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Abstract In this paper we present the SAMSON (Smart Address Management in Self- 
Organizing Networks) protocol, which is a simple and effective solution for as- 
signing unique addresses to nodes of a MANET. Our protocol reduces the con- 
figuration time of arriving nodes by optimizing the number of configuration mes- 
sages and the number of hops the configuration messages have to pass through. 
Furthermore, SAMSON handles the merger and partitioning of networks effi- 
ciently. 
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1. Introduction 

Nodes in a mobile ad hoc network (MANET) usually use short range wire- 
less connections for connecting to each other, thus a data packet may have 
to travel through several hops to reach the destination party. Topology in 
these so-called multihop networks is rapidly changing due to the movement 
of the nodes, moreover, the set of devices participating in the communica- 
tion is not permanent. These MANETs are independent from any pre-installed 
network infrastructure and may be formed by a group of mobile nodes sponta- 
neously. Any node can leave the network at will, sometimes without inform- 
ing the other participants about its departure. The multihop packet delivery 
between two parties can be based on any routing protocol specially designed 
for networks with dynamically changing topology (e.g., DSDV [Perkins and 
Bhagwat, 19941, AODV [Perkins and Royer, 19991, DSR [Johnson and Maltz, 
19961). 

Although routing protocols are able to find the multihop route between any 
pair of nodes, they all assume that every device taking part in the commu- 
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nication owns a unique address. Thus, neither of these solutions deals with 
the question how the parties should obtain the unique identifiers. In managed 
IP-based fix networks a widespread solution is to set up a Dynamic Host Con- 
figuration Protocol (DHCP) [Droms, 19971 server, which returns unique and 
unused network identifiers on request. This and similar centrally managed 
approaches are not applicable in MANETs due to the fact that spontaneous 
networks lack any pre-installed and always available infrastructure. 

Several address distribution solutions for MANETs exist, however they are 
either not scalable enough, or rather communication resource consuming. This 
paper describes a distributed protocol, which is able to configure a unique ad- 
dress for a newly joining node by optimizing the needed resources, and above 
that, it is capable of handling the partitioning and merger of separate MANETs. 
Our solution accomplishes these tasks without overloading the network burst- 
fully, which makes the solution very well scalable over large MANETs. An 
often neglected but rather important issue is the fault tolerance of the address 
distribution system. It is expected that the system should continue working 
properly in case of any kind of failure on behalf of any node. The protocol pre- 
sented in this paper successfully deals with these situations and manages the 
available address space in a way that no (permanent) address loss may occur 
in case of any participant's failure. 

The remainder of the paper is organized as follows. Section 2 outlines the 
different concepts of address distribution mechanisms for MANETs by catego- 
rizing them, moreover presents the most important existing solutions. Section 
3 describes our address distribution protocol, and Section 4 analyzes the opti- 
mization of the configuration time elapsed when assigning a unique address to 
a newly arrived node. Finally, Section 5 concludes the paper. 

2. Related Work 

Considering the address space, the existing address distribution mechanisms 
can be grouped into two categories based on the length of the addresses. The 
first category consists of distribution mechanisms that use fixed length ad- 
dresses, while the mechanisms in the second category deal with variable length 
addresses. By using a mechanism belonging to the former category, the length 
of the addresses should be chosen carefully, so that all nodes in the network can 
obtain a unique address. If the address space turns out to be too small, there is 
hardly any way to extend it in the future. However, fixed length addresses have 
the advantage that they can be handled easier than those of variable length. 

The largely different way of treating the address space leads to different 
optimization goals and difficulties. In both cases the address space can be rep- 
resented as a binary tree, where the leaves of the tree identify the assigned 
addresses. Algorithms operating on non-fixed length addresses (e.g., [Boleng, 
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20021) try to keep the number of levels in the address tree as low as possible, 
thus providing the shortest possible address length supposing a given number 
of participants in the network. However, in the$xed-length case, the size of 
the tree (and the address space) is predefined and the goal of the algorithms is 
to assign a free leaf to each newly arriving node. At a first glance the latter 
goal seems to be easily achievable, but consider that in MANETs any node 
can leave the network at will without informing the others about its departure. 
These so-called non-gracefill departures can lead to the address leakage phe- 
nomenon, when the network is unable to detect that some addresses are not 
engaged anymore. Of course, this may lead to significant shrinkage of the ad- 
dress space after a certain amount of time. In the rest of the paper we will focus 
on the fixed-address length approaches. 

