
SAMSON: SMART ADDRESS MANAGEMENT IN
SELF-ORGANIZING NETWORKS

Kristof Fodor, Daniel Krupp, Gergely Biczok, Janos L. Gerevich,
Krisztian Sugar
Department of Telecommunications and Media Informatics
Budapest University of Technology and Economics
Magyar Tuddsok krt. 2., 11 17 Budapest, Hungary

{fodork,dkrupp,biczok)@tmit,bmeehu, {gj198,sk335)@hszk.bme.hu

Abstract In this paper we present the SAMSON (Smart Address Management in Self-
Organizing Networks) protocol, which is a simple and effective solution for as-
signing unique addresses to nodes of a MANET. Our protocol reduces the con-
figuration time of arriving nodes by optimizing the number of configuration mes-
sages and the number of hops the configuration messages have to pass through.
Furthermore, SAMSON handles the merger and partitioning of networks effi-
ciently.

Keywords: ad hoc network, auto address configuration, distributed algorithm

1. Introduction

Nodes in a mobile ad hoc network (MANET) usually use short range wire-
less connections for connecting to each other, thus a data packet may have
to travel through several hops to reach the destination party. Topology in
these so-called multihop networks is rapidly changing due to the movement
of the nodes, moreover, the set of devices participating in the communica-
tion is not permanent. These MANETs are independent from any pre-installed
network infrastructure and may be formed by a group of mobile nodes sponta-
neously. Any node can leave the network at will, sometimes without inform-
ing the other participants about its departure. The multihop packet delivery
between two parties can be based on any routing protocol specially designed
for networks with dynamically changing topology (e.g., DSDV [Perkins and
Bhagwat, 19941, AODV [Perkins and Royer, 19991, DSR [Johnson and Maltz,
19961).

Although routing protocols are able to find the multihop route between any
pair of nodes, they all assume that every device taking part in the commu-

286 K. Fodor, D. Kmpp, G. Biczdk, J. L. Gerevich, K. Sugcir

nication owns a unique address. Thus, neither of these solutions deals with
the question how the parties should obtain the unique identifiers. In managed
IP-based fix networks a widespread solution is to set up a Dynamic Host Con-
figuration Protocol (DHCP) [Droms, 19971 server, which returns unique and
unused network identifiers on request. This and similar centrally managed
approaches are not applicable in MANETs due to the fact that spontaneous
networks lack any pre-installed and always available infrastructure.

Several address distribution solutions for MANETs exist, however they are
either not scalable enough, or rather communication resource consuming. This
paper describes a distributed protocol, which is able to configure a unique ad-
dress for a newly joining node by optimizing the needed resources, and above
that, it is capable of handling the partitioning and merger of separate MANETs.
Our solution accomplishes these tasks without overloading the network burst-
fully, which makes the solution very well scalable over large MANETs. An
often neglected but rather important issue is the fault tolerance of the address
distribution system. It is expected that the system should continue working
properly in case of any kind of failure on behalf of any node. The protocol pre-
sented in this paper successfully deals with these situations and manages the
available address space in a way that no (permanent) address loss may occur
in case of any participant's failure.

The remainder of the paper is organized as follows. Section 2 outlines the
different concepts of address distribution mechanisms for MANETs by catego-
rizing them, moreover presents the most important existing solutions. Section
3 describes our address distribution protocol, and Section 4 analyzes the opti-
mization of the configuration time elapsed when assigning a unique address to
a newly arrived node. Finally, Section 5 concludes the paper.

2. Related Work

Considering the address space, the existing address distribution mechanisms
can be grouped into two categories based on the length of the addresses. The
first category consists of distribution mechanisms that use fixed length ad-
dresses, while the mechanisms in the second category deal with variable length
addresses. By using a mechanism belonging to the former category, the length
of the addresses should be chosen carefully, so that all nodes in the network can
obtain a unique address. If the address space turns out to be too small, there is
hardly any way to extend it in the future. However, fixed length addresses have
the advantage that they can be handled easier than those of variable length.

