
DEVELOPMENT OF LOCATION-AWARE 
APPLICATIONS 
The Nidaros framework 

Alf Inge Wang\ Carl-Fredrik S0rensen^ Steinar Brede^, Hege Servold^, and 
Sigurd Gimre"^ 
^Dept. of Computer and Information Science, Norwegian University of Science and 
Technology, NO-7491 Trondheim, Norway, 'Telenor R&D, NO-7004 Trondheim, Norway, 
^Bekk Consulting AS, NO-0102 Oslo, Norway, "*CIBER Norge AS, NO-OIOS Oslo, Norway 

Abstract: This paper presents the Nidaros framework for developing location-aware 
applications that provide location dependent functionality based on the current 
location of the user. The framework can be used to develop location-dependent 
advertisement, city guides, guides for tourist attractions, etc. The framework 
consists of three main components: A runtime system that manages user 
locations and the interaction with the user clients; a creator tool that is used to 
map infomiation and mult'-media content to locations; and a logging tool that 
is used to log the movement of users to monitor the interest for certain 
locations. The paper also describes an implementation of a location-aware tour 
guide for the Nidaros Cathedral in Trondheim that can mn on different mobile 
devices. Further, the paper describes experiences from installing, configuring, 
and running a location-aware tour guide in a real environment. A 
demonstration of the tour guide was tested on PDAs and mobile phones. 

Keywords: Context/location, case studies and experience, applications, tour guide 

1. INTRODUCTION 

In 2005, it is estimated that there will be more than 1.5 billion wireless 
subscribers worldwide. Although mobile computing gives challenges to the 
application developer like handling wireless networks, heterogeneity, limited 
screen size, input device CPU, memory and battery (Satyanarayanan, 1996), 
it gives possibilities to develop new types of applications. One such type is 
location-aware appUcations. Location-aware appHcations are useful for 



172 A.I. Wang, C.-F. S0rensen, S. Brede, H. Servold, and S. Gimre 

several reasons: Firstly, the limited screen size of mobile devices can be 
better utilized by providing user interfaces that are related to the context of 
the user. By using the location, the parts that are not relevant to the current 
location can be left out. Secondly, the user experience can be improved by 
providing the user with information and interaction that are relevant to the 
current context. Here the context is necessarily not only location, but can 
also be time, weather, temperature, altitude etc. Thirdly, a system can collect 
context information from users to ftirther improve the location-aware 
system. For instance in a tour guide system for an art gallery, the system can 
log which paintings the visitors spend most time by. This information can be 
used to publish additional information about the most popular paintings in 
the location-aware guide system. 

Several location-aware systems for tour guiding have been developed 
like the Lancaster GUIDE (Cheverst et al., 2000), CyberGuide (Abowd et al, 
1997) and MUSE (Garzotto et al., 2003), but most of these systems are 
tailored for a specific location-aware application. In 2003, the Norwegian 
University of Science and Technology (NTNU) started together with 
Telenor, the largest telecom company in Norway, to develop a general 
framework for creating, running, and analysing mobile location-aware 
systems. The motivation for this work was to enable rapid development of 
location-aware systems that can provide the user with information or 
multimedia content dependent on the user location. Another important aspect 
of the framework was to enable support for different mobile clients with 
differciit characteristics from the same system. From similar projects, we 
have found that location-aware systems use various client devices from 
rather big portable PCs down to small PDAs (Sorensen €t al., 2003). Also we 
noticed that some location-aware systems use customized hardware to get 
the required characteristics. In addition, the evolution of mobile devices 
makes it necessary to be able to adapt to fixture devices with new and useful 
capabilities. From talking with people managing a PDA-based tour guide 
(not location-aware) at the Nidaros Cathedral, we understood that theft was a 
serious challenge. Letting people use their own mobile equipment (like 
mobile phones) for such services was found to be very interesting. 

Another shortcoming for many of the existing systems is that they are 
tailored to support only one type of positioning technology like GPS, GSM, 
Bluetooth, IR or WLAN positioning. We used in the Nidaros framework a 
location server to fetch the user positions from various sources and to send 
this information back to the system when needed. The location server 
examines position technologies available to return the most accurate 
position. 



