
A HIERARCHICAL RELEASE CONTROL
POLICY FRAMEWORK

Chao Yao"̂ , William H. Winsborough-^ and Sushil Jajodia-^,^
Center for Secure Information Systems, George Mason University, Fairfax, VA 22030-

'^The MITRE Corporation, 7515 Colshire Dr. Mclean, VA 22102-7508

cyaoOgmu.edu, wwinsboroughOacm.org and jajodiaOmitre.org

Abstract With increasing information exchange within and between organiza­
tions, it becomes increasingly unsatisfactory to depend solely on access
control to meet confidentiality and other security needs. To better sup­
port the regulation of information flow, this paper presents a release
control framework founded on a logical language. Release policies can
be specified in a hierarchical manner, in the sense that each user, group,
division and organization can specify their own policies, and these are
combined by the framework in a manner that enables flexibility within
the context of management oversight and regulation. In addition, the
language can be used naturally to specify associated provisions (actions
that must be undertaken before the release is permitted) and obligations
(actions that are agreed will be taken after the release).

This paper also addresses issues arising due to the fact that a data
object can be released from one entity to another in sequence, along a
release path. We show how to test whether a given release specification
satisfies given constraints on the release paths it authorizes. We also
show how to find the best release paths from release specifications, based
on weights specified by users. The factors affecting weights include the
subjects through which a path passes, as well as the provisions and
obligations that must be met to authorize each step in the path.

Keywords: Policy; Release Control; Access Control

Introduction
There are increasing needs for collaboration between organizations.

In order to cooperate on common tasks, organizations need to release
data that are not normally made available externally. For example, a
hospital needs to release individual medical records to another institute
to facilitate medical research. Such data release might compromise or-

122 A Hierarchical Release Control Policy Framework

ganizational confidentiality or personal privacy. Release control systems
offer a means to regulate such data release.

The principle of release control is already in common use. When an
organization publishes documents, its security officers may manually ver­
ify it does not contain sensitive information. The process is automated
in some network firewalls. By including application-level inspection, a
network firewall can use a "dirty-word" list to identify and intercept
sensitive objects. No matter which release control mechanisms organi­
zations use, they need to specify release policies.

Release control can often better manage information-flow than can
access control. Once data is retrieved from a controlled data source,
access control no longer assists in regulating its further dissemination.
By contrast, as long as the data remains within a release-controlled
environment, its further propagation can be regulated through release
control.

This paper is concerned with how to specify release policies. We bor­
row some techniques introduced for use in access control, which regulates
the direct access of users to data. However, we adapt those techniques
and introduce new ones for use in release control. This is necessary
because of the following three characteristics of data release that distin­
guish it from access control.

First, the role of the sender is instrumental. Different senders should
have different privileges. Many senders may be permitted to release
objects that are routinely made available to the receiver; however, it may
be important to permit certain subjects to release objects to receivers
that are normally not permitted to receive them. For example, a project
leader may be permitted to send a project report to a customer, while
ordinary project team members may not.

Second, while a pohcy may not allow a data object to be passed
directly from one user s to another r, there could nevertheless exist a
path composed of legal releases though which the object could be passed
from s to r. A release control policy should be able to regulate such
release paths; this would not be a meaningful objective for an access
control policy.

Third, subjects and sensitive data typically belong to units within
an organization. Thus, each unit has its own domain comprising data
and users over which it should have some control. For example, an
accounting department may own sensitive financial data and should be
able to control to whom those data can be released. On the other hand,
higher authorities within the organization should be able to override or
otherwise compose the policies of lower authorities, although they are not
concerned about most of the details of policies of the lower authorities.

A Hierarchical Release Control Policy Framework 123

For example, the accounting department could have policies that permit
expense reports to be sent to all employees within the organization, while
the organization director's policy stipulates that certain reports can be
sent only to a few members of upper management; obviously, the policies
of the organization should be able to override those of the accounting
department.

Based on the above observations, this paper presents a hierarchical
release control policy framework. We introduce a logical language that
allows users to specify release policies in a flexible and hierarchical man­
ner.

A novel feature of our framework is that it combines subpolicies de­
fined by various authorities within an organization. That is, each unit
defines its own subpolicies and these are then combined in a hierarchi­
cal manner. For instance, the policies of an organization can be formed
by composing the policies of the departments in the organization in a
specified way. We show that this hierarchical composition of policies can
easily be expressed with our logical language.