An other basis of categorizing the existing solutions is the manner they treat 
the state of the address space. Those approaches where none of the participants 
in the network maintain information about the reserved addresses are state- 
less solutions, while the ones which make an effort to store a quasi up-to-date 
version of the address space are called stateful solutions. It can be generally 
claimed about the stateless solutions that there is no centrally or distributedly 
stored knowledge of the address space. When a node is willing to join the 
network, it has to agree on its candidate address with all the other-already 
configured-parties. This is often done by flooding the network, which causes 
burstful load on the network each time a node joins. 

Other approaches, which are called stateful address distribution mechanisms, 
store an up-to date state of the currently available addresses. These solutions 
have to take care of address space maintenance continuously, which generates 
a slight, but permanent traffic load. When designing such an algorithm, spe- 
cial care has to be taken maintaining the address space, because inconsistent 
states may lead to address leakage or, even worse, to dz/plicate addresses in the 
network. 

Stateful address distribution mechanisms usually provide faster address al- 
location process than stateless ones, since the joining node does not have to 
agree on its candidate address with all the nodes in the network, instead it 
gets an address from a dedicated node. Very often a neighboring node-called 
proxy-carries out the address allocation on behalf of the requesters, since this 
neighboring node already has a valid address and adequate knowledge on the 
network structure. 

The task of address distribution mechanisms does not end at the configura- 
tion of a newly joining node. Often a common demand is to handle the merger 
and the separation of different MANETs, called networkpartitions. In the for- 
mer case it should be prohibited that nodes with the same address participate 
in the same partition, while in the latter case departed nodes should be identi- 
fied and based on this information the partition should be reorganized. In order 
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to detect nodes with the same address, several Duplication Address Detection 
(DAD) mechanisms were invented. 

Many algorithms detect address collisions based on monitoring the packets 
containing routing information. If collision detection used by the algorithm is 
performed without sending extra messages, i.e., it is only based on observation, 
the method is calledpassive duplicate address detection mechanism. Such so- 
lutions were presented in [Weniger, 20031 and [Weniger, 20041. There may be 
a stronger requirement toward the DAD mechanisms, which allow the parti- 
tion merging processes to terminate only when there are no more nodes in the 
merged partition with the same address. This requirement is called strong DAD 
[Vaidya, 20021. Solutions fulfilling this requirement usually perform global 
collision revealing mechanisms by flooding the detection packets through the 
whole network. 

One of the first decentralized address assigning protocols was presented in 
[Cheshire et al., 20041 by the IETF (Internet Engineering Task Force) Zero- 
conf Working Group. The solution is based on the IP addressing scheme and 
assumes link-local connections between all parties, which means that all link- 
level broadcasts have to reach all nodes in the network. Thus, this restriction 
makes the solution directly unapplicable in MANETs where the communicat- 
ing nodes may be in multihop distance from each other. Despite of this fact, 
the solution became the basis of several stateless approaches developed in the 
past few years. 

Among others, the solution presented in [Nesargi and Prakash, 20021 is also 
based on the idea of the Zeroconf Working Group. It introduces a so-called 
soft state maintenance mechanism, which makes it possible to serve multiple 
join requests at the same time. Each node in the network maintains an array for 
the allocated addresses and an other one for addresses under allocation (pend- 
ing addresses). Each device wishing to join the network, randomly chooses a 
candidate identifier and sends it to a neighboring proxy node, which already 
possesses a valid address. The proxy then floods the network with the address 
request including the chosen random address and waits for the replies. A node 
in the partition can only send back a positive acknowledgement for the request 
if it does not consider the requested address as allocated or as being under al- 
location. If the proxy node has received positive acknowledgements from all 
parties, then it assigns the candidate address to the joining node. The solu- 
tion applies message flooding each time a node joins, which causes bursts in 
the network load. The protocol is simple and applicable in small MANETs, 
though the mentioned undesirable property makes it non-scalable over larger 
networks. 