Development of Location-aware Applications 

Development | Operation 

173 

Figure 1. The Nidaros framework for development of location-aware applications 

Figure 1 shows an overview of the Nidaros framework for development 
of location-aware applications. The framework covers development and 
operation of a location-aware system. The development phase is supported in 
the framework with a creator tool to add and map location-dependent 
content, an XML client-server interface and templates for creating clients. A 
runtime system and a statistic tool support the operation phase. In addition 
the framework make use of a location system database and a location server. 

2. THE FRAMEWORK 

This section presents the main components in the Nidaros framework. 

2.1 The Development Phase 

The development phase of the framework is supported by three 
components: A creator tool, client templates, and the XML interface 
between client and server. 

The Creator Tool 

The creator tool is a system for managing information and multimedia 
content related to locations that are to be part of a location-aware 
application. The tool provides a simple user interface that facilitates 
describing areas hierarchically into maps, zones and objects as a tree 
structure. A map represents the whole area of the location-aware application. 
A map can be divided into one or more zones that represent some specific 



174 A.I. Wang, C.-F. S0rensen, S. Brede, H. Servold, and S, Gimre 

areas in the map. Within a zone, you can add several objects. These data 
objects typically represent physical objects and may contain information, 
audio-clips, video-clips and similar. The maps, zones and objects are 
mapped to a local Cartesian coordinate where the x- and the y-axis are 
represented with a 32-bit integer. The coordinate system can be mapped to 
various geographical positioning systems and makes the framework 
independent of the actual coordinate systems. By using a Cartesian 
coordinates in the application, it is easy to visualize maps and objects on the 
screen of the client device. In the local coordinate system, a map is 
represented as a rectangle. A zone is represented as a polygon of four 
coordinates. An object is represented by a specific coordinate and with a 
hotspot area represented by a polygon similar to a zone. The hotspot area is 
used to determine if a user is close to an object to trigger some location-
aware event. 

In the tour guide application we developed for the Nidaros Cathedral 
(described in Section 3), the map represented the whole cathedral, the zones 
represented the main parts of the cathedral, and the objects represented 
physical objects Hke alters, the pipe organ, paintings, etc. 

The creator tool offers a user interface for how various devices like 
laptops, PDAs and mobile phones are mapped to the local coordinate system. 
The mapping identifies the type of device by name, the size of the device, an 
offset coordinate (Xoffset,Yoffset), a rotation coordinate (Xrotation,Y rotation) ^ ^ d a 

rotation angle Rangie- These data are used to compute the transformation from 
real world coordinates to the local coordinate system. 

The creator tool can be used to graphically visualize the results of using 
the tool. The visualization shows the map you have created with named 
zones and objects. The zones and the objects are shown in different colours. 
Hotspot areas are shown for the objects. 

The Client Templates 

The framework provides a template for reducing time to implement 
clients for location-aware applications. The template is intended for clients 
that run Macromedia Flash applications. Flash makes it possible to make 
advanced and dynamic interfaces, and can run on various operating systems 
like MS Windows, Mac OS, Linux, Unix and Pocket PC. The Flash player is 
also capable of audio and video playback. 

The template offers the basic functionality needed to implement location-
aware clients. The template includes functionality for server communication 
using XML, graphical highlighting of zones and objects, management of 
hotspots (event-triggered actions), and initialization of multimedia playback. 
When the template is used, the developer has only to design the user 



Development of Location-aware Applications 175 

interfaces and possibly additional functionality if wanted. The template 
makes the implementation of clients easier and possible misunderstandings 
of the XML-interface with the server are avoided. 

The XML Interfaces 

The Nidaros framework provides an open XML interface to the runtime 
system that makes it possible to create clients for different devices using 
different technologies like Flash, Java 2 Micro Edition, HTML, .NET 
compact framework, etc. The only requirement is that the client is capable of 
managing XML communication and adheres to the specified XML interface. 
The client application can send a request to the runtime system in several 
different ways, but it has to follow a predefined XML syntax. The response 
will likewise follow a predefined syntax. If the client application requires 
downloading of multimedia content, this is done by an HTTP-request to a 
file server (see Section 2.2). 

The root element in every XML request is a locationRequest. This root 
element can contain several different elements depending on what kind of 
information that is wanted. Every locationRequest must contain an element 
called mac that holds the mac address of the client device. The runtime 
server needs the mac address to identify and find the position of the user. 
The following information can be requested from the server: Position will 
get the current position of the user, simulatedPosition will get a simulated 
position of the user (useful for demonstration and testing), friendsPosition 
will return positions of other users registered as friends, dynamiclnfo will 
return objects that the user is within the hotspot area of, tracks will return 
some predefined routes that the user might want to follow, and messages is 
used for sending and retrieving messages between users. When a request is 
sent to the server, the client will get a response from the server with the 
necessary information depending on the request type. 