The largely different way of treating the address space leads to different
optimization goals and difficulties. In both cases the address space can be rep-
resented as a binary tree, where the leaves of the tree identify the assigned
addresses. Algorithms operating on non-fixed length addresses (e.g., [Boleng,

SAMSON: Smart Address Management in Self-organizing Networks 287

20021) try to keep the number of levels in the address tree as low as possible,
thus providing the shortest possible address length supposing a given number
of participants in the network. However, in the$xed-length case, the size of
the tree (and the address space) is predefined and the goal of the algorithms is
to assign a free leaf to each newly arriving node. At a first glance the latter
goal seems to be easily achievable, but consider that in MANETs any node
can leave the network at will without informing the others about its departure.
These so-called non-gracefill departures can lead to the address leakage phe-
nomenon, when the network is unable to detect that some addresses are not
engaged anymore. Of course, this may lead to significant shrinkage of the ad-
dress space after a certain amount of time. In the rest of the paper we will focus
on the fixed-address length approaches.

An other basis of categorizing the existing solutions is the manner they treat
the state of the address space. Those approaches where none of the participants
in the network maintain information about the reserved addresses are state-
less solutions, while the ones which make an effort to store a quasi up-to-date
version of the address space are called stateful solutions. It can be generally
claimed about the stateless solutions that there is no centrally or distributedly
stored knowledge of the address space. When a node is willing to join the
network, it has to agree on its candidate address with all the other-already
configured-parties. This is often done by flooding the network, which causes
burstful load on the network each time a node joins.

Other approaches, which are called stateful address distribution mechanisms,
store an up-to date state of the currently available addresses. These solutions
have to take care of address space maintenance continuously, which generates
a slight, but permanent traffic load. When designing such an algorithm, spe-
cial care has to be taken maintaining the address space, because inconsistent
states may lead to address leakage or, even worse, to dz/plicate addresses in the
network.

Stateful address distribution mechanisms usually provide faster address al-
location process than stateless ones, since the joining node does not have to
agree on its candidate address with all the nodes in the network, instead it
gets an address from a dedicated node. Very often a neighboring node-called
proxy-carries out the address allocation on behalf of the requesters, since this
neighboring node already has a valid address and adequate knowledge on the
network structure.

The task of address distribution mechanisms does not end at the configura-
tion of a newly joining node. Often a common demand is to handle the merger
and the separation of different MANETs, called networkpartitions. In the for-
mer case it should be prohibited that nodes with the same address participate
in the same partition, while in the latter case departed nodes should be identi-
fied and based on this information the partition should be reorganized. In order

288 K. Fodor, D. Krupp, G. Biczok, J. L. Geuevich, K. Sugar

to detect nodes with the same address, several Duplication Address Detection
(DAD) mechanisms were invented.

Many algorithms detect address collisions based on monitoring the packets
containing routing information. If collision detection used by the algorithm is
performed without sending extra messages, i.e., it is only based on observation,
the method is calledpassive duplicate address detection mechanism. Such so-
lutions were presented in [Weniger, 20031 and [Weniger, 20041. There may be
a stronger requirement toward the DAD mechanisms, which allow the parti-
tion merging processes to terminate only when there are no more nodes in the
merged partition with the same address. This requirement is called strong DAD
[Vaidya, 20021. Solutions fulfilling this requirement usually perform global
collision revealing mechanisms by flooding the detection packets through the
whole network.

One of the first decentralized address assigning protocols was presented in
[Cheshire et al., 20041 by the IETF (Internet Engineering Task Force) Zero-
conf Working Group. The solution is based on the IP addressing scheme and
assumes link-local connections between all parties, which means that all link-
level broadcasts have to reach all nodes in the network. Thus, this restriction
makes the solution directly unapplicable in MANETs where the communicat-
ing nodes may be in multihop distance from each other. Despite of this fact,
the solution became the basis of several stateless approaches developed in the
past few years.