Although, the solutions described in [Cheshire et al., 20041 and [Nesargi and 
Prakash, 20021 differ in terms of the amount of information the nodes have to 
store about the address space, both methods use only premature techniques and 
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explicit messages to avoid address collisions. In addition, configuration of a 
node takes a lot of time in both cases. The Weak Duplicate Address Detec- 
tion [Vaidya, 20021 mechanism solves this latter weakness. It allows duplicate 
addresses in a network as long as every packet is routed to the right party. 
The joining nodes simply choose themselves an identifier (e.g., based on their 
MAC addresses) and they start using it, without checking whether the chosen 
address is already used by another node. As soon as an address conflict arises, 
the duplication of the concerned address has to be resolved immediately. 

There is a group of address distribution mechanisms, where the state of 
the assigned addresses is registered in some way. For example, in the Self- 
Organising Node Address Management (SONAM) solution [Toner and O'Maho- 
ny, 20031, a special node is responsible for assigning addresses to newly arriv- 
ing nodes. Whenever a node requests an address, the newly arriving node 
receives-in addition to the address-a list of assigned addresses and the ver- 
sion number of the returned list, moreover it becomes the new special node. 
If the actual special node disconnects from the network, the new special node 
will be the node with the highest list version number. 

Another possible way for obtaining an address is presented in [Zhou et al., 
20031. Each already configured node in the Prophet system possesses an f(n) 
function with a seed and a state. New addresses are generated based on these. 
If a node knows the default seed and the default state used in the network, then 
it can foretell which addresses will conflict when merging its network with 
another one. 

3. SAMSON 

3.1 Basic structure 

The highest priority design goals of the Smart Address Management in Self 
Organizing Networks (SAMSON) protocol are the balanced control traffic load 
and the short address configuration time. Thus, it is a stateful protocol, able 
to handle the joining of nodes quickly and efficiently by adapting to the high 
amount of address requests concentrated to certain parts of the network. 

The SAMSON protocol divides the available address space of the network 
partition into equal disjoint ranges. Each of these ranges is assigned to a so- 
calledpool. Thus, each pool represents an address range and is responsible for 
managing the addresses of the given address range. The pools are scattered 
throughout the whole partition and are usually located at those nodes where 
unique addresses can be assigned to newly joining nodes in the shortest time in 
average. The nodes where the pools are located at are called carrier nodes. A 
pool is not bound to a certain carrier node: it can move from a carrier node to 
another if it detects that the address requests could be served more efficiently 
(in terms of total expectable address configuration time) by being located at 
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another node. Thus, every node in the partition can turn into a carrier node 
anytime. There is also no restriction on the number of pools that can be carried 
by a single carrier node at the same time. 

Each pool can be uniquely identified by its managed address range, however, 
since the address ranges are equal, it is enough to identify a pool with the first 
address of the address range assigned to it. Sometimes it is desirable to treat a 
pool like a node (e.g., in case of sending an address request to it), therefore the 
first address of the address range is reserved for the pool itself. This way pools 
become virtual nodes and can be addressed by any node of the partition. 

The network partition is initialized by a so-called initiator node. This node 
has to define the NETID, which is the unique identifier of the network parti- 
tion. This identifier may be chosen by considering the lately observed network 
identifiers. A new pool is to be created at partition initialization time, or upon 
detecting that the address space of a pool will be exhausted soon due to the 
large number of configuration requests. This prediction is always to be made 
by the pools. In addition, a new pool must be generated when a network par- 
tition has been divided into two partitions in a way that no free addresses have 
remained in one of the partitions. 

The pools are free to move in the network. Each pool chooses its next carrier 
node based on the frequency of address requests coming from different parts 
of the network. In order to measure the frequency of address requests we a 
defined a metric, which is used by the pool movement algorithm. 