2.2 The Operation Phase and Runtime System 

The main components used in the operation phase are the user clients, the 
runtime system and the location system database. The user clients are 
developed using the client template and the XML-interface described in 
Section 2.1. The runtime system is the heart of the Nidaros framework that 
brings location-aware applications alive. The runtime system manages the 
information in the database including maps, zones, objects, users, and etc. 
The main task of the runtime server is to feed the clients with correct 
information according to the client position. 



176 A.I. Wang, C.-F. Sorensen, S. Brede, H. Servold, andS. Gimre 

Figure 2 shows the physical view of the runtime system. The runtime 
system supports several types of clients and identifies three client types we 
have implemented. The figure shows that wireless LAN is used between the 
server and the clients, but also other types of wireless networks have been 
used. Currently, our mobile phone client uses GPRS for communication 
between the client and the server. The runtime system itself consists of four 
main components described below. 

A 
PDA Client File Server 

Mobilephone 
Client 

Runtime 
Server 

Location 
Server 

Tablet PC 
Client 

Database 

Cordis 
RadioEye 

GPS 

IrDa 

Others (GSM, 
Bluetooth etc) 

Figure 2. The Physical view of the runtime system 

The file server stores media files accessible for mobile clients. A file 
server is used because mobile devices are not likely to store all media files 
locally because of the limited memory. How much the file server is used 
depends on the magnitude of multimedia used and the storage capability of 
the mobile device. Multimedia elements used often should be cached on the 
device. 

The runtime server is responsible for handling requests from the clients 
and providing the services requested. A more detailed description of this 
component is given later in this section. 

The location system database stores all information used by the clients 
and the server. This database is also used by the creator tool when creating 
location-aware applications, and by the statistical tool for analysis of user 
patterns. 

The location server gets the current positions of the clients through 
various interfaces to different position technologies like WLAN positioning, 
GPS, IrDA, Bluetooth etc. A more detailed description can be found in 
Section 2.4. 

From early scalability tests we have found that the wireless network 
between the clients and the server will be the main bottleneck of the system. 
If the GSM network is used, only audio streaming is supported. If WLANs 
like IEEE 802,11b are used, video streaming is supported. The number of 
simultaneous users to be served depends on how well the physical network is 
implemented. Another possible bottleneck can be the file server. However, 
such servers can be duplicated to achieve better performance. 



Development of Location-aware Applications 177 

Figure 3 shows the logical view of the runtime server architecture. The 
system is communicating with client applications through the GLocServlet 
class. Data is exchanged as XML, and the XMLTransformer class interprets 
and transforms the information sent between clients and the server. For the 
runtime server, we decided to use an architecture based on a centralized 
control model. This means that all information flow through the 
MainController class. By using centralized control, it is easy to analyse 
control flows and get the correct responses to the given client requests. It 
also makes it easy to substitute the servlet class with another class for 
handling the client communication and to add new interfaces to the system 
as needed. The UserManager class is responsible for maintaining 
information about the users. This task includes storing the user's last position 
and deciding whether a person is allowed to communicate with another 
person (defined as friend). The PositionManager class is responsible for 
returning the user position, adjusted to the type of mobile device used. The 
TrackManager class is responsible for keeping information about the 
available predefined tracks. Each track has a unique name, so the client 
application can either request all tracks or one particular track. The 
DbManager class is responsible for all communication with the database. 

GlocServlet 

Main Controller 

r ! — 1 i — 11——^1 ...I T F = ^ — I 
XML Transtormer TrackManager UserManager PositionManager DbManager 

Figure 3. The Logical view of the Runtime system 

2.3 The Analysis Phase 

The statistical tool is useful for analysing the use of location-aware 
applications. The tool uses data logged by the runtime system to look at user 
behaviour and what objects that are most popular. Four classes implement 
the statistical tool: GUI, LogTool, DbManager and DbLog. The GUI class 
presents the different services. The LogTool class is responsible for 
calculation and manipulation of the data stored in the database. The 
DbManager and DbLog classes handle database issues. 