Among others, the solution presented in [Nesargi and Prakash, 20021 is also
based on the idea of the Zeroconf Working Group. It introduces a so-called
soft state maintenance mechanism, which makes it possible to serve multiple
join requests at the same time. Each node in the network maintains an array for
the allocated addresses and an other one for addresses under allocation (pend-
ing addresses). Each device wishing to join the network, randomly chooses a
candidate identifier and sends it to a neighboring proxy node, which already
possesses a valid address. The proxy then floods the network with the address
request including the chosen random address and waits for the replies. A node
in the partition can only send back a positive acknowledgement for the request
if it does not consider the requested address as allocated or as being under al-
location. If the proxy node has received positive acknowledgements from all
parties, then it assigns the candidate address to the joining node. The solu-
tion applies message flooding each time a node joins, which causes bursts in
the network load. The protocol is simple and applicable in small MANETs,
though the mentioned undesirable property makes it non-scalable over larger
networks.

Although, the solutions described in [Cheshire et al., 20041 and [Nesargi and
Prakash, 20021 differ in terms of the amount of information the nodes have to
store about the address space, both methods use only premature techniques and

SAMSON: Smart Address Management in Self-organizing Networks 289

explicit messages to avoid address collisions. In addition, configuration of a
node takes a lot of time in both cases. The Weak Duplicate Address Detec-
tion [Vaidya, 20021 mechanism solves this latter weakness. It allows duplicate
addresses in a network as long as every packet is routed to the right party.
The joining nodes simply choose themselves an identifier (e.g., based on their
MAC addresses) and they start using it, without checking whether the chosen
address is already used by another node. As soon as an address conflict arises,
the duplication of the concerned address has to be resolved immediately.

There is a group of address distribution mechanisms, where the state of
the assigned addresses is registered in some way. For example, in the Self-
Organising Node Address Management (SONAM) solution [Toner and O'Maho-
ny, 20031, a special node is responsible for assigning addresses to newly arriv-
ing nodes. Whenever a node requests an address, the newly arriving node
receives-in addition to the address-a list of assigned addresses and the ver-
sion number of the returned list, moreover it becomes the new special node.
If the actual special node disconnects from the network, the new special node
will be the node with the highest list version number.

Another possible way for obtaining an address is presented in [Zhou et al.,
20031. Each already configured node in the Prophet system possesses an f(n)
function with a seed and a state. New addresses are generated based on these.
If a node knows the default seed and the default state used in the network, then
it can foretell which addresses will conflict when merging its network with
another one.

3. SAMSON

3.1 Basic structure

The highest priority design goals of the Smart Address Management in Self
Organizing Networks (SAMSON) protocol are the balanced control traffic load
and the short address configuration time. Thus, it is a stateful protocol, able
to handle the joining of nodes quickly and efficiently by adapting to the high
amount of address requests concentrated to certain parts of the network.

The SAMSON protocol divides the available address space of the network
partition into equal disjoint ranges. Each of these ranges is assigned to a so-
calledpool. Thus, each pool represents an address range and is responsible for
managing the addresses of the given address range. The pools are scattered
throughout the whole partition and are usually located at those nodes where
unique addresses can be assigned to newly joining nodes in the shortest time in
average. The nodes where the pools are located at are called carrier nodes. A
pool is not bound to a certain carrier node: it can move from a carrier node to
another if it detects that the address requests could be served more efficiently
(in terms of total expectable address configuration time) by being located at

290 K. Fodor, D. Kvupp, G. Biczok, J. L. Gerevich, K. Sugar

another node. Thus, every node in the partition can turn into a carrier node
anytime. There is also no restriction on the number of pools that can be carried
by a single carrier node at the same time.