When users specify release policies, they should be able to use not
only positive authorizations, but also negative authorizations (prohibi­
tions). For example, a dirty-word list in a firewall is a kind of negative
authorization. Release control systems should be able to support both
negative and positive authorizations, and to resolve any confiicts that
arise between them. They should also be able to define flexibly whether
or not to release when no specific authorizations or prohibitions apply
(called the decision policy). By borrowing techniques introduced by Ja-
jodia et al. [JSSSOl] for access control, our framework allows specifying
both positive and negative release authorizations and incorporates no­
tions of authorization derivation, conflict resolution, and decision policy.

Often certain actions must be performed as a condition of release.
Such actions are called provisions if they must be performed before
release and obligations if they must be performed at some time after
release. Sender provisions and sender obligations must be undertaken
by the sender and receiver provisions and receiver obligations^ by the
receiver. Example sender provisions could include generating a log en­
try and attaching a copyright notice, a disclaimer, or a watermark to
the released data; a sender obligation might be to transmit a follow-up
customer-satisfaction survey form in 3 days; a receiver provision could
be to present certain (additional) credentials; a receiver obligation could
be to delete released data after 3 days. Our extended framework allows
users to specify provisions and obligations in association with release
control policy.

124 A Hierarchical Release Control Policy Framework

When an object is released to one receiver, one of the things that
the receiver can potentially do with it is to release it further. We solve
two problems related to such release paths. Sometimes confidentiality
requires that certain release paths not be authorized. In this case, we
need a way to detect them so that they can be blocked. On the other
hand, a user may wish to discover legal paths that could be used to
achieve a desired release. For the former purpose, our language allows
defining policies to block undesired release paths. We show how to check
whether such paths exist, enabling policy administrators to ensure they
do not commit policy changes that permit illegal paths. For the latter
purpose, we allow users to define weight functions associated with release
paths based on various factors, and we show how to find the best release
paths based on the assigned weights.

The paper is organized as follows. Section 1 gives an overview of
our framework. Section 2 introduces the basic framework and language,
and then extends them to support propagations and obligations. Sec­
tion 3 presents technique for efficiently evaluating our policies. Section 4
discusses related work and Section 5 concludes.

1. System Architecture and Framework
Overview

In this section, we first present system architectures for release control
to understand the context in which release policies are applied. Then
we overview the important components of the policy framework.

Sender Data

1
Data Object

Identification

Subject
Authentication

Enforcement

Data Receiver

^ I

History Log

t
Policy Store

PC PC

(a) General system architecture of release (b) Hierarchical release control system
control

Figure 1. System Architecture

A Hierarchical Release Control Policy Framework 125

1.1 System architecture
One general system architecture for release control is as shown in

Figure 1(a). There is a filter-like enforcement point that intercepts
each message that a sender attempts to release to a receiver. It in­
vokes object-identification and subject-authentication components, and
queries the policy store to determine whether the release is authorized.
In an alternative architecture (not shown), the enforcement point does
not actively intercept the messages, but passively responds to release
queries and issues a permit token when the data release is authorized.

In some environments, sensitive data are distributed over an organi­
zation that consists of hierarchically organized units. A release control
system in such an organization could be composed of smaller release con­
trol subsystems that correspond to the organizational units, as shown in
Figure 1(b). Similarly, each unit may have a stake in the definition of
poHcy. Thus, whether or not actual enforcement is distributed, it may
be necessary to gather pohcy components that are defined in a distrib­
uted manner, so as to assemble the complete policy of the organization
that is to be enforced consistently throughout.

1.2 Subjects and objects
Subjects in our framework can act as senders and as receivers. Sub­

jects can be users, groups, or roles. In most applications, subjects and
objects are organized into hierarchies. Policies are specified to explicitly
authorize the release of an object o from sender s to receiver r. Implicit
authorizations can be derived from these explicit authorizations in the
usual manner by propagating them down the hierarchies. Such propaga­
tion enables higher entities in the hierarchy to generalize lower entities.
Since we allow negative authorizations, confiicts may occur between de­
rived authorizations. The policies used to resolve such conflicts can be
specified using our language.