2.4 The Location Server 

The location server (see Figure 4), developed by Telenor R&D, is a 
framework for uniform, geometric-based management of a wide variety of 



178 A.I. Wang, C.-F. S0rensen, S. Brede, H. Servold, andS. Gimre 

location sensor technologies. The goal of this framework is to have one 
server that can get positions of mobile devices through multiple location 
sensing technologies. By using the location server in the Nidaros framework, 
we do not need to tailor our system to use a specific positioning technology. 
We can also use different positioning technologies within the same 
application. 

Applications 

tocatfonserver 

Figure 4. The architecture of the location server 

The server includes a middleware protocol specification and a specification 
of quality-of-service parameters. Further, the server has support for event-
driven position reporting (i.e. for change of position) and support for 
methods for merging and position enhancements. Figure 4 shows an 
overview of the location server architecture. The architecture is layered and 
shields the application from the details of collecting and merging location 
information from a variety of sources. The devices that are positioned by the 
server are identified by the MAC-address of the device. The location server 
also manages authorisation for accessing the position of a device. Further, 



Development of Location-aware Applications 179 

the architecture provides support for monitoring and tracking of mobile 
devices. The architecture provides several interfaces to various positioning 
technologies. The location server currently supports positioning using GPS, 
GSM, and WLAN. 

One advantage from using the location server is that this server handles 
the complexity of merging locations that might include partly overlaps of 
positioning systems and seamless transitions between different position 
systems. This is especially useful for location-aware applications that cover 
both indoor and outdoor areas. 

2.5 The Location System Database 

The location system database stores location data, log data, and user data. 
The location data is represented in five tables describing maps, zones, 
objects, preferences, and mapping. The motivation for these tables is that 
one location can have several maps covering different territories, each map 
can cover several zones, each zone can contain several objects, and each 
object can be connected to several preferences. The preferences of an object 
are used to provide the dynamic menu service. The user can state the 
preferences in the attraction, and only objects matching his preferences will 
be displayed in the client menu. In addition, there must exist a table with 
mapping information to transform locations from world coordinates to 
coordinates adjusted to fit the client map. 

The user d.'̂ ta is represented in three tables describing users, user groups 
and user preferences. The user table contains an MAC-id of the user device 
and other information. The user group table is used to group users that are 
friends to allow services like tracking friends and messaging. The user 
preferences table stores information about the user's main interests. 

The log data is represented in two tables. One table is used for storing 
user movements and one table for storing what kind of objects the user is 
interested in. The statistical tool uses the log data. 

3. IMPLEMENTING A TOUR GUIDE USING THE 
FRAMEWORK 

We created a location-aware tour guide for the Nidaros Cathedral in 
Trondheim to test the Nidaros framework in a real setting. The cathedral had 
an existing PDA-based tour guide, called Nidaros Pocket Guide (NPG) that 
was not location-aware. To show the flexibility of the Nidaros framework, 



180 A.I. Wang, C.-F. Serensen, S. Brede, H. Servold, andS. Gimre 

we decided to implement support for two different types of clients: A PDA 
and a mobile phone. 

3.1 The PDA Client 

We decided to develop our location-aware PDA client in Flash MX. This 
made it possible to reuse code from the NPG and the client template. Our 
PDA application provided functionality for selecting language, enable trace 
of own movement, show friends on a map, show zones and objects on a map 
(with highhghting of current zone and objects), displaying text about objects, 
and playback of audio or video about an object. The PDA used to run the 
client was an iPaq with Windows CE and the wireless LAN IEEE 802,11b 
network integrated. This made it possible to get the position of the device 
using WLAN-positioning. The location-awareness was presented in the 
client application in two ways. The first way was to show a map with the 
position of the user, position of possible friends, highlighting of current zone 
and nearby objects. The second way was optional for the user, and made the 
application able to initiate display of objects (text, audio or video) when the 
user entered the hotspot area of an object. A PDA client is shown to the left 
in Figure 5. 

