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Abs t rac t  
We define, for an overlay built on top of an ad hoc network, a simple 

criterion for neighbourhood: two overlay nodes are neighbours if and 
only if there exists a path between them of at  most R hops, and R 
is called the (overlay) neighbourhood range. A small R may result in 
a disconnected overlay, while an unnecessarily large R would generate 
extra control traffic. We are interested in the minimum R ensuring 
overlay connectivity, the so-called critical R. 

We derive a necessary and sufficient condition on R to achieve asymp- 
totic connectivity of the overlay almost surely, i.e. connectivity with 
probability 1 when the number of overlay nodes tends to infinity, under 
the hypothesis that the underlying ad hoc network is itself asymptoti- 
cally almost surely connected. 

This condition, though asymptotic, sheds some light on the relation 
linking the critical R to the number of nodes n ,  the normalized radio 
transmission range r and the overlay density D (i.e., the proportion of 
overlay nodes). This condition can be considered as an approximation 
when the number of nodes is large enough. Since r is considered as 
a function of n ,  we are able to  study the impact of topology control 
mechanisms, by showing how the shape of this function impacts the 
critical R. 
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1. Introduction 
In a previous work, we adopted an overlay approach for the introduc- 

tion of the active technology in ad hoc networks [Calomme and Leduc, 
20041. The framework proposed allowed active nodes to inject cus- 
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tomized routing protocols in the network to communicate all together, 
or to use any upper-layer active application, in order to improve the 
communication performance. 

More generally, as most application of MANETs involve group com- 
munication [Mohapatra et al., 20041 and as grouping behaviour of the 
mobile users has been observed [Wang and Li, 2002; Tang and Baker, 
20001, most wireless ad hoc networks can be seen as composed of one or 
several communities. The nodes of these communities can be character- 
ized by a common specialized hardware, such as a sensor, or software, 
such as an active platform, or share a custom routing protocol or appli- 
cation. In all cases, they can use and take advantage of their common 
enhanced capabilities if and only if they are able to communicate effi- 
ciently through the other nodes, that is if and only if they are organized 
as an overlay. 

Overlay advantages come however at the expense of the overlays cre- 
ation, usage and maintenance, that must be kept moderate. Conse- 
quently, a full mesh is probably not the most adapted nor efficient so- 
lution for overlay applications. A natural rule of thumb is to admit as 
overlay neighbours a set of close overlay nodes, the distance measure 
employed being the number of hops. Two approaches are possible. One 
can fix the cardinality of the set of neighbours or the maximum number 
of hops admitted between overlay neighbours. We adopt the latter one. 
In this case, the maximum distance between two neighbours is an inte- 
ger value that must be sufficiently high to obtain a connected overlay 
but as low as possible to limit the amount of messages generated in the 
network by overlay nodes communication. 

The parallel with topology control in ad hoc networks is obvious. To 
achieve connectivity, each ad hoc node could use its maximum transmis- 
sion range, in order to reach many neighbours. However, mobile devices 
have a limited amount of battery power. Moreover, this would cre- 
ate a lot of interferences, reducing the overall capacity of the network. 
With a homogeneous topology control algorithm, all nodes adopt the 
same transmitting range value. The critical transmitting range problem 
consists of determining the minimum value that generates a connected 
network. We have adopted a similar terminology for our problem: the 
maximum number of hops allowed between overlay neighbours is called 
the neighbourhood range and the determination of its best value the 
critical neighbourhood range problem. 

This paper is structured as follows. In Sect. 2, we give an overview 
on previous related work over the critical transmission range. In Sect. 
3, we precisely define the problem studied. In Sect. 4, we present ana- 



Challenges in Ad Hoc Networking 181 

lytical results and discuss some of their practical implications. We then 
conclude. 

2. Related Work 
In many realistic scenarios, node positions are not known in advance. 

Hence a probabilistic approach is used in every analytical study of the 
critical transmission range problem. 