1.3 Policy authority
Policies in our framework consist of logic programs that define certain

predicates used by the release control system. Many policy authori­
ties contribute clauses. There are two kinds of predicate symbols in
our language, authority predicates and global predicates. Each authority
predicate belongs to a specified authority, and is denoted by an au­
thority name followed by a predicate name, separated by a dot. Thus,
our framework deviates from standard logic in that authority predicate
symbols are structured (pairs). Authority can be looked upon as an

126 A Hierarchical Release Control Policy Framework

administrator role that has the privileges to manage the policies of the
corresponding organizational unit. Each release control system has its
authorities organized in a hierarchy that has a single topmost author­
ity, denoted a^. This hierarchy usually resembles the structure of the
organization. Only administrators associated with authority a can con­
tribute or modify clauses that define the predicates of a. The body of
such a clause can contain predicates of other authorities that are lower
in the authority hierarchy than a, as well as global predicates, which are
discussed in the following paragraph. The release decisions are deter­
mined by predicates of the topmost authority. This gives the topmost
authority ultimate control over release decisions.

Global predicates are used to represent the object and subject hier­
archies, as well as the association of subjects and objects with certain
authorities. They are defined globally by the organization, rather than
being associated with a particular authority. By contrast with authority
predicates, global predicates are standard predicate symbols in the sense
of being unstructured individuals.

Acct Authority

acct.canrls{expenseDoc,7nanager,org2,-^) <— .

acct.dercanrls(0, S, R, +) <— in{0, O'), acct.canrls{0\S, R, +)

acct.rls{OjS,R,+) <— acct.dercanrls{0, S, R,+)

acct.error -̂ - path{0, S, org3),in{0, expenseDoc)

Tech Authority

tech.canrls{docl, manager, org2,-{-) <— .

tech.rls(0, S, R, +) <— tech.canrls{0, 5, R, +)

Org Authority

org.rls{0,S,R,-\-) ^ acct.rls(0,S,R,-{-), tech.rls{0,S,R,+),

in{0, expenseDoc)

org.rls{0,S,R,-) ^ ^org.rls{0,S,R,^)

Figure 2. An example for release policy specifications

EXAMPLE 1 Consider the clauses in Figure 2. There are three authori­
ties in an organization, acct (the accounting department), tech (the IT
department), and org (the whole organization). The topmost authority is
^T _ ^^g^ ji^g ß^^^ group of clauses are contributed by acct. The first of
these clauses says that manager can send the document type expenseDoc
to another organization org2. The second indicates that positive autho­
rizations propagate down the object hierarchy. The third makes acct's
final release decision from the derived authorizations. This will be inte-

A Hierarchical Release Control Policy Framework 127

grated below into the final decision for the system as a whole. The fourth
expresses an integrity constraint that no sender can transmit to org3 any
object dominated by expenseDoc via any sequence of release. (Valid re­
lease specifications dom not make a. error true for any authority a.) The
second group of clauses are contributed by tech: docl can be sent from
manager to org2. The third group of clauses are contributed by org,
the topmost authority. The first says that if a document is dominated
in the object hierarchy by expenseDoc, then release of the document is
permitted as long as both acct and tech authorize the release. The sec­
ond clause contributed by org says that if a release is not authorized,
then it is prohibited. This ensures that the policy defines a complete
decision, meaning that all releases are either permitted or denied. (See
Section 2.) In our context, for every o, s, r, exactly one of the atoms
org.rls{o^s^r^+) and org.rls{o^s^r^—) is true. It determines the final
release decision. From the clauses that make up this policy, it follows
that if docl is an expenseDoc, then the release of docl from manager to
org2 is authorized.

1.4 PO actions
As discussed in Section , certain actions, called provisions and oblig­

ations, must be taken as a condition of release. We refer to them in
general as PO-actions. Following Bettini et al. [BJWW02], PO-actions
are represented using a special class of predicates and positive Boolean
combinations of PO-actions are represented by PO-formulas, as intro­
duced formally below in section 2.4. For example, the PO-formula
{Watermark A Log) V SignContract expresses that to permit the re­
lease we must either embed a watermark into the data and record the
release into log, or sign a contract. Although we defer the details to a
later section, the basic idea is that we associate a PO-expression with
each clause. This PO-expression is then used to define PO-formulas for
atoms inferred by using the clause.

EXAMPLE 2 From the following clauses, we can infer that acct.rls{docl^
manager^ org2^ -f-) is true. Let us consider the PO-formula associated
with this atomic formula. The PO-expression T, which is associated with
the first clause (see table below), represents that the PO-formula asso­
ciated with in{docl, expenseDoc) is trivially true: no PO-actions are
required. From the second clause, we associate acct.canrls{expenseDoc^
manager^ org2^ +) with Watermark. For the third clause, the formula
variable /2 in the PO-expression represents the PO-formula associated
with (an instance of) acct.canrls{o^^s^r^+). Consider the instance of
clause 3 obtained by substituting o by docl, d by expenseDoc, s by

