
A TRUST-BASED MODEL FOR INFORMATION
INTEGRITY IN OPEN SYSTEMS'

Yanjun Zuo^ and Brajendra Panda^
Department of Information Systems and Business Education, University of North Dakota,

2
Grand Forks, ND, USA; Department of Computer Science and Computer Engineering,

University of Arkansas, Fayetteville, AR, USA

Abstract: While it is difficult to apply conventional security services to a system without
a central authority, trust management offers a solution for information
assurance in such a system. In this paper, we have developed a policy-
oriented decision model based on object trust management to assist users in
selecting reliable and secure information in an open system. In the proposed
model, an object represents a topic or issue under discussion, and it may have
multiple versions, each of which represents a subject's opinion towards the
characteristics of that object. The developed trust-based decision model
assists a user to select one object version with desired level of quality and
security features from available versions of a given object. The model
balances both positive and negative aspects of an object version, and an
evaluator can explicitly specify, in form of a policy specification, which
features of an object version are not acceptable and which features are
favorable. A high-level policy language, called Selector, expresses the policy
specification in an unambiguous way. Selector consists of primary and
residual policy statements. It supports recursive function calls, and the
invoked external functions are defined separately from the language itself.
The proposed decision model doesn't guarantee to select the "best" version for
a given object. Rather it ensures that the selected version meets a user's
requirement for information integrity.

Key words: trust decision model; information integrity; information security policies;
policy language; trustworthy computation

• This work was supported in part by US AFOSR under grant FA9550-04-1-0429 and was
performed when the first author was with the University of Arkansas.

338 A Trust-Based Model for Information Integrity in Open Systems

1. INTRODUCTION

Information integrity has a wide scope and it primarily used to refer to a
set of mechanisms to protect information from unauthorized modifications
during the information transmission or in storage. In this paper, information
integrity focuses on evaluating the quality and security features of a given
piece of information. It contains a set of methods for an evaluator to select
external information with the required level of quality and security in an
open environment. An open system is a general term and, in this paper, it
represents a decentralized system organized by a set of loosely coupled
computer systems without a single administrative authority. Examples of
open systems include various virtual organizations such as Grid systems,
Peer-to-peer systems, and virtual communities. Ensuring the security and
quality features of external information is crucial for the participants of an
open system to confidently share information. But the conventional security
and information assurance mechanisms don't scale well while being applied
to those open systems. They have been developed based on a closed-world
assumption where the users are known in advance. This assumption is no
longer valid for an open system. Rather, trust management helps eliminate
the scalability limitation of traditional security models. Existing research on
trust management focuses on subject trust, however, e.g., how the
trustworthiness of a subject is evaluated and how access control is granted to
a subject based on its attributes and/or properties. Research on object trust
has not received much attention.

In our discussion, a subject represents an independent entity in an open
system, which produces and consumes information. A piece of information
expresses a topic or issue in discussion. The term object is used to denote
such a topic or issue. This notation (object) is chosen because it is
frequently used together with the term, subject. An object has a value or a set
of values, called object value(s), representing the inherent features(s) of the
object. For instance, if the current economic growth is considered as an
object, then its object value is a real number representing how fast the
economy is growing. The object values expressed by different subjects for a
given object could be different. It is very likely that different subjects have
different views on a given issue or topic. For example, different groups of
economists may have used different analytical tools and collected different
sets of data to calculate the economic growth rate. Hence, they have
different opinions on this value.

The term object version is used to represent such an opinion that a
subject has on the object value(s) for the given object. In addition, the
owner of an object version also supplies its confidence in the proposed

A Trust-Based Model for Information Integrity in Open Systems 339

object value(s), whieh is expressed as the trust that the owner places on the
proposed object value(s).

Information processing is accumulative and recursive, e.g., some
information is formed by using others as its components. For instance, a
public key encryption algorithm (e.g., RS A) uses those methods for large
primary number generation and testing, key distribution, and one-way
function (e.g., modular operation) as its building blocks. In component-
based software development, e.g., Java Beans and Microsoft COM, a
software program is constructed by using various pre-developed modules,
library functions, and methods. In business world, the Dow Jones Industrial
Average summarizes 30 stock prices in average and divides it by a constant,
called "divisor". Information derivation is a major form of information
processing in a data intensive system for science and commerce. In domains
as diverse as global climate change, high-energy physics, and computational
genomics, science is becoming increasingly dependent on the generation and
reuse of massive amounts of data, a trend sometimes known as data-
intensive science.

Our model is applied to an open system, where information derivation
enables the system to keep track of the components of an object version, i.e.,
how the object version has been formed and which components are used.
Then that information is helpful for a user to evaluate the trustworthiness of
the object version in term of its quality and security.