Each pool can be uniquely identified by its managed address range, however,
since the address ranges are equal, it is enough to identify a pool with the first
address of the address range assigned to it. Sometimes it is desirable to treat a
pool like a node (e.g., in case of sending an address request to it), therefore the
first address of the address range is reserved for the pool itself. This way pools
become virtual nodes and can be addressed by any node of the partition.

The network partition is initialized by a so-called initiator node. This node
has to define the NETID, which is the unique identifier of the network parti-
tion. This identifier may be chosen by considering the lately observed network
identifiers. A new pool is to be created at partition initialization time, or upon
detecting that the address space of a pool will be exhausted soon due to the
large number of configuration requests. This prediction is always to be made
by the pools. In addition, a new pool must be generated when a network par-
tition has been divided into two partitions in a way that no free addresses have
remained in one of the partitions.

The pools are free to move in the network. Each pool chooses its next carrier
node based on the frequency of address requests coming from different parts
of the network. In order to measure the frequency of address requests we a
defined a metric, which is used by the pool movement algorithm.

3.2 Joining process of a new node

A newly joining node can obtain a unique address by asking one of its neigh-
bors for help in the address claiming process. This neighbor will be the proxy
node of the joining node. The selection of such a proxy node is necessary,
since during the address request process the joining node does not own any
legal address that can be used in the MANET, only a link-layer address (MAC
address), which can only be used to communicate with nodes in one-hop dis-
tance.

At first, the joining node a broadcasts a H E L L O - R E Q to discover its
neighbors among its link-layer neighbors (Figure 1). After the reception of
the replies sent in answer to the request, node (L chooses one of its replying
neighbors to be its proxy node during the address allocation. Then node a asks
its chosen proxy node p to request a valid address from a pool in the network.
If node a has a desired address it wants to get (for instance it used this address
last time it joined the network), then node a includes the demanded address in
the message sent to the proxy node. The proxy then sends an address request to
the closest pool (0) . If the request includes a desired address, pool 0 checks
the engagement of this address at pool C, which is the responsible pool for

SAIMSON: Smart Address Management i77 Self-Oigcmizing Networks 291

the required address. Otherwise, if there is no address desire included in the
request, pool 0 allocates its first free address for the joining node and returns it
to the proxy node. The proxy node forwards the ready-to-use address to node
a using node a's MAC address.

node a ncde e a0010

Figure I . A new node joins the network Figwe 2. Keeping in touch with the pool

The closest pool can always be found at the special address 0. Thus, in
addition to the first address of the address range assigned to a pool, each pool
allocates itself a second address as well: a special address we named 0. This
of course leads to address collisions, however, in the case of SAMSON it is
allowed to have more of this special address in the network at the same time.
These address conflicts do not have to be resolved. This way every address
request packet sent to the address 0 is automatically delivered to the closest
pool, issespectively of the underlying routing protocol.

3.3 Wandering process of pools

Finding a good motion algorithm for pools is extremely important. If the
pools are capable of moving to the areas where new addresses are requested
more frequently then they can minimize in average the total time necessary for
configuring addresses to arriving nodes. Finding these so-called hotspots is far
not an easy issue, because the place of the hotspots may change from time to
time with the changing of the anival interval of new nodes at certain parts of
the network. Moreover, the pools cannot have an up-to-date global howledge
about the topology of the network, except in case of certain kinds of underlying
routing protocols (link-state routing protocols [Clausen and Jacquet, 20031).
Since one of our design goals was to create a protocol which map operate over
any kind of ad hoc routing protocol, we designed an algorithm that doesn't
assume any lmowledge of the network topology.

Let us imagine a node n which carries a pool P. Pool P has to decide if it
stays at node a or moves to the neighboring node 13. In order to make a decision,
P continuously monitors the address requests coming from different link-local
neighbors of the carrier node or from the carrier node itself. Pool P increases
its corresponding counter when it receives an address request message from
one of the carrier node's neighbors or from the carrier node directly. Based
on these counters, pool P periodically makes a movement decision. If pool P

292 K. Fodor, D. Krupp, G. Biczdk, J. L. Gerevich, K. Sugar

finds that it received more address requests through the neighboring node b than
through its other neighbors and the carrier node in total, then pool P initiates a
pool transfer. In frame of this process the entire pool is transferred from node
a to node b. Following this rule the total expected address configuration time
always decreases. The proof of the statement will be presented in Section 4.