3.2 Joining process of a new node 

A newly joining node can obtain a unique address by asking one of its neigh- 
bors for help in the address claiming process. This neighbor will be the proxy 
node of the joining node. The selection of such a proxy node is necessary, 
since during the address request process the joining node does not own any 
legal address that can be used in the MANET, only a link-layer address (MAC 
address), which can only be used to communicate with nodes in one-hop dis- 
tance. 

At first, the joining node a broadcasts a H E L L O - R E Q  to discover its 
neighbors among its link-layer neighbors (Figure 1). After the reception of 
the replies sent in answer to the request, node ( L  chooses one of its replying 
neighbors to be its proxy node during the address allocation. Then node a asks 
its chosen proxy node p to request a valid address from a pool in the network. 
If node a has a desired address it wants to get (for instance it used this address 
last time it joined the network), then node a includes the demanded address in 
the message sent to the proxy node. The proxy then sends an address request to 
the closest pool ( 0 ) .  If the request includes a desired address, pool 0 checks 
the engagement of this address at pool C, which is the responsible pool for 
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the required address. Otherwise, if there is no address desire included in the 
request, pool 0 allocates its first free address for the joining node and returns it 
to the proxy node. The proxy node forwards the ready-to-use address to node 
a using node a's MAC address. 

node a ncde e a0010 

Figure I .  A new node joins the network Figwe 2. Keeping in touch with the pool 

The closest pool can always be found at the special address 0. Thus, in 
addition to the first address of the address range assigned to a pool, each pool 
allocates itself a second address as well: a special address we named 0. This 
of course leads to address collisions, however, in the case of SAMSON it is 
allowed to have more of this special address in the network at the same time. 
These address conflicts do not have to be resolved. This way every address 
request packet sent to the address 0 is automatically delivered to the closest 
pool, issespectively of the underlying routing protocol. 

3.3 Wandering process of pools 

Finding a good motion algorithm for pools is extremely important. If the 
pools are capable of moving to the areas where new addresses are requested 
more frequently then they can minimize in average the total time necessary for 
configuring addresses to arriving nodes. Finding these so-called hotspots is far 
not an easy issue, because the place of the hotspots may change from time to 
time with the changing of the anival interval of new nodes at certain parts of 
the network. Moreover, the pools cannot have an up-to-date global howledge 
about the topology of the network, except in case of certain kinds of underlying 
routing protocols (link-state routing protocols [Clausen and Jacquet, 20031). 
Since one of our design goals was to create a protocol which map operate over 
any kind of ad hoc routing protocol, we designed an algorithm that doesn't 
assume any lmowledge of the network topology. 

Let us imagine a node n which carries a pool P. Pool P has to decide if it 
stays at node a or moves to the neighboring node 13. In order to make a decision, 
P continuously monitors the address requests coming from different link-local 
neighbors of the carrier node or from the carrier node itself. Pool P increases 
its corresponding counter when it receives an address request message from 
one of the carrier node's neighbors or from the carrier node directly. Based 
on these counters, pool P periodically makes a movement decision. If pool P 
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finds that it received more address requests through the neighboring node b than 
through its other neighbors and the carrier node in total, then pool P initiates a 
pool transfer. In frame of this process the entire pool is transferred from node 
a to node b. Following this rule the total expected address configuration time 
always decreases. The proof of the statement will be presented in Section 4. 

3.4 Maintaining the states of the addresses 
Since the address management is operating in an ad hoc environment, the 

protocol has to be fit for handling the sudden, non-graceful departures of the 
nodes. If a node disappears from the network, its address should be assignable 
again after a certain amount of time. The SAMSON protocol supports the 
detection of node losses at two levels. First, every pool continuously checks 
whether the nodes whose addresses are from the address space of the given 
pool are still present. Second, the pools continuously check the availability of 
the other pools. 

After getting an address from a pool, every node has to send so-called heart- 
beat messages (NODE-HB) periodically to the pool from which it has ob- 
tained the address from. This procedure can be seen on Figure 2. If a pool 
has not received a NODE-HB message from a corresponding node for a long 
time, then it requests a presence signal from the node. If the addressed node 
fails to answer this warning, then the node is regarded as detached from the 
partition, so the address of this node is set as free and ready to be redistributed. 