In [1] the authors proposed a standard format to represent different
versions of a given object and the component information for each version.
Furthermore, they developed a method to allow an evaluator to measure the
trustworthiness of an object version based on the trust values of its
components and the composing functions used to form the object version.
For simplicity, an object version is specified in the following format:

owner -^ {object, object value(s), trust value, components,

composing functions}

An object can have multiple versions as provided by different subjects.
To distinguish among available versions of an object, say O, the symbol V̂ ^̂ i
is used to denote the î ^ version of O. O is called the target of object of V̂ V̂
Given multiple versions of an object, a user may want to select one version,
if any, which satisfies its requirements for quality and/or security. This
process is called "trust decision", which is an important part of object trust
management. Existing virtual organizations provide only preliminary
approaches for selecting trusted information in term of its quality and
security. For instance, in Peer-to-peer systems, a peer assesses a given piece
of information based on the reputation and trustworthiness of the owner of
the information. Rut that is not a reliable way to evaluate the quality and

340 A Trust-Based Model for Information Integrity in Open Systems

security features of the information itself. In this paper, a trust-based
decision model has been developed. The selection criteria are defined based
on both the intrinsic and extrinsic features of the given information, and
those features provide an evaluator more insights into the inherent trust
characteristics of the information. A policy specification can then be defined
based on this trust model, and a high-level policy language is applied to
formally express the policy specification.

2. RELATED WORK

Existing research on trust management includes trust modeling [2, 3, and
4], automatic trust negotiation [5, 6, and 7], reputation based trust
management [8, 9, and 10], among others. Examples of trust management
systems include PGP [11], X.509 [12], PolicyMaker [13], KeyNote [14],
Referee [15], etc. Our model is different from the previous work in that our
approach concentrates on evaluating the trustworthiness of a given object
version (or a piece of information), while the existing models focus on trust
at subject level. Studying the information quality and security at object level
gives a user higher confidence to use a piece of information since that
information has been directly assessed instead of relying on the
information's extrinsic attributes such as its owner's reputation. Making a
decision merely based on a subject's trustworthiness is not always rehable.
We know that even the most honest people make mistakes. It is
advantageous to assess the intrinsic features of external information and
perform trust evaluation at object level. Then the information can be
consequently selected based on its trust features.

Related work on policy languages includes [16, 17, and 18] (to cite a
few). In [16] McDaniel has discussed in detail execution conditions in order
to determine if a policy should be applied. Ponder, a policy language as
proposed in [17], consists of a set of statements that define a choice in the
behavior of a system. The language itself is declarative and object oriented.
In [18], Rei, another policy language, was introduced. The core of that
policy language is policy objects, which describe the concepts of rights,
prohibitions, obligations, and dispensations. The "has" construct as defined
in Rei represents the possession of a policy object by a subject.

Selector, the high-level policy language presented in this paper, is simple
and flexible. An instance of Selector is composed of a set of policy
statements. A select or deny primary statement immediately selects or
denies an object version, which offers some features that the user has strong
likeness for or can't tolerate, respectively. A warning or rewarding policy
statement allows the accumulations of negative or positive effects of a given

A Trust-Based Model for Information Integrity in Open Systems 341

object version. Then the implied statements are applied to test if the
accumulated effects are significant enough to make a decision.

Like Ponder and Rei, Selector supports positive and negative rules as
well as recursive external function calls. But Selector is designed
specifically for expressing a policy specification to select external
information by evaluating the intrinsic and extrinsic feature of the
information. This feature makes it different from both Ponder and Rei,
which focus on user aspect and specify policies for management and security
of distribute systems. For instance, Ponder includes authorization, filter,
refrain and delegation polices for specifying access control and obligation
policies to specify management actions, and supports a common means of
specifying enterprise-wide security policy [17]. Key concepts of Ponder
include domains, roles, and relationships, which support it as an object-
oriented policy language. Rei handles authorizations, prohibitions,
obligations and dispensation policy rules and allows policies to be split into
actions, constraints and policy objects. Hence both languages specify rules to
describe allowed actions for subjects and Selector specifies favorable and
prohibitive features of objects. In addition, Rei defines actions and policy
objects separately and allows them to be linked dynamically to subjects.
Selector uses domain dependent function blocks in rule expressions. The
feature of domain dependency increases implementation efficiency, as
compared with Rei, at the expense of extensibility and portability.

3. THE TRUST-BASED DECISION MODEL AND
POLICY SPECIFICATION

3,1 Methodologies

The goal of the trust decision process is to select one version, if any
found appropriate, from available versions of a given object. Making a trust
selection relies on evaluating trust features of those available object
versions. The trust features of an object version are quantitatively expressed
by its values for a set of trust-related attributes of the target object. The
concept of trust-related attribute is defined as below.