3.4 Maintaining the states of the addresses
Since the address management is operating in an ad hoc environment, the

protocol has to be fit for handling the sudden, non-graceful departures of the
nodes. If a node disappears from the network, its address should be assignable
again after a certain amount of time. The SAMSON protocol supports the
detection of node losses at two levels. First, every pool continuously checks
whether the nodes whose addresses are from the address space of the given
pool are still present. Second, the pools continuously check the availability of
the other pools.

After getting an address from a pool, every node has to send so-called heart-
beat messages (NODE-HB) periodically to the pool from which it has ob-
tained the address from. This procedure can be seen on Figure 2. If a pool
has not received a NODE-HB message from a corresponding node for a long
time, then it requests a presence signal from the node. If the addressed node
fails to answer this warning, then the node is regarded as detached from the
partition, so the address of this node is set as free and ready to be redistributed.

It may also happen that a carrier node leaves the network without informing
the other nodes. In this case not only the address of the departed carrier node,
but also the carried pools should be retrieved. As described previously, the
pools continuously check the presence of others. Each pool-except the first
one-sends a so-called keepalive message (POOL-HB) to the pool which is
just inferior in the order of the represented address space. The first node in the
order sends the keepalive message to the last pool, thus the pools form a ring
to check their availability. This way the departure of a pool can be detected by
its successor pool, i.e. by the pool whose address range is the continuation of
the address range of the disappeared pool.

If a pool realizes that a predecessor pool has left the network, then it has
to regenerate the lost pool. First, the successor pool reallocates the given pool
by reserving the concerned address space. Then, it immediately freezes the
address space (no address can be assigned from this address space) and waits
for N O D E - H B messages. Since the regenerated pool has the same address
as the lost one, fbrthermore the new location of the pool is propagated by
the routing mechanism, the nodes that have an address from the concerned
address space can send their heartbeat messages to the pool without noticing
the regeneration. Thus, after a while the regenerated pool will be aware of the

SAMSON: Smart Addvess Management in Self-Organizing Networks 293

assigned addresses and therefore it can lift the blocking of the address space.
From that time on the unused addresses of the pool can be assigned to newly
joining nodes again. In this way the recovery period is directly proportional to
the frequency of sending NODE-HB messages.

If two or more successive pools leave the network at the same time without
informing the others, then they are recovered step-by-step: first the one which
is the highest in the pool order, and finally the one which is the last in that order.
Considering the fact, that neither the address reclaiming, nor the pool recov-
ery processes are time critical, then the ratio of the period of the POOLHB
messages to the period of the NODE-HB messages may be chosen relatively
big.

In case of losing all pools, the nodes must start to form a new partition.

3.5 Pool generation and deletion

As described previously, a pool can be generated in the partition initializa-
tion phase, moreover when a pool determines that its address space will be
soon exhausted, or when there is no pool left in a partition after splitting up
the original partition. In the first and third case the creator of the new pool is
an arbitrary node, which noticed the absence of the pools by not reaching any
virtual node at the special address 0. The node can simply generate the first
pool in the order, i.e. the pool with the lowest addresses of the whole address
space. In the second case, when there are already some pools in the network,
the pool which detects the depletion of the free addresses has to send a pool
request to the highest pool in the order. This so-called chiefpool is responsible
to generate a new pool and pass it to the requester. Moreover, if the new pool
has addresses in a higher range than the current chief pool, then the new pool
takes the role of the chief pool, and all the pools have to be informed about
this. This way, two or more identical pools cannot be created at the same time.