It may also happen that a carrier node leaves the network without informing 
the other nodes. In this case not only the address of the departed carrier node, 
but also the carried pools should be retrieved. As described previously, the 
pools continuously check the presence of others. Each pool-except the first 
one-sends a so-called keepalive message (POOL-HB) to the pool which is 
just inferior in the order of the represented address space. The first node in the 
order sends the keepalive message to the last pool, thus the pools form a ring 
to check their availability. This way the departure of a pool can be detected by 
its successor pool, i.e. by the pool whose address range is the continuation of 
the address range of the disappeared pool. 

If a pool realizes that a predecessor pool has left the network, then it has 
to regenerate the lost pool. First, the successor pool reallocates the given pool 
by reserving the concerned address space. Then, it immediately freezes the 
address space (no address can be assigned from this address space) and waits 
for N O D E - H B  messages. Since the regenerated pool has the same address 
as the lost one, fbrthermore the new location of the pool is propagated by 
the routing mechanism, the nodes that have an address from the concerned 
address space can send their heartbeat messages to the pool without noticing 
the regeneration. Thus, after a while the regenerated pool will be aware of the 
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assigned addresses and therefore it can lift the blocking of the address space. 
From that time on the unused addresses of the pool can be assigned to newly 
joining nodes again. In this way the recovery period is directly proportional to 
the frequency of sending NODE-HB messages. 

If two or more successive pools leave the network at the same time without 
informing the others, then they are recovered step-by-step: first the one which 
is the highest in the pool order, and finally the one which is the last in that order. 
Considering the fact, that neither the address reclaiming, nor the pool recov- 
ery processes are time critical, then the ratio of the period of the POOLHB 
messages to the period of the NODE-HB messages may be chosen relatively 
big. 

In case of losing all pools, the nodes must start to form a new partition. 

3.5 Pool generation and deletion 

As described previously, a pool can be generated in the partition initializa- 
tion phase, moreover when a pool determines that its address space will be 
soon exhausted, or when there is no pool left in a partition after splitting up 
the original partition. In the first and third case the creator of the new pool is 
an arbitrary node, which noticed the absence of the pools by not reaching any 
virtual node at the special address 0. The node can simply generate the first 
pool in the order, i.e. the pool with the lowest addresses of the whole address 
space. In the second case, when there are already some pools in the network, 
the pool which detects the depletion of the free addresses has to send a pool 
request to the highest pool in the order. This so-called chiefpool is responsible 
to generate a new pool and pass it to the requester. Moreover, if the new pool 
has addresses in a higher range than the current chief pool, then the new pool 
takes the role of the chief pool, and all the pools have to be informed about 
this. This way, two or more identical pools cannot be created at the same time. 

Pools can be deleted if all the belonging addresses become free. If a pool 
detects that this is the case, the pool starts to delete itself. First, it sends a 
message to the chief pool indicating that the pool will be deleted and can be 
assigned to another nodes. Then, it sends an indication message to the first 
existing successor pool (it may happen that one or more successor pools are 
already deleted). After that, the pool destroys itself and the successor pool 
periodically informs the chief pool about the free pools it knows (at least this 
one). From now on, the successor pool sends the POOLHB messages to the 
predecessor pool of the deleted pool. This way, the actual chief pool is always 
aware of the deleted pools, so it can reuse them, moreover the pool ring is kept 
alive. 
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3.6 Merging two partitions 

When a node detects the presence of an other network partition (e.g., it 
receives a HELLO message containing a different NETID than its own par- 
tition), then it has to report this event to its pool. The pool that receives this 
notification has to forward the message to the chief pool, which then decides 
whether to merge the two partitions or not. If the decision is to merge the net- 
works, then the chief pool sets up a tunnel to one of the nodes that noticed the 
presence of the other network. This node is called bridge node. Moreover, the 
chief pool instructs the bridge node to establish a bridge to a randomly selected 
neighboring node from the other partition. After that, the concerned bridge 
node in the other network will inform the chief pool in it's network (via a pool) 
about the established bridge and a tunnel will be set up between the chief pool 
and the bridge node in this network as well. From now on the two chief pools 
can communicate with each other through the tunnel-bridge-tunnel connec- 
tion. Of course, it may happen that two tunnel-bridge-tunnel connections are 
established in parallel. In this case the chief pools have to agree which one to 
use. 

