
EMULATION ARCHITECTURE FOR AD HOC
NETWORKS

A.Giovanardi
DI, University of Ferrara, Italy
agiovanardi0ing.unife.it

G.Mazzini
DI, University of Ferrara, Italy
gmazzini@ing.unife.it

Abstract The paper presents an emulation architecture working in the user space use-
ful to implement and test routing protocols for ad hoc networks. The emulator
interfaces with the Simple Ad hoc siMulator (SAM) [I], where many routing
protocols are present. The novelty with respect to SAM is the possibility to test
routing protocols with a real exchange of signaling and data packets between the
nodes present in the network. With respect to a live test, the emulator works on
hosts connected each other via wired links and the wireless channel is simulated.

Keywords: Emulation, Ad Hoc Networks, Routing Protocols.

1. Introduction

Ad hoc networks have become an increasingly popular technology in the
past few years. In these wireless networks nodes communicate with other
nodes in their range and act as forwarders of data from nodes cornmunicat-
ing with out-of-range nodes.

Many approaches are possible to test the ad hoc network performance: sim-
ulation, live test and emulation. Simulation runs a model/representation of the
code in a synthetic environment, by imitating the time operations executed by
a real system. Live test runs the real code in the real environment. Emulation
is a simulation which involves hardware or firmware components. Simulation
can be very slow; the synthetic environment may poorly represent real one.
Live tests may only be possible very late in development cycle; it is often
difficult or too expensive to create a real test environment of any significant
size; real environment tests also tend not to be reproducible. Emulation can

200 K. A1 Agha, I. Gue'rin Lassous and G. Pujolle

give a controlled, reproducible environment for running live code in a lab-
environment network. Benefits of network emulation include the ability to
expose experimental algorithms and protocols to live traffic loads and to intro-
duce real packet processing times. In many cases, a large number of hosts can
be considered without impact on the final cost.

Many simulators (OPNET [2], NS2 [3], GloMoSim [4] and SAM [I]) and
emulators ([5] [6] [7]) have been proposed and developed to validate the pro-
posal of new routing protocols for ad hoc networks.

Emulation environments can be classified as follows [6]:

Central Control Emulators: all nodes are connected to a central emu-
lation server. All traffic is directed via that server, which forwards the
traffic to the destinations. An example is [7].

Simulator Combined Emulators: also in this case stations are connected
to a central server, which decides whether packets get forwarded, de-
layed or dropped. With respect to the preceding case, the packets do not
passes through the server, which simply manage the whole emulation,
by simulating radio channel, topology and mobility. An example is [5].

Distributed Emulators: as opposite to the centralized approaches each
station acting as mobile node is responsible for directing and forwarding
traffic. An example is: [6].

The emulation architectures can be classified also regarding their easy soft-
ware portability or not. Many of the proposals need the modification of the
kernel code of the operating system, or to load suitable kernel modules, with a
consequent not easy portability.

In this paper we propose an emulator platform falling in the Distributed Em-
ulators category and easy to implement. The architecture is fully distributed:
nodes exchange signaling routing packets (according to the selected routing
protocol) to update topology knowledge; then, on the basis of the run-time up-
dated routing tables, data packets are transmitted from the source to the desti-
nation with hops on intermediated nodes. Nodes are connected via wired links
and the wireless channel is simulated. Our implementation is fully developed
in the user space (it does not need any change to the kernel code) and uses the
libpcap library [8] and the RAW sockets [9].

To easy change the routing protocol to be tested, the emulator interfaces
with SAM [I], where many kinds of unicast and multicast ad hoc routing pro-
tocols (Dijkstra, Link State, Distance Vector, DSR, AODV, AMRIS, ODMRP,
AMRoute) are present. To test the emulator, we have used a simple routing pro-
tocol (Link State-LS [lo]) by taking into account also the channel impairment.
The h a 1 performance of the selected routing protocol have been compared
with those of SAM.

Challenges in Ad Hoc Networking

2. Emulator Architecture
The emulator has been implemented on Linux hosts connected by means

of a Fast Ethernet network. The N nodes involved in emulation have routing
functions, i.e., can relay packets to other nodes. Each node in the network is
identified by a logical number n, where n E (1,. . . , N). Hosts are involved
in many activities (not only emulation); so, a basic real traffic is always present
(relative to services and applications such as NFS, DNS, DHCP, multicast and
so on). The emulation traffic is composed by signaling broadcast packets (use-
ful to know and update the topology) and by data packets.

The emulation architecture interfaces with SAM, which is a discrete event
simulator, composed by the following modules: Tra$ic, dealing with the traffic
generation; Channel, simulating the radio propagation; Mob, dealing with the
terminal mobility; Radio, simulating the hardware transceiver; Mac realizing
the Data Link Layer; Route, implementing the routing protocols; Statistics,
collecting statistics results.