Definition 1: A trust-related attribute of an object refers to the object's
intrinsic or extrinsic attribute, whose value, given a version of the object,
describes the quality and/or security features of the object version and hence
can help an evaluator assess the trustworthiness ofthat object version.

Figure 1 describes object O, its three trust-related attributes, and the
values of those attributes given O's three versions. The attribute,
"possibility of viral infection", describes one security feature of O's
versions. Given a version of O, its value for this attribute helps an evaluator

342 A Trust-Based Model for Information Integrity in Open Systems

measure how much to trust this object version in term of its safety to
execute, i.e., free of viral infection. Another attribute, "correctness of the
algorithms", concerns the quality feature of a version of O. The value for
this attribute, given an object version, helps the evaluator decide how much
the quality (correctness) of the object version should be trusted in term of the
algorithms it used to solve a problem. The third attribute, "the owner's
reputation", indicates the reputation of the object version's owner in
supplying information. An object version's value for this attribute, i.e., its
owner's reputation, provides the evaluator important information in
measuring the quality and/or security feature of the object version.

Figure 7.Object O, its Attributes, and tlie attributes' values given O's three Versions

Some trust-related attributes are considered as positive semantically in
the sense that users want to see higher values for them. For instance, the
reputation of the owner of a given object version is a positive trust attribute.
In contrast, some attributes are considered negative, and users want to see
lower values for those attributes. For instance, the possibility of virus
infection for an object version describes a negative feature for that version.
Users want to see this possibility as very low. When an object version has a
high value for a negative attribute, and a user can't tolerate that feature
expressed by this negative attribute value, then the object version must be
rejected.

Definition 2: A dominating negative attribute value of an object version
refers to such a value of the object version for a negative attribute that the
feature represented by this value is so "negative" that a system can not
accept the object version based on this feature.

The corresponding attribute is called a dominating negative attribute of
the target object.

In a trust selection process, a user first identifies a set of dominating
negative attributes and specifies a set of testing conditions such that if any
object version possesses a value for one of the dominating attributes and that

A Trust-Based Model for Information Integrity in Open Systems 343

value is beyond a threshold (i.e., the object version has a very negative
feature and can't be accepted by the user), the object version must be denied.

On the other hand, an object may have a positive attribute which is so
attractive. If a version of that object has a value for such a favorable
attribute, and that value is good enough (or beyond a threshold), then the
object version can be selected.

Definition 3: A desired positive attribute value of an object version is
such a value of the object version for a positive attribute that the feature
represented by the value is highly "favorable." Moreover, the object version
can be accepted by a system if the object version does not possess any
dominating negative attribute values.

The corresponding favorable attribute is called a desired positive
attribute of the target object.

As an object version can have complicated features, it is difficult to draw
a clear line between a "good" version and a "bad" version. An object
version may have some positive trust features; but these merits are not good
enough for a user to make a "select" decision. On the other hand, a version
may have some negative aspects but those unfavorable features are not
severe enough for the user to make a "deny" decision. Hence the proposed
trust selection process uses a scoring system to allow the values for those
negative and positive features to be quantitatively accumulated. Then a
decision may be made based on those accumulated negative or positive
features. A policy specification can then be developed for selecting an object
version, if any found appropriate, which satisfies the user's requirements for
information quality and security.

Definition 4: A policy specification consists of a set of trust based
security rules, called policy rules, expressed in a natural language specifying
high-level descriptions of what features of an object version can not be
tolerated and thus that object version must be denied as well as what features
are favorable and thus that object version can be accepted.

There are four types of policy rules in a policy specification as discussed
below:

(1) The first type is to specify dominating negative attribute(s) of an
external object and the corresponding testing conditions.

(2) The second type is to specify desired positive attribute(s) of an
external object and the corresponding testing conditions.

(3) The third type is to specify either positive or negative attribute(s), for
which one object version has a value for that attribute but that value
is not significant enough (for an evaluator to make a "select" or
"deny" decision). However, those positive or negative features
should be accumulated accordingly for the object version. Two
variables. Number of Rewards and Number of Warnings, are

344 A Trust-Based Model for Information Integrity in Open Systems

introduced to maintain the accumulated utilities for the positive and
negative features of an object version respectively.

(4) The fourth type is to verify whether the accumulated positive and
negative utilities for an object version under evaluation enable the
system to make a decision after balancing their overall effects.

