
AN EFFICIENT PROACTIVE RSA SCHEME FOR
LARGE-SCALE AD HOC NETWORKS

Ruishan Zhang and Kefei Chen
Department of Computer Science, Shanghai Jiaotong University

(zhang-rs,kfchen@sjtu.edu.cn)

Abstract In this paper, we present an efficient proactive threshold RSA signature scheme
for large-scale ad hoc networks. Our scheme has two advantages. Firstly, the
building blocks of the whole scheme are proven secure. Secondly, the whole
scheme is efficient.

Keywords: Ad hoc networks, Threshold signature, Proactive secret sharing, RSA

Introduction
Proactive threshold signature is very important to tolerate a more powerful,

mobile adversary [OY] [HJKM].Large-scale ad hoc networks have hundreds or
even thousands of network nodes. Generally, all network nodes have shares
of the secret key (private key), and only a small number of nodes could be
corrupted. That is, n is very large and far larger than t. Most current proactive
RSA schemes are not designed for this purpose [FGMYa][FGMYb][Rab]. To
the best of our knowledge, the only proactive RSA scheme is URSA [LKZL].
Unfortunately, the scheme has proved faulty [JSY].

In this paper, we present an efficient proactive threshold RSA signature
scheme for large-scale ad hoc networks. Our scheme includes four protocols:
the key distribution protocol, the signature generation protocol, the share re-
freshing protocol and the share distribution protocol. Our scheme has two
advantages. Firstly, the building blocks of the whole scheme are proven se-
cure. Secondly, the whole scheme is efficient. The efficiency of our scheme is
approximate to that of the scheme of Wong et al.

In our scheme,an ad hoc network consists of PI , P2, . . . , P, nodes . There
are two types of nodes: R (refreshing) nodes and S (signing) nodes. There are
2t + 1 R nodes, which perform the share refreshing protocol. All nodes are S
nodes, which perform signing operations.

The remaining paper is organized as follows. The initial key distribution
protocol, the share refreshing protocol, the share distribution protocol and the

332 K. A1 Agha, I. Gue'rin Lassous and G. Pujolle

Input: secret key di E Z4(N),N,g,n,t, RIDList, PIDList
1. Choose and hand Pi di ER [-nN2,nN2] for i E RIDList, set dpUblic =
d - C d i .
2. Compute and broadcast the witness wi = g d i m o d ~ for i 6 RIDList .
3. Share the value di using the sharing 2,-VSS on input di, N,g,n,t, RIDList,

Figure 1. Initial key distribution

signature generation protocol are presented in Section 1,2,3,4 respectively. In
Section 5, some discussions are given.

1. Initial key distribution
The key distribution protocol is used to distribute the initial secret shares to

2t + 1 R nodes. Before distributing the secret key, we assume that a set-up
process has been carried out in which the RSA key generation took place and
the RSA key pair has been computed. Denote the public key by (e, N) where
N = pq and p, q are primes of the form p = 2p' + 1 ,q = 2q' + 1 and p1,q'
themselves prime. The private key is d where ed = lmod+(N) . In addition,
an element g of high order is chosen as g = gt2 where go is an element of
high order and L = n! . As shown in Figure 1, the protocol consists of three
steps. First, the private RSA key d is shared by generating additive secret
shares disuch that d = dpUblic + C j dj . Then, the witnesses for the additive
shares are generated in the second step. Finally, each additive share is backed-
up using a protocol 2,-VSS, which is depicted in Figure 2. Here polynomial
secret shares of the additive share are sent to 4t+2 nodes, of which 2t + 1 nodes
are R nodes, the other nodes 2t + 1 are one-hop or two-hop neighbors. Note
that not di , but diL3 is shared in 2,-VSS. After the initial key distribution
protocol, every party achieves their polynomial shares of q l y = C f j (i , 0)
of (d - dpUblic)L3 , where d j is shared by f j (x , y) . Here (d - dWblic)L3 is
shared by F (x , y) = C f j (x , y), where F (x , 0) = C f j (x , 0) . We call F (x)
Joint-2,-VSS. For differentiation, we call dyly,di the polynomial secret share
and the additive secret share, respectively. After the initial key distribution
protocol, a group of 2t + 1 nodes within one-hop or two-hop distance hold the
polynomial secret shares of the secret key. (RIDList, PIDList are R node ID
list and node ID list of 2t + 1 nodes within one-hop or two-hop distance).