Emulator interacts with the Trafic, Channel, Mob and Route modules. To
have an emulation platform giving results only on the routing protocols with-
out care of a particular MAC Layer, we have not considered the Radio and
Mac modules used in SAM. This choice is also motivated by the presence of
the MAC Layer of the wired system, which could become wireless if the hosts
are equipped with wireless cards. So, we have created a suitable EMULA-
TOR MAC which is simply performing a transparent interface between net-
work card and Network Layer, making no particular medium access actions.
At the Transport Layer, we only consider UDP.

A Logical Management block contains scripts able to configure the system.
A file named hosts contains the MAC and IP addresses of all hosts which could
be involved in the emulation. This file is read at the emulation start to perform
all socket and network interface operations. Other scripts are able to manage
the emulation simultaneously on all hosts, by also collecting and processing
information stored in the output files to derive synthetic performance indexes.

An Input block is used to set parameters useful for the emulation: the num-
ber of nodes; the number of packet generated per host; the parameters to con-
trol the network interface; the maximum number of hops; the parameters to
manage the network topology, i.e., the virtual host positions; the parameters
to control the transmitted power and the propagation channel behavior; the
parameters to manage the packet generation; the parameters identifying the
routing protocol selected in the emulation.

A Socket block manages the frames generation and their insertion on the
network, while a Packet dump & Forwarding block performs the dump and the
relay of the packets. Finally, the Output/Statistics block collects parameters of
interest to derive the final performance.

K. A1 Agha, I. Gue'rin Lassous and G. Pujolle

Figure 1. Ni/N as a function of Pt,, by varying N = N, = 10,15,17,20.

2.1 Implementation Details
The packets are dumped (captured at the network interface) by using the

libpcap library [8]: pcap-opendive(), opens the network device for packet
capture; pcap-compile(), sets a packet filter to select the packets useful for
the emulation (and to discard any other kind of packets); pcapset f ilter, links
the packet filter to the socket; pcapdoop(), collects and processes packets;
pcap-statso, collects statistics on the packet correctly dumped, dscharged at
the interface or by the kernel.

To insert the Ethernet frames on the network we use the RAW sockets [9],
having set E T H Y A L L as protocol (to send a not well known packet format)
and having considered the socket option I P H D R I N C L to make sure that
the kernel knows the header is included in the data, and does not insert its
own header (for example an IP header) into the packet before the payload.
The broadcast routing signaling packets has been redirected to a MAC address
different from the broadcast one, to avoid to flood the network with broadcast
packets not interesting for the hosts not involved in the emulation.

The Ethernet frames are composed by an header includmg: the destination
and source MAC addresses; the type field; the numbers identifying the source
node n, and the destination node nd; the Time To Live (TTL), decreased of 1
at each packet relaying; a timestamp, useful to evaluate the delivery time; the
nexthop identifier; the transmission power. To discriminate into the network
the packets involved in the emulation from those relative to other applications
or protocols, we have identified and selected an ad hoc type field in the Ether-
net frame (0x0020). TTL is included into the frame to drop a packet circulating

Challenges in Ad Hoc Networking

0.8 . N="*4" t
sim N -

N=Nr=.l'. / I
0.7 - slm N

N=Na-70 - / I

Figure 2. P,,,, as a function of Pt,, by varying N = N, = 10,15,20.

into the network indefinitely; furthermore, it is useful to evaluate the total nurn-
ber of hops experimented by a given packet.

To insert data into the frames in a machine-independent fashion, the exter-
nal Data Representation standard (XDR) [l 11 has been adopted. XDR is usefd
for transferring data between different computer architectures, it fits into the
IS0 presentation layer and support all classic C data types. The frame gener-
ation is performed trough the Trafic module present in SAM where Poisson,
CBR, Isochronous, FTP and Video traffic can be set. By default, the number
of active hosts (N,) is set equal to N , i.e., all hosts are generating traffic.

At the frame born, the source node n, collects the generation time, to iden-
tify the timestamp to include in that frame. Then, n, searches the nexthop in
the path, by applying the rules corresponding to the selected routing protocol.
If the nexthop exists (i.e., at least the first relaying node is reachable from the
source), n, creates the frame to send, by setting in the Ethernet header: SA=
Source MAC, DA= Nexthop MAC, Type= 0x0020; and including n,, nd,
TTL, timestamp, nexthop and transmit power. After the frame creation, n,
sends the frame to the selected interface by using the RAW sockets.