A poHcy rule of type (1), (2), or (3) is also called a primary rule. More
specifically, a rule of type (1) is called d. primary negative rule, and a rule of
type (2) is called a primary positive rule, A rule of type (3) is called an
accumulating rule, A rule of type (4) is called an implied rule. An implied
rule takes the pair of accumulated positive and negative features of a given
object version as input and produces one value from set [deny, select,
indecisive],

All the primary policy rules are evaluated and enforced in a pre-defined
order. Primary negative rules, if any, can not appear after any other types of
primary rules. In other words, a policy specification must start with a set of
primary negative rules, if any. Those primary negative rules specify
dominating negative attributes of an object and their testing conditions. If an
object version has one of those values as tested true by such a condition (i.e.,
it has a negative feature that can not be accepted by the system), that object
version must be denied. If an object version does not possess any of the
negative features as specified by a primary negative rule, it is tested based on
other primary positive rules and accumulating rules. Finally, if all the
versions of the given object have been evaluated and no version has been
selected, then a residual rule (as will be discussed in Section 4.3) is applied
and a version may be selected for that object.

3.2 An Example
A policy specification example has been given in Figure 2, where system

S evaluates object version V^̂ ĵto determine if V^ \̂ satisfies its requirements
for information quality and security. The policy specification starts with a
primary negative rule, which indicates that if V̂ ^̂ i is detected as infected by
viruses, then S rejects V^ \̂ immediately and the following rules of the policy
specification will not be evaluated. For this rule, the dominating negative
attribute is ''infection by viruses", and the corresponding testing function is
'Verify if a given object version has been affected by viruses". If V^ \̂ is
tested as "false", i.e., V^ \̂ has not been detected as affected by a virus, then
the evaluation continues and the second policy rule is evaluated for V̂ V̂
The second policy rule is a primary positive rule. According to this rule, S
can select V^ \̂ if (1) V^^Vs components are publicly known as
"recommended object versions" (hence publicly known as trustworthy). It is
assumed that all recommended object versions based on user evaluations are
maintained in a list, called RecommendedObjectVersionList and this list is

A Trust-Based Model for Information Integrity in Open Systems 345

accessible to all participant in a virtual organization, and (2) the composing
functions used to form V^ \̂ have been verified as correct and appropriate.
For this rule, "component correctness" and "composing logic correctness"
are two desired positive attributes. The first is checked by its corresponding
testing condition to determine if V^^Vs components are members of
RecommendedOjbectVersionList, The second is to determine (by site domain
experts or external service providers) if the composing functions are correct
and appropriately used. If the answers to both of the two testing conditions
are "yes", then V̂ ^̂ i can be selected and the decision process for the target
object, O, is completed. If the answer to at least one of the testing conditions
is "no", the evaluation process continues and the next rule in the policy
specification is evaluated for V^^\. The third rule is also a primary positive
rule and can be interpreted in a similar way. The fourth rule is an
accumulating rule. It indicates that for a positive attribute, "membership of
the owner of a given object version to GoodContactList\ if V^ \̂ satisfies the
corresponding testing condition, two units of rewards can be accumulated
for V^̂ î, i.e.. Number of Rewards is incremented by two. Good ContactList
is maintained locally by the evaluator and contains all other subjects, which
the evaluator has contacted before and whose performance were satisfied.
Similar explanations can be applied to the remaining rules.

After all the primary rules have been evaluated, the accumulated Number
of Rewards and Number of Warnings for V^ \̂ are used to determine if V^ \̂
should be selected, denied, or indecisive based on the two implied rules.

The policy specification (to evaluate object version V^̂ ĵ):

(Primary rules):

1. Deny V̂ ^̂ j if it has been affected by viruses;

2. Select V^^\ if V^^Vs components are publicly known as trustworthy and the
composing functions used to form V^°\ are verified as correct;

3. Select V̂ ^̂ j if the overall trust value of V̂ ^̂ j (the combination of its primary and
secondary trust values) is greater than 0.95;

4. Give V^°\ two unit of rewards if the owner of V^°\ had been in transaction with S
and its performance was satisfied;

5. Give V^^\ two units of warnings if the owner of any component of V̂ ^̂ j has
reputation value less than 0.4;

6. Give V̂ ^̂ j two unit of rewards if the owner of any component of V̂ ^̂ j is S's
business partner.

7. Give V̂ ^̂ i three units of warnings if the program expressed by V*̂ °\ has been
tested with memory leakage while being executed.

Figure 2. Example of a Policy Specification

346 A Trust-Based Model for Information Integrity in Open Systems

In the evaluation process of an object version, if a "select" decision for
that version is made, the process of evaluating the target object is completed.
If a "deny" decision for an object version is made, the evaluation process
only for that version is completed. In both cases, the remaining policy rules
for that version are not evaluated or applied.

4. SELECTOR - THE POLICY LANGUAGE

A policy specification is defined in a natural language, e.g., English.
Rules expressed in a natural language could be ambiguous. In computer
science literature, a policy language with well-formatted syntax is often used
to express a policy specification. In this paper, a policy language, called
Selector, has been developed to express a policy specification.