First studies of graph connectivity were developed in the context of the 
random graphs theory. A random graph is a graph generated by some 
random procedure [Bollobas, 19851. In 1960, Erdos and R6nyi [Erdos 
and R6nyi, 19601 showed that for many monotone-increasing properties 
of random graphs, like connectivity, graphs of a size slightly less than a 
certain threshold are very unlikely to have the property, whereas graphs 
with a few more graph edges are almost certain to have it. This is known - - 

as a phase transition phenomenon. 
In classical random graph models, there is no a priori structure. All 

vertices are equivalent and there is no correlation between different edges 
existence. In ad hoc and sensor networks, nodes are more likely to be di- 
rect neighbours if they are located close to each other. Therefore random 
geometric graphs are more suited to model them. Random geometric 
graphs are constructed by placing points at random according to some 
arbitrary specified density function on a d-dimensional Euclidean space 
and connecting nearby points [Penrose, 20031. Some of the geometric 
random graphs results can be applied in the study of connectivity in ad 
hoc and sensor networks [Penrose, 19991. Various transition phenomena 
can also be observed in geometric random graphs [Krishnamachari et al., 
20011. Monotone properties for this class of graphs have sharp treshold 
[Goel et al., 20041. Asymptotically, as the network density tends to in- 
finity, a critical value transmission range can be established [Gupta and 
Kumar, 19991. 

We are not aware of any work related to the critical (overlay) neigh- 
bourhood range problem. In the following sections, we define it in more 
details, and we solve it using known results on the critical transmission 
range problem cited above. 

3. Problem Definition and Discussion 
We are interested in the asymptotic connectivity of overlay graphs 

built over asymptotically almost surely (a.a.s.) connected basic graphs. 
These notions are defined in the following paragraphs. We then dis- 

cuss the implicit assumptions we make in the problem and model spec- 
ification. 
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Basic and Overlay Graphs 
Consider an ad hoc network of n nodes, deployed over a square field of 

unitary area, and where each node is assigned a normalized transmission 
range of length r .  This network is modelled by a random geometric graph 
denoted g(n, r )  which has the following properties. 

The vertices of g are uniformly and independently distributed on the 
unitary square. They can either have been disseminated following the 
uniform distribution of n points or by a spatial homogeneous Poisson 
point process of mean n. 

There exists an edge between each pair of vertices if and only if the 
Euclidean distance between them is not greater than r .  

Let then g(n,r)  be a connected graph, D be a real number with 
0 5 D 5 1 and R be an integer with R > 1. 

An overlay graph G(n,r ,  D, R) denotes a graph with the following 
properties. 

The D parameter represents the overlay nodes density. The number 
of vertices of G equals the lowest integer above a proportion D of the 
number of vertices of g. These are randomly and uniformly selected in 
the vertices set of g, which is called its basic graph. 

The parameter R is called the neighbourhood range. There exists an 
edge between a pair of vertices (vl,va) if and only if the shortest path 
in g from vl to va contains less than or exactly R hops. 

In the following, in conjunction with the ad hoc and sensor networks 
terminology, the vertices of an overlay graph will be referred to as overlay 
nodes and the vertices of its basic graph as nodes. 

Asymptotic Connectivity 
Let all graph parameters be a function of the number of nodes. For 

example, r (n)  can be decreasing when n increases, which is a desired 
behaviour for minimizing the capacity loss due to interferences. 

A basic graph can be denoted by g(n,r(n) and an overlay graph by 
G(n, r(n), D(n), R(n)) or G(g, D(n), R(n)). We may generally simply 
write g(n, r) ,  G(n, r, D ,  R) or, if g(n, r )  is given, G(g, D, R). 

DEFINITION 1 A graph is connected asymptotically almost surely (a.a.s.) 
if and only if the probability that it is connected tends to one as its 
number of vertices tends to infinity. 

Graph 6 is connected a.a.s. 
@ 

lim,,, P [6 is connected] = 1. 
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Note that for overlay graphs, the vertices are the overlay nodes. This 
means that D(n) must be such that lim,,, D(n)n = +oo. 

Problem and model discussion 
Connected basic graph. We consider only connected basic graphs. 
This seems reasonable to us as a disconnected basic graph will not pro- 
vide connected overlays, whatever the neighbourhood range is, unless all 
the overlay nodes are concentrated in a connected part of it. 

Asymptotics. Many asymptotic properties of random geometric 
graphs have been demonstrated [Penrose, 20031. In particular, we men- 
tioned in Sect. 2 several studies of the asymptotic connectivity of ad hoc 
networks, while the connectivity probability of a finite network, because 
of its complexity, has been the subject of very few analytical studies 
[Desai and Manjunath, 20021. 

Our asymptotic results can be seen as approximations of finite (real) 
networks when the number of nodes is large. They also shed some light 
on the relation linking n, r ,  D and R to get a connected overlay. 