The frame forwarding capability (router functionality) is started on each
host and is maintained active until the end of the emulation. When a host
captures a frame with type field 0x0020, it can discriminate if this frame is
addressed to another node or not. In the fist case it does not perform any
action; in the last case it processes the frame to establish if it must be for-
warded to the next hop or it has reached the final target. The first operation of
the frame processing is to identify the source and destination nodes, the TTL

K. A1 Agha, I. Gue'rin Lassous and G. Pujolle

Figure 3. hop as a function of Pt,, by varying N = N, = 10,15,20.

and the timestamp (representing the time of frame generation at the source
node). Then, also the last node in the path which has relayed the frame is
identified (it is often an intermediate node, i.e., not the source node). This
permits to evaluate the channel impairment in the last link, and then, accord-
ing to a received power threshold, to determine if the frame is correctly re-
ceived or not. If the frame is correct and has not reached the final target, the
local node starts the procedures to forward it to the next hop. If the frame
is correct and has reached its last destination, the local node processes it to
collect performance indexes. Otherwise the frame is dropped. The frame
forwarding procedure follows these steps: TTL decrease and control, i.e.,
TTL = TTL - 1; if (TTL = 0) -+ packet expired; next hop evalua-
tion (applying the rules of the selected routing protocol); frame regeneration
with new TTL; packet insertion on the network. When a frame has reached
TTL = 0 it is dropped and an error message is returned to the output.

3. Numerical Results
All nodes are involved in the statistics collection: many output files are

created, each characterized by a prefix identifying the logical number n of the
node. As a consequence of the possible high number of hosts (N) involved
in the emulation, the number of output files to be processed could be high.
So a suitable post-processing software has been developed to collect : success
probability (correctly delivered packet fraction), delivery time (end-to-end
time), number of hops, number of isolated nodes, energy spent per byte,
total energy spent for each host and the relative average values on the network.

Challenges in Ad Hoc Networking

1 1
PL N=Na=10 Psucc t

PL 8 Shadowin N Na l o Psucc --a-
!L;=;=~O NvN - - - E - -

PL 8 Shadowng N=Ns=10 NYN 0

Figure 4. P,,,, and NiIN as hct ions of Pt,, with and without shadowing.

We have tested a simple protocol, i.e., Link State (LS) [lo], by also verifying
the match between emulation and SAM simulation. We consider a wireless
fixed scenario with hosts located in a square room with size 10xlOm. The
propagation channel is characterized by path loss, with exponent P = 2.5
and reference distance dref = 0.2m. In some cases shadowing has been also
taken into account, with log-normal distribution and deviation u = 6dB. The
transmit power Pt, is the same for each host and for each packet sent. The
minimum received power is P,, = -76dE3m. The traffic is Poissonian with
average arrival rate X = lOpacket/s. 5000 packets generated per station have
been considered. In the performance evaluation we have varied the number of
hosts present into the network and the transmit power Pt,. Figures from 1 to 5
show performance indexes representing values averaged on the whole network.
Figures 6 and 7 show these parameters for any single host. In figure 1,2 and 3
we consider only path loss, while in all other Figures the cases with only path
loss and with path loss and shadowing are showed.

In Figure 1 the ratio between the number of isolated nodes, Ni, and the total
number of hosts present in the network, N , is reported, by varying the transmit
power Pt, in the range [-28, -2lldE3m and setting the number of hosts into
the network N = N, = 10,15,17,20. The results are only relative to the
emulation, since the simulator does not report this information. As expected,
Ni/N decreases by increasing Pt, and by increasing N , i.e., by increasing the
density of host in the network area.

In Figure 2 the average success probability, P,,,,, i.e., the correctly deliv-
ered packet fraction, is reported by varying the transmit power Pt, as in Figure

K. A1 Agha, I. Gue'rin Lassous and G. Pujolle

Figure 5. hop and T as functions of Pt,, with and without shadowing.

1 and assuming N = Na = 10,15,20. In this case, simulation results are
also reported. The results obtained by emulation are depicted with lines, those
obtained by simulation with points. We can verify the good match. Further-
more, as expected, by increasing the transmit power, the success probability
increases, since the probability to have isolated nodes decreases. By increas-
ing the number of hosts in the network, the effect is similar to a transmit power
growth, since the network becomes more dense and then nodes are closer each
one (and then more reachable) with higher probability.

In Figure 3 the average number of hops to deliver a packet, hop, is reported
in the same parameter condition of Figure 2. A quite good match between
emulation and simulation can be verified. For high N values, by increasing
Pt,, hop first increases, then decreases, and this general trend is repeated more
times. This can be probably explained as follows: at the begin the transmit
power growth permits to eliminate zones with isolated nodes (characterized
by short path, with few hops), by allowing paths longer, with higher number
of hops; then, when the transmit power overcomes a given threshold, some
nodes becomes directly reachable (i.e., without need of intermediate node with
relaying functions) and then the number of hop decreases. On the other hand,
by increasing the number of hosts in the network, the hop number increases
and the effect could be similar to that of the initial transmit power growth.