Selector is a high-level policy language. According to Bishop [20], a
high-level poUcy language expresses poUcy constraints on entities using
abstractions without specifying the implementation issues. Translating a
policy specification to an instance of a policy language is conducted
manually.

Selector consists of a set of policy statements to express the
corresponding policy specification rules. The term "statement" is used for
Selector in order to distinguish it from the term "rule" for a policy
specification. More specifically. Selector is composed of a "primary
statement list" and a "residual statement list". The residual statements help
an evaluator select a version if all the primary statements have been
evaluated based on the available versions of a given object and no version
has been selected.

Selector ::= primary_statements implied_statements residual statements

primary_statements ::= primary_statement primary_statements | 8

primary_statement ::= select_statement | deny_statement |

Figure 3. High Level Structure of Syntax of Selector

The high-level structure of Selector is expressed in Figure 3. The syntax
of both primary statements and implied statements of Selector is introduced
in the following sections.

A Trust-Based Model for Information Integrity in Open Systems 347

4.1 Primary Statements

A primary policy statement has the following format:

Action <—(LoopControl:)? Fc(Ci, C2, ..., CJ

The terms for the above statement are explained below:
(1) Action G {Select, Deny, [Warnings x], [Rewards y]} and each

element is a self-explanatory function identifier. There are four types
of primary statements: (a) Select statement, the Action is Select,
Such a statement expresses a primary positive rule in the
corresponding policy specification; (b) Deny statement, the Action is
Deny. Such a statement expresses a primary negative rule in the
policy specification; (c) Warning statement: the Action is [Warnings
x\. Such a statement expresses an accumulating rule in the policy
specification to accumulate the "points" for the negative features of
the object version under evaluation; and (d) Rewarding statement.
the Action is [Rewards y]. Such a statement expresses an
accumulating rule in the policy specification to accumulate the
"points" for the positive features of the object version.

(2) (LoopControl:)?Fc(Ci, C2, ..., C„j, the right hand side of a primary
policy statement, consists of two parts, each of which is explained
below.

(2.1)The first part, (LoopControl:)? is an optional loop control structure
as indicated by the question mark (?). It controls recursive
executions of the second part. More specifically, a loop control
structure is in one of the following formats:

forAll variable; ST, Function(variable, other arguments)

forSome variable; ST, Function(variable, other arguments)

The terms, forAll, forSome, and ST (shorthand for Such That)
are key words in Selector. Variable is called a control variable.
Function(variable, other arguments) is called a control function
and it specifies the allowed possible values for the control
variable.

The semantic meaning of control structure is determined by
thQ forAll and forSome loop control quahfiers. As implied by its
name, forAll requires that every value of variable as specified by
Function(variable, other arguments) satisfy FcfCy, C2, ..., CJ, i.e.,
Fc(Ci, C2, ..., Cn) is evaluated as true for this variable value, in
order to evaluate the right hand of the primary policy statement as
true. forSome requires only one value of variable as specified by

348 A Trust-Based Model for Information Integrity in Open Systems

Function(variable) make Fc(C], €2^ ..., CJ true in order to
evaluate the right hand side of the primary policy statement as
true.

(2.2) The second part of the right hand of a policy statement, Fc(Ci, C2,
..., CJ, is an Boolean expression. Each argument, C called a
conditional statement, can be evaluated as either true or false.
Conditional statements are combined by logical operators such as
AND, and OR with the following format:

Function(Arguments) (AND \\ OR Function(Arguments))'^

The symbol "*" specifies that the term preceding "*" can appear
multiple times.

Figure 4 shows the policy language statements (an instance of Selector)
corresponding to the policy specification given in Figure 2.

(Primary statements)
1. Deny <- AffectedByVirus(V^°\)
2. Select <- (forAll Variable-, ST, Component(V^°\, Variable)):

Mcmhor(Variable, RecommendedObjectVersionList) AND

FunctionCorrect(ComposingFunctions(V^^\));
3. Select ^ Greater(T(S, V °̂̂ i)overaib 0.95);
4. [Rewards 2] <— Member(Owner(V^°\), GoodContactList)
5. [Warnings 2] <- (forSome Variable; ST, ComponQnt(Y^^^; Variable)):

Less(Reputation(Owner(Variable)), 0.4)
6. [Rewards 2] ^ (forSome Variable; ST, Component(V^°\, Variable)):

Partner(0wner(yar/fl/7/e), S)
7. [Rewards 3] <- MemoryLeak(V^°\)

(Implied statements)

Deny <^ Greater(A^wmZ?er of Warnings, 4)

Select <— Gxt2iitv{Number of Rewards, 4)

Figure 4. The Set of Policy Statements Expressing the Policy Specification Rules
Given in Figure 2. AffectedByVirus, Component, Member, FunctionCorrect,
ComposingFunctions, FunctionCorrect, Greater, Less, Partner, Owner,and

MemoryLeak are names of external library functions.

