situation under con­
trol. An eyewitness calls the local newspaper to report the breaking news.
When it has been established that a crisis is underway this call is terminated
as the system terminates all the non-essential calls. Further call attempts fail
and other low priority users cannot make calls. If a paramedic needs to call a
doctor at the hospital for advice, the network accepts the call, due to his
privileged status.

Towards Programmable Context-aware VoIP Services 243

4.2 Service Testing

The aim of this test was to prove that the CaVoIP service works as envis­
aged during the design process. The test would be considered successful if
as soon as a crisis occurs all the non-essential calls are dropped and from
then on only essential calls are allowed. Figure 5 illustrates the testbed used
for the CaVoIP service.

SIPUA
Jake

SIPUA
911

SIPUA
doctor

•
SIPUA

paramedic

SIPUA
newspaper

CONTEXT
custorrJsatlon

system

creation/

flTTn«
5x1 se

A.
code/policy
repository

DINA I node
Siptrex) server

CONTE^PBSM

Figure 5: Testbed for CaVoIP service
The components of the CaVoIP service testbed are described below:

• One Siptrex server hosted on a Linux machine.
• One DINA node on the same Linux host as the Siptrex server. It

contains the DINA programmable platform with the SIP and Con­
text brokers as well as the CaVoIP service components: CH_Main,
SIP_SICE and CH_Publisher.

• The CONTEXT PBSM, which consists of the code execution con­
troller, the code distributor, the policy engine and the code and pol­
icy repositories.

• The CONTEXT service creation and customisation subsystem.

244 K. Jean, N, Vardalachos and A, Galis

• Several user agents acting as callers and callees, one for the eyewit­
ness Jake, one for the 911 contact centre, one for the newspaper and
one for the doctor.

4.2.1 Test Procedure

The tests were conducted with the SIP_SICE, CH_Publisher, SDP broker.
Context broker, Siptrex server, DINA components and CONTEXT platform.

1. The user privileges for each of the user agents were introduced in
the Context broker.

2. Seven completed calls were made to 911 in less than 5 seconds (this
was the definition of a crisis) and then a call was made between
Jake's user agent and the newspaper. The crisis was detected and
CH_Main deployed and started to execute in the DINA node.

3. A call was then made between the paramedic's user agent and the
doctor's user agent.

4. Then another call was made between Jake and the newspaper.
5. After a period of time, an event was raised indicating the end of the

crisis. Then another call was made between Jake and the newspaper.

4.2.2 Test Results

As soon as the crisis was detected and the CH_Main SLO began to execute,
the call between Jake and the newspaper was terminated (as Jake is not a
privileged user). The next call between Jake and the newspaper was not
authorised and did not go through. The call between the paramedic and the
doctor was authorised and went through. This was because the paramedic
and doctor are privileged users. After the crisis was over the call between
Jake and the newspaper went through. In fact all calls in the system were
then authorised. The service tests were all carried out successfully and
hence the CaVoIP service works exactly as was designed within the limits
evaluated in the above test.

4.3 Service Extensibility and Flexibility

The CaVoIP service is very flexible and extensible due to its context-
awareness and use of policies. More complex privilege allocation and logic
to deal with it can be introduced. This can be done by altering the service
logic found in the SLO to allow several permutations of privilege and access

Towards Programmable Context-aware VoIP Services 245

control to be used. The user privilege could be allocated through a number
scale. For instance, a paramedic could have a privilege of two, a doctor three
while the chief of police has five. Ordinary users will have a privilege of
one. The decision to authorise the call could then be made through a combi­
nation of the privileges of the caller and callee. This can be achieved just by
changing the user context published to the Context broker and the call ad­
mission logic in CH_Main.

Changes to the service can be introduced during the service customisation
phase. The definition of a crisis situation could be changed (e.g. 10 calls to
911 in 5 seconds or 20 calls to 911 in one minute) or a totally new crisis
situation can be defined (e.g. 20 dropped calls in one minute). The context-
awareness and policy-based infrastructure allows such easy customisation
and flexibility. The policy-based nature allows easy extensibility of the ser­
vice. Some users could be allowed video calling, others voice only calls,
some short message service (SMS) calls while blocking others, all according
to their privileges.