128 A Hierarchical Release Control Policy Framework

manager, and r by org2. In this case, /2 is substituted by Watermark,
because it is the PO-formula associated with the second positive atom in
the body, acct.canrls{expenseDoc^ manager^ or^2,+). Replacing f^ in
the PO-expression Log Af2 accordingly, we obtain the PO-formula asso­
ciated with acct.rls{doc\, manager, org2,+), viz.̂ Log A Watermark.
From the fourth clause, we find that SignContract is associated with
acct.rls{docl, manager, org2, +) . So acct,rls{docl, manager, org2, +)
is associated with the PO-formula {Log A Watermark) V SignContract,
which represents the required PO-actions for the release authorization
for docl from manager to org2.

Clause
in{docl, expenseDoc) <«—
acct.canrls{expenseDoc,manager,org2, +) ^—
acct.rls{0, S, R, +) ^ in{0, 0 ') , acct.canrls{0\ S, R, +)
acct.rls{docl,manager,org2,-\-) <—

PO-express ion
T
Watermark
Log A /2
SignContract

2. Release Control Framework
We formalize the basic elements in our framework as follows.

DEFINITION 3 (DATA RELEASE DOMAIN) A data release domain con­
sists of a 4-tuple {Obj^ Sub^ PO^ Auth) in which:

1 Obj is a partially ordered set whose elements o E Obj are called
objects;

2 Sub is a partially ordered set whose elements r, 5 G Sub are called
subjects;

3 PO is a partially ordered set whose elements p E PO are called
PO-actions;

4 Auth is a partially ordered set whose elements a E Auth are called
authorities and which has a maximal element, a^ E Auth.

We use C to denote the order relation over each of these sets.

In the remainder of this section, we present the language for basic
authorization policies and then extend it to support policies with PO-
actions.

2.1 Basic release specification language

We introduce a basic specification language to specify release autho­
rization policies. We assume familiarity with the basic concepts of logic
programming. (See for instance [Llo87].) The language contains the
following symbols and constructs:

A Hierarchical Release Control Policy Framework 129

1 Cons tant Symbols : There is a constant for each o G Obj^ s E
Sub^ and a E Auth. In addition, + and — are also constants.

2 Variable Symbols : There are subject/object variables ranging
over the sets Obj and Sub. We use O for variables range over Obj
and S and R for variables ranging over Sub^ often with subscripts
or primes.

3 S u b j e c t / O b j e c t Terms: A subject (respectively, object) term is
a subject (respectively, object) constant or variable. We use a for
sender subject terms, p for receiver subject terms, and uj for object
terms.

4 Pred ica te Symbols : The set of predicate symbols is partitioned
into predicates that have special roles in the release control policy
and auxihary predicates.

(a) A 4-ary predicate symbol, a.canrls, with the arguments (a;, a,
p^sign). It represents authorizations explicitly specified by
the authority a.

(b) A 4-ary ternary predicate symbol, a.dercanrls, with the
same arguments as a.canrls. It represents authorizations de­
rived by the systeni from explicit authorizations, typically by
propagating authorizations down the subject and object hi­
erarchies.

(c) A 4-ary predicate symbol, a.rls, with the same arguments as
a.canrls. It represents the final authorization decision made
by the authority A.

(d) A 4-ary predicate symbol, a .path, taking the form a.path{uj^ a^
p). It represents that there is a release path for the object u
from the sender a to the receiver p. Such a path is a sequence
of linked release authorizations from the authority a.

(e) A predicate symbol, a.error, used to detect certain integrity
violations within the policy itself.

(f) A binary predicate symbol, in, with the form in{(jüi^uj2) or
in(ai,cr2). It represents the domination relationship in a hi­
erarchy.

(g) A binary predicate symbol, dirin, with the form dirin{Lüi^üü2)
or dirin{ai^a2)> It represents the direct domination relation­
ship in a hierarchy.

(h) A binary predicate symbol, auth , with the form auth{üü^a)^
auth{a^a)^ or auth{p^d). It represents that the object or sub­
ject belongs to the authority.

130 A Hierarchical Release Control Policy Framework

(i) Other user-defined predicates to describe the properties of
subject or objects.

We next define the core of our release policies. Later we extend this
core so as to support provisions and obhgations.