4.2 Implied Statements

Two implied statements are defined below

Select <— GreaterThan (Number of Rewards, Threshold j)

Deny <— GreaterThan (Number of Warnings, Threshold 2)

Threadhold] and Threshold2 are supplied by the system administrators.
The implied statements are applied to a given object version after all the

A Trust-Based Model for Information Integrity in Open Systems 349

primary statements have been evaluated towards the object version. If the
implied statements still don't make a decision regarding that object version,
it is added to a set, Candidate, which keeps the residual object versions for
the target object.

4.3 The Residual Statements

Applying the primary policy statements to all the versions of object O
leads to two possible results:

(1) A "select' decision has been made and the trust decision for O is
completed; or

(2) No decision has been made and some versions have been added to
Candidate.

The residual statements select a version from Candidate, One way is to
select the version with the highest trustworthiness. In this case, the residual
statement has the format:

V^^ <-select V^\ with Max(T(S, V^^lveraii)
where V^^ represents the version selected by S for O, select and with are
two key words, Max represents a function to select the maximum value of
an input set, V^^\is an element of Candidate, and T(S, V̂ ^̂ i)overaii represents
the overall trust value of V̂ ^̂ i for S, which can be calculated as the weighted
average of the primary trust and secondary trust values of V̂ ^̂ i as below:

^{^y ^ i)overall — ^ i (O, V i/priinary "^ / ^ rUSl{ J , V i)secondary

where X and y are weights assigned to the primary and secondary trust values
of V^ \̂ for S. Those two trust values are explained next.

Definition 5: The primary trust value of an object version V^°\ for an
evaluator, such as a subject S, denoted as T(S, V̂ ^̂ i)primary» is the
trustworthiness of V^ \̂ for S in term of its quality and/or security, which is
calculated based on S's direct experiences of studying the closely related
information about V^^\, e.g., the trustworthiness of the components of V^ \̂
and the appropriation of composing functions used to form V̂ V̂

Definition 6: The secondary trust value of V^ \̂ for S, denoted as
T(S,V^̂ \)secondary, IS the trustworthiucss of V^ \̂ obtained through secondary
experiences of S, e.g., the information S has on the trustworthiness of V^°\
from other parties such as the owner of V^̂ î, a recommender, or user
evaluations.

Trust(S,V^̂ \)secondary cau bc calculated, in its simplest form, as the
mathematical product of the trust level of the object version for its owner, S'
and the trust level of S' for S. The trust level of S' for 5 is called subject
trust since it measures the trustworthiness of one subject for another.
Several trust models have been proposed to evaluate the subject trust values

350 A Trust-Based Model for Information Integrity in Open Systems

(see [3] and [4] for more information). Other methods exist to calculate
secondary trust value of an object based on transitive and discounted
recommendations from third parties (see [2]). We will not discuss them here
due to space constraints.

In order to calculate Trust(S, V^̂ \)priniary, S studies the component
information of V^^\, i.e., how it has been integrated, to what degree those
components should be trusted, which set of composing functions have been
used to form V^^\, etc. Let elements in the set {Cj, C2, ..., C„} denote the
components of V^ \̂ and elements in the set [Si, S2, ..., Sn) represent the
owners of those components with 5/ being the owner of C/ for 0 < / < n
respectively. T(S, V̂ \̂)pnmary can be calculated by the following formula (see
[1] for more information):

T(S, V''\)primary = F^s, vm)(F, T(S, Cj), T(S, C2),..., T(S, CJ)
where 77̂ , v(O)i) represents the trust function to evaluate Trust(S,V^ \̂)primary
based on the trust values of the components of V^̂ î, and T(S, Ci) represents
the trust value of component Ci for S, where 1 < / < n; Trust function 77̂ ,
v(o)i takes composing functions represented by F and a set of component trust
values as input. A trust function can provide answer to the question "how
much should a compound object version be trusted given the trust values of
its components and the composing functions used to form that compound
object version?" Developing a general format for a trust function is both
domain and user dependent. Two common cases are discussed below.

Case 1: For a weighted average composing function F = (wi* CO + (w2*
C2) + ... + (Wn * Cn), the corresponding trust function is

T(S, V'^jprimary = F^s, vm)(F, T(S, Cj), T(S, C2),..., T(S, CJ) = wj *
T(S,Cj)+ M;2* T(S,C2)-\- ... + Wn * T(S, CJ

where Wi, W2, ..., Wn are real numbers in the range [0, 1] and they add up
to 1. Intuitively, if a composing function has the format as a weighted
average, then the same parameters in the composing function are used to
integrate the trust value of each component in order to calculate the trust
value of the compound object version.