The details of 2,-VSS are shown in Figure 1. In sharing stage, the dealer
computes a two-dimensional sharing of the secret s E [- n ~ ~ , n ~ ~] by choos-
ing a random bivariate polynomial f (x , y) of degree at most t with f (0,O) =
S L ~ . It commits to f (x , y) = Cg,l=o fj lxjyl by computing a matrix C =

Challenges in Ad Hoc Networking 333

Input: secret value s E [-nN2, -nN2] and N,g,n,t , RIDList, PIDList
Sharing steps:
1.The dealer chooses fa", foil ..., ft-lt, ftt E [- n L 3 N 3 , n ~ 3 ~ 3] and
Llfoo, foil ..., f t - i t , ftt , then defines f (x , y) = Ci,~=o fjlx'y1 with foo = 0.
2. Compute ai(y) = f (i , y), bi(z) = f (x , i) for i E (RIDList U PIDList) , and
Ciy = gfiyrnodN for i , y E [O,t] .
3. Hand node P, the polynomial ai(y), bi(x) and broadcast Ciy for i, y E [0, t] .
Verification steps:
1 . Node Pi use veri f y-poly(a, i , C) veri fy-poly(b, i, C)to verify if ai(y), bi(x)
is correct. If the verification fails, Pi requests that the dealer make ai(y), b,(x)
public.
2. The dealer broadcasts all polynomial requested in the previous step. If the dealer
fails to do so, he is disqualified.
3. Node Pi carried out the verification of Step 1 for all public polynomial. If the
verification fails, the dealer is disqualified.

Figure 2. Z,-VSS

{Cj l) with Cjl = g f i l m o d ~ for j , 1 E [0, t] . Then the dealer sends to every
node Pi the share polynomials and broadcast the commitment matrix C. When
node Pi receives a i (~) , bi(x) and C, it use v e r i f y - poly(a, b, i , C) to verify
if ai (y) , bi (z) are correct. If the verification is ok, Pi computes and keeps
ai(0) := f (i , 0) as its share. The reconstruction stage is straightforward and
omitted.

In 2,-VSS, veri f y-poly(a, b, i , C) , veri f y-point(a, /?, i, m, C) , ve r i f y -
share(0, m, C) are employed to verify that the given polynomial, the given
point and the given share are correct.

The message complexity and the communication complexity is 0(t3) and
O(t5k) (k is the security parameter), respectively.

2. Share refreshing
The essence of the share refreshing protocol is that each party splits his

additive-share di into sub-shares dij which sum up to di , and gives each party
Pj such a sub-share dij. The details are shown in Figure 3, including seven
steps. The message complexity and the communication complexity of protocol
are 0(t3) and O(t5 k) , respectively.

3. Share distribution
In the share distribution protocol, S nodes obtain their secret shares from

their neighbors. First, those 2t + 1 nodes, which have been refreshed in the

334 K. A1 Agha, I. Gue'rin Lassous and G. Pujolle

Public information: N,g,n,t and wi (for i E RIDList), RIDList, PlDList
Input of party Pi : secret share di such that gdi = wi
1. Party Pi randomly chooses dij ER [-N2, N2] for (for j E RIDList), set
di,public = di - C dij, computes and broadcast gij = gdijrnodN.
2. Pi sends to Pj the value dij .
3. Verification of distribution of proper share size and public commitments: Pj
verifies that dij E [-N2, N2] and gij = gdi3rnodN if not then he requests that dij
be made public and set gij to g raised to this public value.
4. If Pi does not cooperate in Step 3 then di is reconstructed.
5. Verification that the sub shares in fact sum up to the previous share of Pi : Pj
verifies that wi = g d ~ ~ p ~ b l i c n gijmodN if not then di is reconstructed.
6. Pi computes his new share d y w and shares it. This results in a value gsL3 where
s is the secret that shared.
7. If Pi fails to share his secret or (gd2eW)L3 # gsL3rnod~ then each party Pj
exposes dij . If Pj fails to expose dij , then dj is reconstructed by all parties.