After establishing the connection between the two chief pools, the chief 
pools have to agree on a new network identifier, furthermore they have to re- 
solve the address conflicts. This latter task is done in one or two steps. First, 
they try to shift the address ranges of the pools to eliminate the duplicate ad- 
dresses. Then, if the former step was not successful, i.e., in total there are 
more pools than the length of the address space divided by the length of one 
address block, then the corresponding pools have to harmonize the addresses 
they assigned to the nodes. 

As it can be seen on Figure 3 the proximity of Partition 2 was detected by 
node 48, which informed the chief pool 45 through pool 9. Therefore chief 
pool 45 built up a tunnel to node 48, node 48 set up a bridge to node 76, and 
then another tunnel was built up between bridge node 76 and the chief pool 80 
in Partition I by the aid of the pool located at node 40 (for locating the chief 
pool). 

3.7 Dividing a partition 

Partitions may be divided at any time without any prior indication. Thus, we 
designed the SAMSON protocol to be capable of reorganizing a partition in 
case it splits up into several disjoint partitions. The reorganization function is 
based on the pool recovery mechanism. Whenever a pool has to be regenerated, 
the presence of the chief pool has to be checked. If it is not available any more, 
then the network may be divided into two or more partitions. Therefore the new 
chief pool (which is automatically restored) in each new partition generates a 
new network identifier and floods it in the network partition. If there is no pool 
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Figure 3. Merging of two partitions I j i g z m  4. A sample situation of pool mo- 
tion 

remaining in a group of disconnected nodes, then the first node (a )  that realizes 
the loss of the pools starts to form a new partition by creating a pool (the first 
one in the partition). The other nodes can then connect to this partition directly 
by requesting a new address or by forming a new partition and merging it to 
the partition set up by node a. 

4. Analyzing the pool motion 

Finding a good motion algorithm for pools is a relevant issue, since pools 
located at proper places (close to the hotspots) can keep the communication 
of the address claiming processes local, thus avoiding high traffic loads in the 
network. Furthermore, a good motion algorithm can reduce the average con- 
figuration time of newly arriving nodes. 

To be able to examine the problem formally. let us assume the following. 
Let us take an AT set of nodes and associate an R, variate to its every n, E 1V 
element. Among the IN1 = n element node set there is one Q pool, which han- 
dles every address claims, R, variate indicates the number of address requests 
sent by node n, (which is a proxy node in such a case) to the pool in one time 
slot. If we make the simplification, that during a time slot none of the newly 
configured nodes can configure another node, we can state the following about 
the expected configtiration time for node n, (T,) in one time slot when the pool 
is located at node np: 

where constant Tf,, is the average forwarding time of a message from one 
neighbor to the other, d ( n , ,  np) is the distance in hops between the proxy node 
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ni and pool Q that is located at n,. Constant T,,,., stands for the average 
service time of a request, and P ( R i  = I) indicates the probability that I address 
requests arrived during the time slot. According to equation 1, the expected 
configuration time for node ni can be smaller only if the d ( n i ,  sn,) distance is 
smaller. 

The total expected conzguration time (T )  is the sum of Tis over the whole 
network. Thus, the total expected configuration time is 

supposed that Q is located at node n,. SO, the goal is to find the node ,np 
(or one of them, if two or more nodes exist) that is the best carrier node for 
the pool Q in order to minimize the total expected configuration time in the 
network. The total expected configuration time is the following if the pool is 
at an optimal location: 

Let us call nOpt the node where T(noPt) = Tmin, i.e. which is at the optimal 
position. Finding this nOpt node is possible if the whole connectivity graph 
of the network is known. In this case, the optimal position can be calculated 
with an 0(sn3) algorithm, since the problem can be transformed to a similar 
problem, which is about finding the centrum of a graph. However, knowing 
the total connectivity graph of a network without sending explicit messages 
is possible only if the routing mechanism is a link-state protocol. Since it 
was among the design goals of the SAMSON protocol that the mechanism 
should work over any routing protocol, we supposed that pool Q has only local 
knowledge of the connectivity graph (e.g., it knows its neighbors). 