Case 2: For the composing function F = c "^ A, where c is a constant
parameter, the corresponding trust function is

r(s, vm) (F, c, r(s, 1/̂ /̂)) = r(s, V''^)

5. OBJECT VERSION ATTRIBUTE VALUE
DISCOVERY

The attribute values of a given object version are important for an
evaluator to assess the trustworthiness of the object version in term of its

A Trust-Based Model for Information Integrity in Open Systems 351

quality and security; Attribute value discovery is to collect (calculate, test,
analyze, or verify) the values of a set of attributes given an object version.
Some trust attribute values of an object version can be calculated such as a
owner's reputation and trustworthiness. Others can be dynamically tested,
statically analyzed, or verified from the owner or a trusted authority.

The quality and security features of an object version can be tested by
internal experts or external service providers. In either case, testing can be
conducted statically or dynamically (see [21, 22, 23, 24, and 25] for more
information about software feature testing). The former requires systematic
analysis of the object version in term of its structures, algorithms, functions,
etc. The source code of the object version is required for static analysis.
Traditional methods for detecting security flaws include penetration analysis
and formal verification of security kernels. Other general testing techniques
include path testing, data-flow testing, and syntax testing. Dynamic analysis
is to test the security and/or quality features of the object version in a
controlled environment through a series of well-planned experiments.

Different from the above scenario, where the evaluator is responsible for
verifying the quality and security features of a given object version, the
ConCert project [19] requires that the producer of a code supply proofs for
the security of the code. The project uses certificates to verify the security
features of external programs and files. Certifiable policies cover type and
memory safety (including system call or device access), control-flow safety,
resource usage (CPU, Memory), abstraction boundaries, privacy and
information-flow properties, and much more. Certifications are based on
intrinsic properties of code, not the code producer's reputation. The proofs
provided by those certificates are written in a specific machine-checkable
form. There are several certified code systems: (1) Proof carrying code.
Compiler produces a safety proof in logic and certification consists of proof
checking; (2) Typed Assembly Language. Compiler produces type
annotations for the machine code that imply safety and verification is type-
checking. Both techniques work with native code and no
expensive/complicated JIT compilation step is required. According to [88],
the code developers follow the following procedure to supply certificated
code: (1) start with program in safe language such as Java, SML, Safe C, (2)
transform the code and simultaneously the reason that it is safe, and (3)
finish with machine code, checkable certificate.

There are other forms of information certifications. For instance,
information users can utihze redundancy check (or reworking) to verify the
correctness of a given piece of information. For an active code, the provider
can run the code on a given set of inputs and then the execution trace is used
as a proof of the correctness of the code. For other types of information.

352 A Trust-Based Model for Information Integrity in Open Systems

native certifications may be used: theorem proof and facts or experiments.
Tliose methods can be used in the proposed decision model.

6. CONCLUSIONS

This paper introduces a policy-oriented trust-based decision model for
subjects to select reliable and secure information in an open system. It is a
crucial step for achieving security and quality of service in such an open
system where there is no single authority and where traditional security
models do not work effectively. The proposed model allows a user to
specify what features of external information it can't accept and what
features are favorable to it. Based on this model, an example of a policy
specification has been defined. Selector, a high-level policy language, has
been developed to express the user-defined policy specification that allows
automatic evaluation of the trustworthiness of available object versions of a
given object and select one that meets the user's requirements for
information quality and security. The paper also introduces object
trustworthy calculations, which are important for users to make trust
decisions. Compared with other decision-making approaches, our trust
selection model is easy to understand and can be applied in computing
systems. The model allows users to specify their customized policies to
address their concerns for information integrity.

ACKNOWLEDGMENT

We are thankful to Dr. Robert L. Herklotz for his support, which made this
work possible.