Figure 3. Share refreshing

share refreshing protocol, update the shares of their neighbors. Then their
neighbor nodes update other nodes in a diffused way. A node can obtain his
share polynomial from his 2t + 1 neighbor nodes by interpolating. Each local
member P, sends a message containing point ai (r) , bi (r) to node Pi . Then
Pi interpolates its polynomial ai(y), bi(x) and obtains ai(0) as its share. The
message complexity and communication complexity of the whole scheme are
O(t) and O(tk) , respectively.

4. Signature generation
A signature share on a message m is generated as follows. Let H and be a

hash function. The signature share of PI consists of xi = x4Ldy'V. Suppose
we have valid shares from a set of I parties, where I = { P I , P2, ..., Pt+l).

np., E l , { P j) i-j'
Before combining shares, we define X i V j -

I - for any
Pi E [I, n] / I and j E I . Clearly, these values are integers. From the Lagrange
interpolation formula, we have LF(i) = C & ~ (j) . Then we compute y' =

A'
x 4 4 d 1 . . . ~ ~ ~ ~ + ~ m o d N = x 4 L 4 d m o d ~ such that yte = ~ ~ ~ * m o d N .
Since e is a prime and larger than n, g c d (4 ~ 4 , e) = 1. Applying the extended
Euclidean algorithm on e and 4~~ to compute a and b such that 4 ~ ~ a + e b = 1 ,
then we achieve signature y = y'axb of the message m such that ye r xmodN

Challenges in Ad Hoc Networking 335

. The message complexity and the communication complexity are O(t), O(tk)
, respectively.

5. Discussions
The initial key distribution protocol is carried out at the onset of the sys-

tem to distribute shares to 2t + 1 R nodes. The share refreshing protocol is
carried out to update the old shares of 2t + 1 R nodes at the beginning of the
every phase. After the initial key distribution or the share refreshing proto-
col, the share distribution protocol is performed to distribute secret shares to
all other nodes. After nodes obtain their secret shares, they can employ these
secret shares to perform signing using the signature generation protocol. As
we point out in Section 1, the only proactive RSA scheme for large-scale ad
hoc networks is the URSA scheme. However, URSA is insecure. Compared to
URSA, our scheme is proven secure. Furthermore, the efficiency (the message
complexity and the communication complexity) of our scheme is approximate
to that of URSA. Due to space limitation, we only give some brief discussions.
Both signature generation are based on polynomial secret shares, so the effi-
ciency is similar. Our share distribution protocol is more efficient than that of
URSA. The share refreshing protocol and the initial key distribution protocol
of URSA are more efficient than ours.

References
R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proc. 10th ACM Sympo-

sium on Principles of Distributed Computing (PODC), pages 51-59, 1991.
A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or how to cope

with perpetual leakage. In Advances in Cryptology CRYPTO '95 (D. Coppersmith, ed.
Springer.). 963:339-352, 1995

Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM J. Computing, 12(4), 1983.

Y. Frankel, P. Gernmell, P. D. MacKenzie, and M. Yung. Optimal-Resilience Proactive Public-
Key Cryptosystems. In Foundations of Computer Science FOCS'97, pages 384-393, 1997.

Y. Frankel, P. Gemrnell, P. D. MacKenzie, and M. Yung. Proactive RSA. In Proc. of Crypto'97,
pages 440-454, 1997.

T. Rabin. A simplified approach to threshold and proactive RSA. in Proc. CRYPTO '98, pp.
89-104, Springer, 1998.

Haiyun Luo, Jiejun Kong, Petros Zerfos, Songwu Lu, and Lixia Zhang. URSA: Ubiquitous and
Robust Access Control for Mobile Ad Hoc Networks, IEEEIACM Transactions on Network-
ing (TON), pp.1049 - 1063,12(6),2004.

Stanislaw Jarecki, Nitesh Saxena, and Jeong Hyun Yi. Cryptanalyzing the Proactive RSA Sig-
nature Scheme in the URSA Ad Hoc Network Access Control Protocol. In ACM Workshop
on Security of Ad Hoc and Sensor Networks (SASN), October 2004.