Network density. Asymptotically, the model presented induces that 
the overlay nodes geographical density, i.e. the number of overlay nodes 
per unit area, tends to infinity. This is why it is only suited to so-called 
dense networks. There exists a more general model, covering dense and 
sparse networks, that was introduced in [Santi and Blough, 20031, and 
for which we present similar results in an extended version of this paper 
[Calomme and Leduc, 20061. 

Homogeneous transmission range assignment. The transmis- 
sion range is represented as a function of the number of nodes. This 
allows us to model a possible topology control protocol running on the 
ad hoc network, which would reasonably reduce the transmission range 
as the number of nodes increases, in order to conserve energy and global 
network capacity. We however implicitly limit ourselves to homogeneous 
topology control protocols, i.e. protocols which assign the same trans- 
mission range to all nodes. 

This assumption greatly simplifies further mathematical developments 
and seems realistic in the context of our study. A common transmission 
range at each node provides some appealing features [Kawadia and Ku- 
mar, 20051. Moreover, a common power is asymptotically nearly optimal 
in terms of network capacity [Narayanaswamy et al., 20021. 
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4. Mat hemat ical analysis 

Known Results on Basic Graphs 

Consider a basic graph g(n, r ) .  Let us build a graph g l (n ,  r l )  that has 
the same nodes set as g and such that there is an edge between every 
pair of nodes. Let Mn denote the longest edge length of the minimal 
spanning tree built on gl. In [Penrose, 19971, it is demonstrated that the 
graph g(n, r )  is connected if and only if r 2 M, and 

Va! E R :  lim ~ [ n ~ ~ ~ ~ - l n n <  a] =exp(-e-") 
n++m (1) 

This implies directly the following theorem. 

THEOREM 2 (Asymptotic connectivity of basic graphs) 
A graph g ( n ,  r )  with 

l n n + k ( n )  
Tr = 

n 
is  connected a.a.s. if and only if limn,+, k(n) = +oo. 

The same result was demonstrated by Gupta and Kumar for a uniform 
distribution of nodes over the unit disk [Gupta and Kumar, 19991. 

Overlay graphs study 

We begin with a theorem that sets an upper bound on the asymptotic 
number of hops between any pair of nodes, given the distance separating 
them and the normalized transmission range used. 

THEOREM 3 (Asymptotic path length) 
Let g be an a.a.s. connected graph and m be a strictly positive integer. 

Let nl and n2 be two nodes of g. If the Euclidean distance between nl 
and n2 is  strictly less than m r ,  then there exists a.a.s. a path between 
them composed of less than or exactly m hops. 

The detailed demonstrations of this theorem and of the next one are 
published in the extended version of this paper [Calomme and Leduc, 
20061. We only draw here the sketch of their proof. 

PROOF 4 (summary) Asymptotic path length 

W e  use a recurrent approach . 
If m = 1, then nodes nl and n2 are physical neighbours and the prop- 

erty i s  valid. 
If m > 1, then it can be demonstrated that there exists a.a.s. a node ni 

such that the distance between nl and ni is  strictly less than (m- 1)r and 
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that the distance between ni and n2 is  strictly less than r .  Consequently, 
the property i s  valid for any m. 0 

Using t h e  previous theorem, we can derive t h e  main result o f  this 
paper. 

THEOREM 5 (Asymptotic connectivity of dense overlay graphs) 
Consider a n  overlay graph G ( g ,  D ( n ) ,  R(n)) with 

Assume g ( n , r ( n ) )  i s  a.a.s. connected and limn,+, D n  = +m. G is  
a. a.s. connected if and only if limn,+, K(n)  = +m . 

PROOF 6 (summary) Asymptotic connectivity of dense overlay graphs 

Let G ( n ,  r ,  D ,  R) be an overlay graph. 
Consider a graph gr(rDn1, R r )  such that the vertices sets of G and gl 
are identical. 

A s  the maximal edge length of G equals R r ,  i ts  edges set i s  included 
in the edges set of gl. If gl i s  not connected, then G neither is. 

B y  definition, any edge (nl ,  n2) of gl i s  shorter than or has length Rr. 
If i t  i s  strictly shorter than R r ,  then, by theorem 3, this edge also exists 
in G .  
If it has length R r ,  then it can be demonstrated that one can find a node 
ni such that two edges (nl,ni) and (ni,nz), each strictly shorter than 
R r ,  belong to  G .  
Consequently, if there exists a path between two nodes of gl, there also 
exists a path between these nodes in G .  
If gl i s  connected, then G also is. 