4.4 Service Scalability

As both the underlying platforms used to create the CaVoDP service, the
Siptrex and CONTEXT platforms, are easily scalable then the CaVoIP ser­
vice can also easily scalable. To allow scalability, much use is made of the
modular design of the CaVoIP service and the policy-based infrastructure.
Additional Siptrex servers can be accommodated by using a policy defined
naming scheme both for the individual services and the context associated
with the service. For instance if a Siptrex server is called SSOOl, all the
context associated with it would be preceded with this tag. Different crisis
conditions could be defined for each Siptrex domain. These parameters can
all be defined during the service customisation phase.

5 Conclusions and Future Work

The CaVoIP service presented is a programmable context-aware service. It
uses context, programmable network technology and PBSM to enable a
network to deal with the huge increase in voice traffic during a crisis situa­
tion. It is easily customisable, personalisable and extensible due to the use
of context and a policy-based infrastructure. The CaVoIP service could eas­
ily be developed further through more complex privilege allocations and

246 K. Jean, N. Vardalachos and A, Galis

more complex logic to deal with them.. Also the services provided by the
CaVoIP service can be extended to provide video calls and instant messag­
ing in which case it could be possible to define privileges that allow users to
either have video calling, voice only calls or short message service (SMS)
calls according to their user privileges

References
[1] Dey, A. and Abowd, G., "Towards a better understanding of context and

context-awareness". Proceedings of Workshop on the What, Who,
Where, When and How of Context-Awareness, affiliated with the 2000
ACM Conference on Human Factors in Computer Systems (CHI 2000),
The Hague, Netherlands. April, 2000.

[2] Sinnreich, H., Johnston, A., "Internet Communications Using SIP," John
Wiley & Sons, New York, 2001.

[3] CONTEXT Consortium, "Context project deliverable D2.2: CONTEXT
Architecture: Solution for provisioning and delivery of context aware
services" ed. UCL, 2004.

[4] CONTEXT project website, http://context.upc.es/index.htm.
[5] Siptrex website, www.siptrex.net.
[6] Sygkouna, I. et al., "Context-Aware Services Provisioning on Top

of Active Technologies," IFIP 5* International Conference on Mobile
Agents for Telecommunication Applications (MATA 2003), Marrakech,
Morocco 8-10.10, 2003.

[7] Kornblum, Jessica. Raz, Danny, Shavitt, Yuval. "The Active Process
Interaction with its Environment," Computer Networks, 36(1):21~34,
June 2001.

[8] Raz, D. and Shavitt, Y., "Towards Efficient Distributed Network Man­
agement," Journal of Network and Systems Management, September
2001.

[9] ABLE: The Active Bell Labs Engine http://www.cs.bell-
labs.com/who/ABLE/

[10] Denazis, S. G., Galis, A., "Open Programmable & Active Networks:
A Synthesis Study" IEEE IN 2001 Conference, Boston, USA, 6- 9 May
2001, ISBN 0-7803-7047-3.

http://context.upc.es/index.htm
http://www.siptrex.net
http://www.cs.bell-
http://labs.com/who/ABLE/

Towards Programmable Context-aware VoIP Services 247

[11] Galis, A., Denazis, S., Brou, C, Klein, C. (eds), "Programmable
Networks and Programmable Network Management," ISBN 1-58053-
745-6, Artech House, London April 2004.

[12] Ebling, M., Hunt, G. and Lei, H., "Issues of Context Services for
Pervasive Computing," Proceedings of Workshop on Middleware for
Mobile Computing, Heidelberg, Germany, 2001.

[13] Tennenhouse, D. L. and Wetherall, D. J., "Towards an Active Net­
work Architecture" Computer Communication Review, Vol. 26, No. 2,
April 1996.

[14] Tennenhouse D., Smith J., "A survey of Active Network Research,"
EEEE Communications Magazine, January 1997.