DEFINITION 4 (BASIC RELEASE SPECIFICATION) A basic release spec­
ification RS is a set of Horn clauses over the language presented above.
These clauses may include negated^ literals in their bodies, and must
satisfy the restriction that every variable that appears in the head of a
clause also appears in the body. In addition, clauses must satisfy the
restrictions presented in Figure 3, and RS must contain a^.error ^—
a^.rls{0, 5, R, +) , a^.rls{0, S, R, -) and a^.rls{0, S, R, -) ^ -^a^.rls{
O^ S^R^-^). If RS \= a^.rls{o^s^r^+), then the release for o from s to r
is authorized; if RS \= a^ .rls{o^s^r^—), then the release is blocked.

Including a^ .error <— a^.rls{O^S^R^+) , a^.rls(0^ S^R^—) in the
release specification makes that there don't exist conflicts. Including
a"^.rls{0^ 5, Ä, —) <^ ̂ a^.rls{0^ S, Ä, +) in the release specification makes
it complete, as shown in [JSSSOl]. This means that any specification RS
makes one and only one of a^.rls{o^ 5, r, +) and a^.rls{o^ 5, r, —) true for
each triple of constants (o, 5, r).

Integrity rules. A clause with the head of a.error is called an
integrity rule. An integrity rule derives an error every time the conditions
in the body of the clause are satisfied. It imposes an constraint on the
release specification. A valid release specification cannot make error
true.

DEFINITION 5 (RELEASE PATH) Given a set of release clauses, a Re­
lease Path from s to r for o is a sequence of subjects 5o ,5 i , . . . , s^
such that SQ = S, Sn = r, and a.rls{o^s^si^+), a.rls{o^si^S2^+), . . . ,
a.rls{o,Sn-i,r,+).

Clauses that specify the path predicate are straightforward:

a.path{0,S,R) ^ a.rls{0,S,R,+)
a.pathlo,S,R) ^ a.path{0,S,S') , a.path{0,S',R)

EXAMPLE 6 The following integrity rule prohibits there being a release
path from staff to orgl for docl:

a^.error ^ org.path{docl^ staff ^ orgl^ +)

•̂ As we discuss in Section 3.1, each permitted set of clauses is stratified, so all of the standard
semantics of negation as failure coincide.

A Hierarchical Release Control Policy Framework 131

Predicate
1 rel-preds

a.canrls
a.over

a.dercanrls

a.rls +

a.rls —

a.path
a.error

Clauses defining predicate
Facts only (no clause body).
Body may contain rel-preds and arbitrary preds oi a\ a Q a.
Body may contain a.canrls, rel-preds and arbitrary
preds of a\ a' C a.
Body may contain a.over, a.canrls, rel-preds and arbitrary
preds of a , a' C a. Occurrences of a.dercanrls must be
in positive literals.
When head is of the form a.rls{uj, a, p, +) , body may contain
a.dercanrls, a.canrls, rel-preds and arbitrary preds of a , a' Q a.
When head is of the form a.rls{uj, cr,p,—), body contains just
one literal, viz., ~^rls{uj,a, p,-\-), and u, a, and p are all variables.
Body may contain positive uses of a.rls and a.path only.
Body may contain positive uses of a.path, a.rls, a.dercanrls, 1
a.canrls, rel-preds and arbitrary predcates of a', a' Q a. \

Figure 3. Restrictions on the form of clauses defining the various predicates in our
language. The predicates in, dirin, auth and user-defined predicates are called rel-
preds. Predicates and literals associated with the authority a are called predicates
and literals of a, respectively.

Disjunction of the authorizations of authorities:
org.rls{0, S, R, +) ^^ acct.canrls{0, S, R, +)
org.rls{0, S, R, +) <r- tech.canrls(0, S, R, +)

Conjunction of the decisions of authorities:
org.rls{0,S,R,+) ^ acct.rls{0,S,R,+), tech.rls{0,S,R,+)

Sender authority takes precedence:
org.rls{0,S,R,-\-) <— acct.rls{0,S,R,-\-), auth{S, acct)
org.rls{0,S,R,+) ^ tech.rls{0, S,R,+), auth{S,tech)

Figure 4- Rules enforcing various composition policies.

DEFINITION 7 (VALID BASIC RELEASE SPECIFICATION) A basic release
specification RS is valid if RS ^ a.error for all authorities a E Auth.

2.2 Composition policies

Here we want to show that there are various ways in which a higher
authority can compose authorizations defined by lower authorities. Fig­
ure 4 presents several possible composition policies in the context of our
running example. As the topmost authority is org^ truth values assumed
by org.rIs determine the final release decisions.