Pools can be deleted if all the belonging addresses become free. If a pool
detects that this is the case, the pool starts to delete itself. First, it sends a
message to the chief pool indicating that the pool will be deleted and can be
assigned to another nodes. Then, it sends an indication message to the first
existing successor pool (it may happen that one or more successor pools are
already deleted). After that, the pool destroys itself and the successor pool
periodically informs the chief pool about the free pools it knows (at least this
one). From now on, the successor pool sends the POOLHB messages to the
predecessor pool of the deleted pool. This way, the actual chief pool is always
aware of the deleted pools, so it can reuse them, moreover the pool ring is kept
alive.

294 K. Fodor, D. Kvupp, G. Biczdk, J. L. Gerevich, K. Sugcir

3.6 Merging two partitions

When a node detects the presence of an other network partition (e.g., it
receives a HELLO message containing a different NETID than its own par-
tition), then it has to report this event to its pool. The pool that receives this
notification has to forward the message to the chief pool, which then decides
whether to merge the two partitions or not. If the decision is to merge the net-
works, then the chief pool sets up a tunnel to one of the nodes that noticed the
presence of the other network. This node is called bridge node. Moreover, the
chief pool instructs the bridge node to establish a bridge to a randomly selected
neighboring node from the other partition. After that, the concerned bridge
node in the other network will inform the chief pool in it's network (via a pool)
about the established bridge and a tunnel will be set up between the chief pool
and the bridge node in this network as well. From now on the two chief pools
can communicate with each other through the tunnel-bridge-tunnel connec-
tion. Of course, it may happen that two tunnel-bridge-tunnel connections are
established in parallel. In this case the chief pools have to agree which one to
use.

After establishing the connection between the two chief pools, the chief
pools have to agree on a new network identifier, furthermore they have to re-
solve the address conflicts. This latter task is done in one or two steps. First,
they try to shift the address ranges of the pools to eliminate the duplicate ad-
dresses. Then, if the former step was not successful, i.e., in total there are
more pools than the length of the address space divided by the length of one
address block, then the corresponding pools have to harmonize the addresses
they assigned to the nodes.

As it can be seen on Figure 3 the proximity of Partition 2 was detected by
node 48, which informed the chief pool 45 through pool 9. Therefore chief
pool 45 built up a tunnel to node 48, node 48 set up a bridge to node 76, and
then another tunnel was built up between bridge node 76 and the chief pool 80
in Partition I by the aid of the pool located at node 40 (for locating the chief
pool).

3.7 Dividing a partition

Partitions may be divided at any time without any prior indication. Thus, we
designed the SAMSON protocol to be capable of reorganizing a partition in
case it splits up into several disjoint partitions. The reorganization function is
based on the pool recovery mechanism. Whenever a pool has to be regenerated,
the presence of the chief pool has to be checked. If it is not available any more,
then the network may be divided into two or more partitions. Therefore the new
chief pool (which is automatically restored) in each new partition generates a
new network identifier and floods it in the network partition. If there is no pool

SAMSON: Smart Address Manc(gement in Self-organizing Nehvorlis

Figure 3. Merging of two partitions I j i g z m 4. A sample situation of pool mo-
tion

remaining in a group of disconnected nodes, then the first node (a) that realizes
the loss of the pools starts to form a new partition by creating a pool (the first
one in the partition). The other nodes can then connect to this partition directly
by requesting a new address or by forming a new partition and merging it to
the partition set up by node a.

4. Analyzing the pool motion

Finding a good motion algorithm for pools is a relevant issue, since pools
located at proper places (close to the hotspots) can keep the communication
of the address claiming processes local, thus avoiding high traffic loads in the
network. Furthermore, a good motion algorithm can reduce the average con-
figuration time of newly arriving nodes.