Figure 5. The system running on iPaq and SonyEricsson P900 and the WLAN tag 

3.2 The Mobile Phone Client 

A mobile phone client could either be implemented in J2ME or using 
HTML and the web-browser installed in the phone. We decided to do the 
latter by implementing an additional servlet component that communicates 
with the runtime server and produces HTML for the mobile phone. We used 
WAP push to send the appropriate web pages when the user was within a 
specific area to enable the client to react on the user location. This made it 



Development of Location-aware Applications 181 

possible to, e.g., get the phone to initiate playback of a video when the user 
was close to a specific alter. We used a SonyEricsson P900 in the test 
because of its support for WAP push and the built-in multimedia player. To 
the centre in Figure 5, the mobile phone client is running on a P900. The 
most common way to position mobile phones is to use GSM positioning. 
This method is too course-grained to be used for positioning inside a 
cathedral. To solve this problem, we came up with the idea of letting the user 
wear WLAN tags that could be positioned using WLAN positioning. WLAN 
tags are produced by RadioNor Communications, and are small WLAN 
radios that transmit a MAC-ID. A picture of a WLAN-tag is shown to the 
right in Figure 5. The size of the tag is about 4cm wide and 3cm high. For 
the mobile phone client, it was necessary to register the MAC-ID of the 
WLAN tag and the mobile phone number to link the phone to the tag. 

3.3 The Position Technology Used 

We used the Cordis RadioEye WLAN positioning produced by RadioNor 
Communications to position the client devices used in our location-aware 
application. The RadioEye is a small box with advanced antenna technology 
and a Linux-server that can determine the physical coordinates of every 
WLAN-terminal that are active within its coverage area. The sensors decode 
the MAC addresses of the network devices and determine their geographical 
position with a typical accuracy of 1-2 meters. A RadioEye covers a radios 
about 60 degrees fro!i;.i the centre and can e.g. be placed in the ceiling of a 
building. 

3.4 Setting up and Running the Location-aware 
Application 

The demonstration of the location-aware tour guide for the Nidaros 
Cathedral was performed May 14th 2004. Before we could start to run the 
demonstration, we had to install the infrastructure needed for running the 
system. Four RadioEyes were installed at the gallery of the cathedral to 
cover four different zones of the building. After the RadioEyes were in 
place, the coordinates from the RadioEye server had to be aligned with the 
coordinates used by the system. This was done by taking measurements from 
different locations in the cathedral. These measurements were made in a pre­
test before the real demonstration. Approximately 20 people were present at 
the demonstration representing various technology-oriented companies as 
well as the media (television, magazines and newspapers). The 
demonstration of the system was very well received and especially the 



182 A.I. Wang, C.-F. S0rensen, S. Brede, H. Servold, and S. Gimre 

mobile phone application attracted much attention. As far as we know, there 
are no similar location-aware applications running on mobile phones. 

4. EXPERIENCES 

This section describes experiences we gained from developing a location-
aware application using the Nidaros framework. We have found the 
framework very useful for several reasons. Firstly, the server side of the 
system can be used directly without any modifications. The only thing 
missing is the information to be used in the location-aware application. This 
information can easily be added by using the creator tool. In addition, the 
creator tool can be used to make changes to the location information before 
and during the operation phase. 

By using the available client template, the time to implement a client is 
rather short. Currently, client templates are only available for HTML and 
Flash. It would have been useful to provide templates for Java 2 Micro 
Edition and .Net Compact Framework. It does not require much work to 
write a client from scratch using the defined XML-interface. XML parsing 
might cause a challenge for a client implemented in J2ME because of the 
memor>' limitation in J2ME. However, the XML messages used in the 
Nidaros framework are relatively small and simple, and do not contain 
several levels. A possible extension of the Nidaros framework could be to 
make a client generator to ease the implementation of new clients for all 
client technologies. 

The simulated movement of users was found to be a very useful feature 
of the runtime system and was invaluable for testing client applications. It 
takes several hours to set up a real environment with real sensors, and it 
would be time consuming to engage real users to debug the application. 

The database used in the framework was found general enough for the 
tour guide application. However, there are limitations on what type of 
information that can be stored. This means that the database scheme might 
have to be extended to fit any location-aware application. 

We introduced a file server that could feed the clients with multimedia 
contents because the limited storage available on client devices. In an ideal 
system, all the media files should be stored locally on the device for quick 
and responsive presentations. This was impossible for the tour guide for the 
Nidaros Cathedral if more than one language should be supported on the 
same device. Most of the multimedia files were audio files, but it was not 
storage space enough for more than one language. By introducing more 
videos, this would be a bigger problem. We found from the demonstration in 
the cathedral that the user had to wait from 5 to 7 seconds before the audio 



Development of Location-aware Applications 183 

or video was played. We stored the most used media files on the device to 
avoid such long waiting times. An extension of the Nidaros firamework could 
be to have smarter media file communication management. This means, e.g., 
that the mobile client can start to pre-fetch files that are likely to be played in 
the near fixture based on the location and movement of the user. 