132 A Hierarchical Release Control Policy Framework

2.3 Legal release paths
Sometimes users may want the evaluation of release specifications to

return not only release authorizations, but also release paths. Users
may want to send o from 5 to r via other subjects in the case where
direct release is not authorized. Given (o, s,r) and a set of subjects /
as intermediate nodes of release paths, the problem is to find one or
more legal release paths from s to r. Sometimes we may want to find an
optimal path based on costs assigned to edges through which the path
passes. We discuss algorithms to compute such paths in Section 3.2.

2.4 PO extension
We follow Bettini et al. [BJWW02] in associating PO-formulas with

atoms entailed by the clauses in our policies. However, we take a slightly
different approach: because we aim to enable higher authorities to over­
ride policy decisions made by their underlings, we provide a similar ca­
pability with respect to PO-actions. So while in the prior work each
clause used in the proof of an atom could contribute PO-requirements
to the PO-formula associated with the atom, in our framework, the
decision whether to include PO-requirements associated with a given
subtree in the proof is made by the PO-expression associated with the
clause at which the subtree is rooted. PO-expressions generalize PO-
formulas by allowing the use of formula variables whose values range
over PO-formulas. Formula variables are disjoint from the standard
subject/object variables, whose values range over the domain of inter­
pretation.

PO-actions are represented by PO-atoms, which are constructed us­
ing special PO-predicate symbols, constants, and variables. The special
symbol T is also a PO-atom, signifying that no PO-action is required.
A PO-formula is either a PO-atom, a disjunction of PO-formulas, or a
conjunction of PO-formulas. We next explain how we associate a PO-
formula with each ground atom in the least Herbrand model of a release
specification.

The policy author associates a PO-expression with each clause he
authors. A PO-expression is either a PO-atom, a formula variable, a
disjunction of PO-expressions, or a conjunction of PO-expressions.

DEFINITION 8 (RELEASE SPECIFICATION) A release specification con­
sists of a basic release specification and a mapping associating a PO-
expression with each clause in the former. Each formula variable occur­
ring in a PO-expression must correspond to a positive literal occurring in
the body of the clause with which the PO-expression is associated. (Neg-

A Hierarchical Release Control Policy Framework 133

ative literals are not associated with PO-formulas.) This correspondence
is established by numbering the formula variables and positive literals,
and associating with one another the variables and literals that have the
same number. For instance, the variable /2 in Example 2 represents
the PO-formulas associated with the ground instances of the second pos­
itive literal, acct.canrls{o'^s^r^-\-). Each object variable occurring in a
PO-expression must occur in the clause with which the PO-expression is
associated. This ensures that PO-formulas associated with ground atoms
are also ground.

During policy evaluation, each ground instance of a clause defines
a PO-formula by substituting for each formula variable in the clause's
PO-expression the PO-formula associated with the corresponding atom
in the body. The PO-formulas defined by all ground clause instances
having the same head are then combined by disjunction to obtain the
PO-formula associated with the ground atom that is that common clause
head.

3. Evaluation of Release Specifications
This section discussed methods for the evaluation of release specifica­

tions. We first consider individual releases, and then turn to sequences
of releases of a data object from one subject to another.

3.1 Materializing release specifications
The materialized authorizations of the highest authority are the eval­

uation results of a release specification. Recall that authority predicate
symbols are pairs in our system. For example, acct.canrls is a different
predicate from tech.canrls. Predicates with lower authority can appear
in the body of clauses defining predicates with higher authority, whereas
the reverse is prohibited. This, and the other restrictions presented in
Figure 3, ensure the set of clauses given by a release specification is
locally stratified. Therefore, the data complexity of its evaluation is
quadratic time in the number of ground instances of the clauses in the
specification, as illustrated in [Gel89]. As the number of variables in
each clause is typically bounded by a small constant, the number of
ground instances of each clause is bounded by a polynomial in the size
of the specification (including the definitions of predicates representing
the hierarchy). Thus, the complexity of evaluation is also bounded by
such a polynomial.

For the extended framework, note that all PO-formulas are positive
and hence consistent. Consequently, if a release specification's underly­
ing basic release specification is RS^ then if RS \= a^.rls(o^ 5, r, +), the

134 A Hierarchical Release Control Policy Framework

corresponding release can be permitted, provided some combination of
PO-actions is undertaken. The evaluation of the least Herbrand model
of RS is not affected by the PO-expressions in the policy. We can eval­
uate the PO-formulas for each atom in the least Herbrand model in a
bottom-up fashion, as illustrated in [BJWW02].