Applying Theorem 2 to gl, we obtain a necessary and suficient condition 
for the asymptotic connectivity of G .  0 

Discussion 

T h e  following two  corollaries are meant t o  give an insight about t h e  
relationship between t h e  neighbourhood range and t h e  overlay density. 
Their  proof, quite simple, are given in  t h e  extended version o f  this paper 
[Calomme and Leduc, 20061. 

For b o t h  o f  t h e m ,  we consider a n  overlay graph G ( g ,  D ,  R) and make 
t h e  assumptions that  g is a.a.s. connected and that  limn,+, D n  = +m. 
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COROLLARY 7 ~f D R ~  2 1 then G is  a.a.s. connected. 

The sufficient condition R > -2- shows that a decreasing overlay dB 
density does not necessarily make the overlay graph a.a.s. disconnected. 
We can for example have D = & and R = 6. It also confirms the 
intuitive idea that the lower D is, the larger R must be. 

The advantage of the previous corollary is that we do not need any 
information about the basic graph, except that it is a.a.s. connected. 
However, lower values for the neighbourhood range could be obtained if 
the relationship existing between n and r is known. 

COROLLARY 8 Let m2n = Inn + k ( n )  with k ( n )  >> 1. Assume D i s  
constant and R is a n  integer with R 2 1. 

1 If k ( n )  >> Inn, then G i s  a.a.s. connected for any R. 

2 If k ( n )  2 alnn with a > 0, then G i s  a.a.s connected for any 

3 I f  k ( n )  << Inn, then G i s  a.a.s. connected if and only if R 2 1 dB. 

Concerning a basic graph, a function k ( n )  that grows quickly just 
accelerates the convergence of the connectivity probability [Santi and 
Blough, 20031. This function has a stronger impact on the neighbour- 
hood range needed for connectivity. For example, for a constant overlay 
density D l  it decides if R can take any value or must be greater than a 
fixed threshold. 

In particular, if the transmission range r is kept constant while the 
number of nodes grows, we have k ( n )  >> Inn which implies that R = 1 
is sufficient to  obtain an a.a.s. connected overlay. The overlay nodes do 
not need other intermediary nodes to forward their packet for commu- 
nicating. The subnetwork composed of the overlay nodes only is a.a.s. 
connected. In fact, there is no need for building an overlay in this case; 
the overlay nodes can directly use their own routing protocol, with cus- 
tomized packet format. 

Oppositely, if a topology control protocol is used for optimizing the 
transmission range, R = 1 can be too small to make the overlay a.a.s. 
connected. In this case, the subnetwork composed of the overlay nodes 
only is a.a.s. disconnected. It  is necessary for some overlay nodes to 
communicate through intermediary non overlay nodes. Overlay tech- 
niques are required; the overlay nodes control and data packets must be 
encapsulated in packets that can be routed by all nodes. 
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5. Conclusions 
We first motivated the study of overlays built over ad hoc networks. 
We then presented and analyzed the critical neighbourhood range 

problem. 
In connected networks, as the network gets denser (n -t +oo), the 

shortest path between any pair of nodes draws close to the straight line. 
This sets an upper bound on the number of hops between any pair of 
nodes, knowing the distance between them and the nodes normalized 
radio transmission range r.  

Thanks to this property, that we called the asymptotic path length 
theorem, and known work on the critical transmission range problem, 
one can derive an analytical solution to the critical neighbourhood range 
problem. 

The mathematical condition obtained does take into account the po- 
tential use of a homogeneous topology control algorithm and allows the 
overlay density D to evolve with the number of nodes. In particular, if 
D diminishes, they show how a compensation in R can keep the overlay 
still connected. 

The analysis of these results provides, among others, the following 
properties for overlays built on ad hoc networks. 

Whatever the characteristics of the underlying network are, an overlay 
built on an a.a.s. connected network with D R ~  2 1 is asymptotically 
almost surely connected. 

In many cases, if the relationship between n and r is known, one 
can determine a lower value than rl] for R, which will still achieve a 
asymptotic overlay connectivity. 

For constant D, depending on the network degree of connectivity, 
the minimal value of R for asymptotic overlay connectivity can either 
be equal to one, or to a higher fixed threshold, or be an unbounded 
function of the number of nodes. 

In particular, if D and r are kept constant while the number of nodes 
increases, the overlay nodes can asymptotically use their own routing 
protocol, bypassing the network routing protocol common to all nodes. 

Oppositely, if the transmission range value is optimized, using a topol- 
ogy control protocol for the underlay, the network composed only of the 
overlay nodes can be a.a.s. disconnected. 
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