In all Figures presented in the following only emulation results are shown.
Furthermore, N = Na = 10 has been assumed. In Figure 4 P,,,, and Ni/N
are depicted as hc t ions of Pt,. The cases with and without shadowing are
directly compared. We can note the same increasing and decreasing trends

Challenges in Ad Hoc Networking

1
PL 8 Shadowing N = N ~ = ~ o Pix--21 dBm -
PL 8 Shadmng N=Na=10 W=ZS dBm -
PL 8 Shadovvlng N=Na=lO W=28 dBm

Figure 6. PSucc for each generic host, with shadowing.

of P,,,, and Ni/N with Ptx of Figures 1 and 2. Furthermore, we can note
the positive effect of shadowing which makes the network more "dense", by
mitigating the attenuation effects of the path loss. In particular, shadowing
doubles the nodes in visibility and the success probability. In Figure 5 the
hop number and the h a 1 delivery time T (in ms) are reported as functions of
Ptx, in the same conditions of Figure 4. Shadowing allows paths more long,
with higher number of hops (in some cases hop doubles its value). This trend
is related to the effect explained above (shadowing makes the network more
dense); so, a lower number of isolated nodes allows to reach farer hosts, with
higher number of hops on intermediate nodes. Note that, a part a scale factor,
the delivery time and hop trends are quite the same.

Figure 6 shows P,,,, for each generic host, with shadowing and by vary-
ing Pt, = -28, -25, -2ldBm. As expected, by increasing Ptx the success
probability increases for all hosts. Furthermore, it is possible to note that some
hosts can not deliver packets, since they are probably isolated. The number of
hosts in this condition decreases with the Pt, growth. The behavior depicted
in this Figure allows to better understand if the average values depicted above
(obtained by also considering unreachable nodes) are really representative or
not. The last graph (Figure 7) depicts the number of forwarded packets for
each generic host, having considered Ptx = -28, -25, -23, -2ldBm. Note
that this parameter increases when Ptx increases and that for any different level
of transmission power the number of hosts performing routing action is limited
(about the half of the hosts involved in the emulation).

K. A1 Agha, I. Gue'rin Lassous and G. Pujolle

host

Figure 7. Number of forwarded packets for each generic host, with shadowing.

180W

16W0

14WO

120W

2 IOMX)
7

80W
".

6000

4QW

2000

0

Acknowledgments
This work is developed under MURSTIMIUR Pattern Project and Regional Insebala Project.

References

p i 8 shadoing N=Na=lO P~=-z? dBm -
PL 8 Shadowing N=Na=lO h = 2 3 dBm
PL 8 Shadowing N=Na=lO h = 2 5 dBm

P.Bergamo, D.Maniezzo, A.Giovanardi, G.Mazzini, M.Zorzi, "Distributed Power Control
for Power-aware Energy-effi cient Routing in Ad Hoc Networks," in Proc. of EW2002, pp.
237-243, Florence, Italy, Feb. 2002.

"OPNET commercial tool", http://www.opnet.com.

"The Network Simulator NS2," http://www.isi.edu/nsnam/ns/.

"GloMoSim," http://pcl.cs.ucla.edu/projects/glomosim/.

K. Fall, 'Wetwork emulation in the VINT/NS simulator", in Proc. of IEEE Computers and
Communications, 6-8 July 1999, pp. 244-250.

M. Matthes; H. Biehl; M. Lauer; 0. Drobnik, "MASSIVE: An Emulation Environment
for Mobile Ad-Hoc Networks" in Proc. of Wireless On-demand Network Systems and
Services, (WONS 2005), 19-21 Jan. 2005, pp. 54-59.

J. Flynn, H. Tewari, D. O'Mahony, "Jemu: a Real Time Emulation System for Mobile Ad
hoc Networks", in Proc. of the First Joint IEIIIEE Symposium on Telecommunications
System Reasearch, Dublin, Irelend, Nov. 2001.

S. McCanne, C. Leres and V. Jacobson. libpcap, 1994. ftp://ftp.ee.lbl.gov/libpcap.tar.Z

R. Stevens, "UNIX Network Programming, Volume 1: Networking APIs - Sockets and
XTI", 1998, Prentice Hall PTR.

- PL 8

-

-

-

-

-
......

- j

- 1

"

[lo] A.S. Tanenbaum, "Computer Networks", Prentice Hall, 1989.

[11]RFC 1014 - XDR: External Data Representation standard,
http://www.faqs.org/rfcs/rfcl0l4.html.

1 2 3 4 5 6 7 8 9 1 0

Shadowing -

...... -

....... N=Na=IO Pix--28 dBm

..............

.......... ,

I
i

I I

II

......