To be able to examine the problem formally. let us assume the following.
Let us take an AT set of nodes and associate an R, variate to its every n, E 1V
element. Among the IN1 = n element node set there is one Q pool, which han-
dles every address claims, R, variate indicates the number of address requests
sent by node n, (which is a proxy node in such a case) to the pool in one time
slot. If we make the simplification, that during a time slot none of the newly
configured nodes can configure another node, we can state the following about
the expected configtiration time for node n, (T,) in one time slot when the pool
is located at node np:

where constant Tf,, is the average forwarding time of a message from one
neighbor to the other, d (n , , np) is the distance in hops between the proxy node

296 K. Fodor, D. Krupp, G. Biczdk, J. L. Gevevich, K. Sztgav

ni and pool Q that is located at n,. Constant T,,,., stands for the average
service time of a request, and P (R i = I) indicates the probability that I address
requests arrived during the time slot. According to equation 1, the expected
configuration time for node ni can be smaller only if the d (n i , sn,) distance is
smaller.

The total expected conzguration time (T) is the sum of Tis over the whole
network. Thus, the total expected configuration time is

supposed that Q is located at node n,. SO, the goal is to find the node ,np
(or one of them, if two or more nodes exist) that is the best carrier node for
the pool Q in order to minimize the total expected configuration time in the
network. The total expected configuration time is the following if the pool is
at an optimal location:

Let us call nOpt the node where T(noPt) = Tmin, i.e. which is at the optimal
position. Finding this nOpt node is possible if the whole connectivity graph
of the network is known. In this case, the optimal position can be calculated
with an 0(sn3) algorithm, since the problem can be transformed to a similar
problem, which is about finding the centrum of a graph. However, knowing
the total connectivity graph of a network without sending explicit messages
is possible only if the routing mechanism is a link-state protocol. Since it
was among the design goals of the SAMSON protocol that the mechanism
should work over any routing protocol, we supposed that pool Q has only local
knowledge of the connectivity graph (e.g., it knows its neighbors).

In order to examine how the pool motion rule presented in Section 3.3 can
decrease the total expected address configuration time, let us take a look at
Figure 4. Pool Q is located at node nu and it has to decide whether it should
move to an other neighboring node. It can be seen that two address requests
have arrived in total from nodes n, and nd, and three requests from node nt,
during the examined time period. In this case pool Q can be placed at a more
optimal position by moving it from node n, to node nb. This movement is
done according to the motion rule of the SAMSON protocol.

We can draw a general conclusion from the observation presented in the
previous paragraph.

Theorem 1 (The SAMSON moving rule is optimal). Let us name with N(n,)
the set of the neighboring nodes of node nu. Furthermore let us depict with
K (n,, n,) the expected number of arriving requests to node n, through the link
between nodes ni and nu, and with E(n,) = 1 . P(Ru = I) the expected
number of requests directly arriving to node n,. In addition, let us suppose that

SAMSON: Smart Address Management in Self-organizing Networks 297

node n, is the carrier node of pool Q. If there is a node no E N(n,) for which
the

K(nb, n a) > E (n a) + x K(n , , n o) (4)
n , E N (n , ,) n,#ni,

inequality stands, then the
T (n 0) > T(nb) (5)

inequality stands as well. This means that in this case the total expected con-
3guration time of the joining nodes over the whole network can be minimized
by moving the pool Q froin node n, to node no. By replacing its location
to node nb, the total expected address configuration time of the joining nodes
over the whole network will be decreased
Proof: Let us depict with B the set of nodes which are sending their requests
to n, through node nb (including node no). Then:

T (n a) = (2 T f u d (n j , n a) + T S W) E (n l)
n, €~\'\(Bu{n,, }I

(6)
+ C 2 ~ f , (d (nJ nb) + 1) E (n J) + C T s e r u E (n j) + E(n,) Tser,

n l E B n , € B

T(nb) i x 2 T f l L (d (n 3 , n a) + 1) E (n j) + x y s e r ? E(n ,)
nJ € N \ (B u (n , i) n J € ~ V \ (B ~ { 7 h })