In order to examine how the pool motion rule presented in Section 3.3 can 
decrease the total expected address configuration time, let us take a look at 
Figure 4. Pool Q is located at node nu and it has to decide whether it should 
move to an other neighboring node. It can be seen that two address requests 
have arrived in total from nodes n, and nd, and three requests from node nt, 
during the examined time period. In this case pool Q can be placed at a more 
optimal position by moving it from node n, to node nb. This movement is 
done according to the motion rule of the SAMSON protocol. 

We can draw a general conclusion from the observation presented in the 
previous paragraph. 

Theorem 1 (The SAMSON moving rule is optimal). Let us name with N(n,) 
the set of the neighboring nodes of node nu. Furthermore let us depict with 
K (n,, n, ) the expected number of arriving requests to node n, through the link 
between nodes ni and nu, and with E(n,) = 1 . P(Ru = I) the expected 
number of requests directly arriving to node n,. In addition, let us suppose that 
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node n, is the carrier node of pool Q. If there is a node no E N(n,)  for which 
the 

K(nb, n a )  > E ( n a )  + x K(n , ,  n o )  (4) 
n , E N ( n , , )  n,#ni,  

inequality stands, then the 
T ( n 0 )  > T(nb)  (5) 

inequality stands as well. This means that in this case the total expected con- 
3guration time of the joining nodes over the whole network can be minimized 
by moving the pool Q froin node n, to node no. By replacing its location 
to node nb, the total expected address configuration time of the joining nodes 
over the whole network will be decreased 
Proof: Let us depict with B the set of nodes which are sending their requests 
to n, through node nb (including node no). Then: 

T ( n a )  = (2 T f u  d ( n j , n a )  + T S W )  E ( n l )  
n, €~\'\(Bu{n,, }I 

(6) 
+ C 2 ~ f ,  (d (nJ  nb) + 1 )  E ( n J )  + C T s e r u  E ( n j )  + E(n,) Tser, 

n l E B  n , € B  

T(nb)  i x 2  T f l L  ( d ( n 3 , n a )  + 1) E ( n j )  + x y s e r ?  E(n , )  
nJ € N \ ( B u ( n , i )  n J € ~ V \ ( B ~ { 7 h } )  

(7) + x ( 2  T j ,  d(n, ,nb)  + T s e r t )  E(n,)  + E(na)  ( 2 T l ,  + T,ei-,I 
n , E B  

The inequality 7 is true since there may be some nodes that are connected 
directly to nodes r l ,  and n b  as well. Thus, it is enough to see the following: 

And this is just another form of inequality 4, since the left side of the inequality 
expresses the expected number of configuration requests that are sent to n, but 
not through no, while the right side is the number of requests arriving at n, 
through node n h  including the address requests addressed directly to nb. So, 
taking into account that 

x E(n,)  = K(nb,  na) ,  and x E ( n 3 )  = x K ( n , , n a )  (10) 
n J t B  n, E N \ ( B u { n , , } )  n ,  € N ( n , , ) , n ,  # 7 % ~  

we get the inequality 4, which was the starting point. Thus, the theorem is 
proven, i.e., the total expected address configuration time always decreases 
when the pool moves based on the proposed moving algorithm. 0 
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5. Conclusion 
In this paper we have presented the SAMSON address distribution protocol 

which is able to assign unique identifiers to nodes in a self-organizing net- 
work. We have highlighted some limitations of existing address distribution 
approaches, and we incorporated the lessons learnt to our novel mechanism. 
The proposed solution is highly distributed and is able to handle network par- 
titioning and merger. The presented protocol can cope with multiple joins at 
the same time and tolerates message losses and link failures. Furthermore, the 
described method comes up with a unique feature among ad hoc address distri- 
bution protocols: it can adapt to the node arrival intensity distributed in space. 
Thus, it is able to provide low configuration time for newly arriving nodes, 
even in case of a large number of participants in the network. 
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