3.2 Computation of release path
Given a release specification RS^ a triple (o, s,r), and a (possibly

empty) set of subjects / , a basic path evaluation algorithm returns a
possibly empty set of paths. Each path consists of a sequence of sub­
jects, So, 5 i , . . . ,5ri, such that SQ = S^ Sn = T, for each i, 0 < i < n,
RS 1= a-^.r/s(o, s ,̂ 5^+1,-h). Letting the PO-formula associated with
a"^.r/s(o. Si, s^-i-i,+) be p^, the PO-formula associated with the path
so,s i , . . . ,Sn isp = poA ... Apn-i-

A basic path evaluation algorithm determines whether a release spec­
ification RS is valid and identifies all integrity violations within it. Such
an algorithm can be obtained as follows. Given an object o, we compute
all atoms a^.rls{o,s^r^+) entailed by RS^ and find the PO-formula p
associated with each such atom. Then we construct a directed graph
whose nodes are given by Sub and which has edge {s^r) just in case
RS \= a^.rls{o^s^r^+). We associate with this edge the PO-action as­
sociated with a^.rls{o^s^r^+). A release path corresponds to a path in
this directed graph. There are well-known algorithms to check whether
there exists a path between two nodes and to find all paths between two
nodes.

When a user seeks a legitimate release path for getting a data object
from a given sender to a given receiver, the user does not want a set
of paths, but rather an optimal path based on certain assigned weights.
The factors that affect such weights could be, for instance, the subjects
through which the path passes and the PO-formulas associated with the
edges in the path.

We now consider how to find an optimal path. We first assign weights
to edges based on PO-actions and nodes (senders and receivers). We
can still use the well-known algorithms for the shortest path. However,
calculation of path weights is more complicated when basing them on
PO-formulas associated with edges. A PO-formula expresses that one of
a collection of sets of PO-actions needs to be executed, where each set
corresponds to a disjunct in the DNF (disjunction normal form) of the
PO-formula. So the weight assigned to a PO-formula is the minimum
weight among the disjuncts of the DNF of the PO-formula. For example,
given a PO-formula {Log A Watermark) V Sign^ if the weights of Log^

A Hierarchical Release Control Policy Framework 135

Watermark^ and Sign are 1, 2 and 3, respectively, then the weight of
the disjunctive clause Log A Watermark is 1 + 2 == 3 and the weight of
the disjunctive clause Sign is 2; hence the weight of the PO-formula is
the minimum value 2.

To calculate a path's weight, we need to first find the PO-formula
of the path. This is the conjunction of PO-formulas associated with
edges in the path. Thus, the weight of a path is not simply the sum
of the weights of its edges. The calculation of the weight of the PO-
formula associated with a path can take advantage of pruning. For
example, suppose there are two PO-actions Log and Watermark^ where
the weight of Log is less than that of Watermark. If one edge has a
PO-formula WatermarkW Log^ and an adjacent edge has a PO-formula
Log^ then the PO-formula associated with the path consisting of these
two edges is {Log A Watermark) V Log. Log A Watermark certainly
cannot have less weight than Log^ so the formula can be pruned to be
Log. This example also illustrates that, if the formula associated with
an edge is Logy Watermark^ even though the weight of Log is less than
Watermark^ we still need to keep track of both during the computation
because we may subsequently encounter another edge in the path that
has a PO-formula Watermark.

4. Related Work
Much of the extensive prior research in access control is highly relevant

to release control. For instance, Jajodia et al. present an access control
framework, FAF [JSSSOl], that uses Horn clauses to express multiple
access control pohcies (e.^., open or closed, and positive or negative).
They show that FAF specifications are locahy stratified and can be eval­
uated in polynomial time. Our work is based on FAF. However, FAF
does not address data release, nor does it allow policies to be composed
of components specified by multiple authorities. It also does not allow
provisions and obligations to be required as a condition of authorization.

Another important line of work in access control concerns the RBAC
model[SCFY96, SBM99]. In RBAC, there is an administrator hierarchy
[SBM99], where different administrators have different administrative
privileges. However, in RBAC, even when multiple administrative roles
have authority over various portions of the authorization specification,
these portions are disjoint and the manner in which these portions are
composed is somewhat trivial. Again, release is not addressed, nor typ­
ically are provisions and obligations.