(7) + x (2 T j , d(n, ,nb) + T s e r t) E(n,) + E(na) (2 T l , + T,ei-,I
n , E B

The inequality 7 is true since there may be some nodes that are connected
directly to nodes r l , and n b as well. Thus, it is enough to see the following:

And this is just another form of inequality 4, since the left side of the inequality
expresses the expected number of configuration requests that are sent to n, but
not through no, while the right side is the number of requests arriving at n,
through node n h including the address requests addressed directly to nb. So,
taking into account that

x E(n,) = K(nb, na) , and x E (n 3) = x K (n , , n a) (10)
n J t B n, E N \ (B u { n , , }) n , € N (n , ,) , n , # 7 % ~

we get the inequality 4, which was the starting point. Thus, the theorem is
proven, i.e., the total expected address configuration time always decreases
when the pool moves based on the proposed moving algorithm. 0

298 K. Fodor, D. Krupp, G. Biczdk, J. L. Gerevich, K. Sugcir

5. Conclusion
In this paper we have presented the SAMSON address distribution protocol

which is able to assign unique identifiers to nodes in a self-organizing net-
work. We have highlighted some limitations of existing address distribution
approaches, and we incorporated the lessons learnt to our novel mechanism.
The proposed solution is highly distributed and is able to handle network par-
titioning and merger. The presented protocol can cope with multiple joins at
the same time and tolerates message losses and link failures. Furthermore, the
described method comes up with a unique feature among ad hoc address distri-
bution protocols: it can adapt to the node arrival intensity distributed in space.
Thus, it is able to provide low configuration time for newly arriving nodes,
even in case of a large number of participants in the network.

References
Boleng, Jeff (2002). Eficient Network Layer Addressing for Mobile Ad Hoc Networks. In Proc.

oflnternational Conference on Wireless Networh (ICWN02).
Cheshire, Stuart, Aboba. Bernard, and Guttman, Erik (2004). Dynamic Configuration of IPv4

Link-Local Addresses. IETF Internet Draft.
Clausen, Thomas and Jacquet, Philippe (2003). Optimized link state routing protocol. IETF

Internet Draft.
Droms, Ralph (1997). Dynamic Host Configuration Protocol. RFC 2131.
Johnson, David B and Maltz, David A (1996). Dynamic source routing in ad hoc wireless net-

works. In Mobile Computing, volume 353. Kluwer Academic Publishers.
Nesargi, Sanket and Prakash. Ravi (2002). MANETconf: Configuration of Hosts in a Mobile

Ad Hoc Network. In Proc. of INFOCOM 2002.
Perkins, Charles and Bhagwat, P. (1994). Routing over Multihop Wireless Network of Mobile

Computers. In SIGCOMM '94: Computer Comm~~nications Review,, pages 234-244.
Perkins, Charles and Royer, Elizabeth (1999). Ad Hoc On-Demand Distance Vector Routing.

In Proc. of the 2nd IEEE Workshop on Mobile Coinptcting Systems and Applications, pages
90-100.

Toner, Stephen and O'Mahony, Donal (2003). Self-Organising Node Address Management in
Ad Hoc Networks. In Personal Wireless Communications, IFP-TC6 8th International Con-
,ference, volume 2775, pages 476483.

Vaidya, Nitin H. (2002). Weak Duplicate Address Detection in Mobile Ad hoc Networks. In
Proc. of the 3rdACMinternational symposium on Mobile ad hoc networking and computing
(MobiHoc '021, pages 206-216. ACM Press.

Weniger, Kilian (2003). Passive Duplicate Address Detection in Mobile Ad hoc Networks. In
Proc. of IEEE Wireless Comm~inications and Networking Conference (WCNC) 2003.

Weniger, Kilian (2004). Passive Autoconfiguration of Mobile Ad hoc Networks. Technical re-
port.

Zhou, H., Ni, L., and Mutka, M. (2003). Prophet Address Allocation for Large Scale MANETs.
In Proc. ofINFOCOM2003.