REFERENCES

1. Y. Zuo and B. Panda, "Component Based Trust Management in the Context of a Virtual
Organization," In Proceedings of the 2005 ACM Symposium on Applied Computing, New
Mexico, USA, March 2005

2. A. Josang, "An Algebra for Assessing Trust in Certification Chains," In Proceedings of the
Internet Society 1999 Network and Distributed System Security Symposium, San Diego,
USA, 1999

A Trust-Based Model for Information Integrity in Open Systems 353

3. A. Rahaman, S. Hales, "Supporting Trust in Virtual Communities," In Proceedings of the
33̂ ^̂ Hawaii International Conference on System Sciences, Hawaii, USA, 2000

4. I. Ray, S. Chakraborty, "A Vector Model of Trust for Developing Trustworthiness
Systems," In Proceedings of the 9̂ ^ European Symposium on Research in Computer
Security, Sophia Antipolis, French Riviera, France, 2004

5. T. Yu, X. Ma, M. Winslett, "PRUNES: An Efficient and Complete Strategy for Automated
Trust Negotiation over the Internet," In Proceedings of the Conference on Computer and
Communication Security, Athens, Greece, 2000

6. T. Yu, and M. Winslett, "Interoperable Strategies in Automated Trust Negotiation," In
Proceedings of the Conference on Computer and Communication Security, Philadelphia,
USA, 2001

7. W. Winsborough, N. Li, "Towards Practical Automated Trust Negotiation," In
Proceedings of the IEEE 3̂^̂ International Workshop on Policies for Distributed Systems
and Networks, IEEE Press, Monterey, USA, June 2002

8. L. Xiong, L. Liu, "A Reputation-based Trust Model for Peer-to-Peer E-Commerce
Communities," In Proceedings of the IEEE Conference on E-Commerce, Newport Beach,
California, USA, 2003

9. B .Yu, M. P. Singh, "Towards a ProbabiUstic Model of Distributed Reputation
Management," In Proceedings of the 4̂ ^ Workshop on Deception, Fraud and Trust in
Agent Societies, Montreal, Canada, 2001

10. L. Mui, M. Mohtashemi, A. Halberstadt, "A Computational Model for Trust and
Reputation," In Proceedings of the 35̂ ^ Hawaii International Conference on System
Science, Hawaii, USA, 2002

11."An Introduction to Cryptography, in PGP 6.5.1 User's Guide," Network Associates Inc.,
p. 11-36, http://fi.pgpi.org/doc/pgpintro/

12.Adams, C. and S. Farrell, "RFC2510 - Internet X.509 Public Key Infrastructure
Certificate Management Protocols"
http://www.cis.ohio-state.edu/htbin/rfc/rfc25 lO.html, 1999

13.Feigenbaum, J., "Overview of the AT&T Labs Trust Management Project: Position
Paper," In Proceedings of the 1998 Cambridge University Workshop on Trust and
Delegation, UK, 1998

14.Blaz, M., "Using the KeyNote Trust Management System," AT&T Research Labs,
http://www.crypto.com/trustmgt/kn.html, 1999

15. Chu, Y.-H., J. Feigenbaum, B. LaMacchia, P. Resnick and M. Strauss, "REFEREE: Trust
Management for Web Applications," AT&T Research Labs,
http://www.farcaster.com/papers/www6-referee, 1997

16. P. McDaniel, "On Context in Authorization Policy," In Proceedings of the Eighth ACM
Symposium on Access Control Models and Technologies, Como, Italy,June 2003

17.N. Damianou, N. Dulay, E. Lupu, and M. Sloman, "The Ponder Policy Specification
Language," In Proceedings of the PoUcy Workshop 2001, Bristol, UK, January 2001

18.L. Kagal, "Rei: A Policy Language for the Me-Centric Project," HP Labs Technology
Report, 2002

19. Chang, B., Crary, K., DeLap, M., Harper, R. and Liszka, J., "Trustless Grid Computing in
Concert"
http://www.cs.cmu/~concert/talks/Murphy 2002Trustless/trustless.ppt#l

20. M. Bishop, "Computer Security - Art and Science," Addison-Wesley, 2003

2I.e. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi, "A Taxonomy of Computer
Program Security Flaws," Computing Surveys, 26(3): pp. 211-255, 1994

http://fi.pgpi.org/doc/pgpintro/
http://www.cis.ohio-state.edu/htbin/rfc/rfc25
http://www.crypto.com/trustmgt/kn.html
http://www.farcaster.com/papers/www6-referee
http://www.cs.cmu/~concert/talks/Murphy

354 A Trust-Based Model for Information Integrity in Open Systems

22.K. Ashcraft and D. Engler, "Using programmer-written Compiler Extension to Catch
Security Holes," In Proceedings of 2002 IEEE Symposium on Security and Privacy, pp.
143-159, Berkeley, CA, USA, 2002

23.M. Bishop and M. Dilger, "Checking for Race Conditions in File Accesses," Computing
Systems, 9(2), 1996

24.H. Chen, H. and D. Wagner, "An Infrastructure of Examining Security Properties of
Software," In Proceedings of ACM Conference on Computer and Communications
Security (CCS), Washington DC, USA, 2002

25. B .V. Chess, "Improving Computer Security Using Extending Static Checking," In
Proceedings of 2002 IEEE Symposium on Security and Privacy, pp. 160-173, Berkeley,
CA, USA, 2002