Bettini et al. [BJWW02] study provisions and obligations in pol­
icy management. They introduce a framework for augmenting logi-

136 A Hierarchical Release Control Policy Framework

cal programs which associates a PO-formula with each pohcy clause.
Our framework regarding provisions and obligations is quite similar,
though PO-expressions we associate with clauses generalize PO-formulas
in manner that makes our approach better in the context of multiple pol­
icy authors whose authorities are organized hierarchically. There are also
related works [BdVSOO, WJ02] that introduce pohcy algebras to combine
authorization specifications for access control. Bonatti et al. [BdVSOO]
model policy as a set of ground terms over an alphabet for (subject,
object, action) terms whereas Wijesekera and Jajodia [WJ02] model
policies as non-deterministic transformers (relations) over a collection
of subjects, objects, and action terms. Operands are policies, which
are combined by operators such as addition, conjunction, and negation.
Our framework language can be used to implement most pohcy alge­
bra operators. Furthermore, we organize the specification of distributed
policies in a hierarchical manner, which captures structural features of
organizations, and hence is simple and manageable.

Another research area related to release control is flow control [Den76,
Fol89, MMN90, ML97, SBCJ97]. This line of work focuses mainly on
the context of multi-level security, concentrating on information flow
between objects in programs. It seeks to control not only data release,
but also the further propagation of any information derived from that
data. In this sense it is much more ambitious than release control, which
does not trace information flow through computations.

5. Conclusions

We have observed that the world's increasing reliance on informa­
tion sharing heightens the need for mechanisms and models that protect
confldentiality, and that access control alone is inadequate to modern
requirements. We present a release control framework to better satisfy
these needs. By providing for distributed, hierarchical speciflcation of
policy throughout an organization, and by allowing release policy clauses
to include provisions and obligations that must be satisfled for release
to be permitted, we create a framework that is both powerful and flexi­
ble. We have extended prior work associating provisions and obligations
with authorizations in a manner that reflects our goal of enabling senior
authorities to override policy authored by their juniors.

This paper concentrates on the specification of release control policies,
rather than on their enforcement. Enforcement mechanisms of release
control are more complicated than those of access control. This is be­
cause it is difficult to detect reliably when data transmission is occurring,
and identify senders, receivers, and data objects on the fly, as data ob-

A Hierarchical Release Control Policy Framework 137

jects are transmitted. Further research in release control enforcement is
clearly needed.

Acknowledgments
This work was partially supported by the NSF grants CCR-0113515,

IIS-0242237, and IIS-0430402.

References
[BdVSOO] Piero A. Bonatti, Sabrina De Capitani di Vimercati, and Pierangela

Samarati. A modular approach to composing access control policies.
In ACM Conference on Computer and Communications Security, pages
164-173, 2000.

[BJWW02] Claudio Bettini, Sushil Jajodia, Xiaoyang Sean Wang, and Duminda
Wijesekera. Provisions and obligations in policy management and se­
curity applications. In VLDB, pages 502-513, 2002.

[Den76] Dorothy E. Denning. A lattice model of secure information flow. Com-
mun. ACM, 19(5):236-243, 1976.

[Fol89] Simon N. Foley. A model for secure information flow. In IEEE Sym­
posium on Security and Privacy, pages 248-258, 1989.

[Gel89] Allen Van Gelder. The alternating fixpoint of logic programs with nega­
tion. In Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Datahase Systems, March 29-31, 1989,
Philadelphia, Pennsylvania, pages 1-10. ACM Press, 1989.

[JSSSOl] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S.
Subrahmanian. Flexible support for multiple access control policies.
ACM Trans. Datahase Syst., 26(2):214-260, 2001.

[Llo87] John W. Lloyd. Foundations of Logic Programming, Second Edition.
Springer, 1987.

[ML97] Andrew C. Myers and Barbara Liskov. A decentralized model for in­
formation flow control. In SUSP, pages 129-142, 1997.

[MMN90] Catherine D. McCoUum, J. R. Messing, and LouAnna Notargiacomo.
Beyond the pale of mac and dac-defining new forms of access control.
In IEEE Symposium on Security and Privacy, pages 190-200, 1990.

[SBCJ97] Pierangela Samarati, Elisa Bertino, Alessandro Ciampichetti, and
Sushil Jajodia. Information flow control in object-oriented systems.
IEEE Trans. Knowl. Data Eng., 9(4):524-538, 1997.

[SBM99] Ravi S. Sandhu, Venkata Bhamidipati, and Qamar Munawer. The
arbac97 model for role-based administration of roles. ACM Trans. Inf.
Syst. Secur., 2(1):105-135, 1999.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-based access control models. IEEE Computer, 29(2):38-
47, 1996.

[WJ02] Duminda Wijesekera and Sushil Jajodia. Policy algebras for access
control the predicate case. In ACM Conference on Computer and Com­
munications Security, pages 171-180, 2002.