The mobile phone client got tremendous attention when we demonstrated 
the location-aware tour guide in the Nidaros Cathedral. The main reason was 
to be demonstrated such advanced applications running on devices that many 
own. The current solution involves a WLAN-tag to make the system work. 
For a commercial tour guide for mobile phones, the WLAN-tag could be 
available in the entrance of a sight by paying the entrance fee. Sending an 
SMS that includes the ID of the tag to the tour guide server could initialize 
the setup of the mobile location-aware tour guide. The combination of using 
a WLAN-tag together with a mobile phone gives other new exiting 
opportunities for location-aware applications that can be used both indoors 
and outdoors. The WLAN-positioning technologies like the RadioEye can be 
installed in all public building like airports, hospitals, shopping centres etc. 

The use of a location server makes it easy to adapt to new positioning 
technologies when they are available. The only required change of the 
system is to implement a new interface for the new position technology in 
the location server. 

The choice of using XML for data exchange between client and server 
has many benefits. The main benefit is the extensibility of the interface and 
provision of an open interface to other systems. The main disadvantage of 
using XML is the overiiead sending messages between client and server. For 
a system with many users, this can cause scalability problems because of the 
limited bandwidth in wireless networks. A problem we experienced running 
the location-aware tour guide, was the high demand on CPU and memory on 
the mobile clients for parsing the XML-data. Generally, the clients spent 
more time on parsing XML data than they used to send requests and receive 
responses. A high demand on the CPU will also make the battery run out 
faster. We foresee that this problem will not be so dominant for fixture 
mobile devices with improved performance and battery technology. 

5. RELATED WORK 

This section describes work on similar frameworks from location-aware 
and context-aware applications. 

The NEXUS Project (Volz and Sester, 2000) has developed a generic 
infirastructure that can be used to implement all kinds of context-aware 
applications both for indoor and outdoor services. The NEXUS clients 



184 A.I. Wang, C.-F. S0rensen, S. Brede, H. Servold, and S. Gimre 

access the server via a standardized user interface running on the mobile 
device carried by the user. The interface has to be adjusted to the different 
kinds of clients, especially concerning the different level of computing 
power, different amounts of memory and different size of displays. A 
NEXUS station can manage sensor systems that measure both global 
indicators (like temperature) and object related information (like location). 
The NEXUS framework uses separate components for sensor management 
and communication, and use spatial models with multiple representations to 
model the physical world stored in distributed databases. 

The Framework for Location-Aware ModElling (FLAME) is a 
configurable, generic software framework for development of location-
aware applications (Coulouris et al., 2004). FLAME provides support for 
multiple sensor technologies, provides a simple spatial model for the 
representation of locatable entities. In addition, FLAME provides a simple 
event architecture for the presentation of location information to 
applications, and a queryable location database. The framework and its 
applications are largely event-driven in order to accommodate the real-time 
nature of the location information that they handle. The database holds the 
initial states (like static regions), and it also holds a synopsis of the real-time 
location information. A region manager stores and retrieves regions from the 
database. A spatial relation manager generates application-related events to 
satisfy currently active subscriptions. The event adapters generate events, 
e.g., when a person has moved a 'Terson Movement Event" is generated. 

Dey and Abowd (Dey and Abowd, 2001) presents requirements and a 
conceptual framework for handling context information. The requirements to 
be fiilfilled by the framework are Separation of concerns, Context 
interpretation. Transparent, distributed communications. Constant 
availability of context acquisition. Context storage and history, and 
Resource discovery. The conceptual framework for handling context by Dey 
and Abowd suggests the use of context widgets to provide access for 
applications to context information from their operating environment. The 
context widget is regarded as a mediator between applications and the 
operating environment, insulating applications from context acquisition 
concerns. Context-specific operations are addressed in the framework by 
four categories of components: interpreters, aggregators, services and 
discoverers. The framework defined by Dey and Abowd focuses more on the 
management of various context sources and to represent these context 
sources in an application. 



Development of Location-aware Applications 185 

6. CONCLUSION 

Although there exist different types of location-aware applications, there 
are still many location-aware services that have not been explored. Many of 
the existing location-aware applications are tailored just for one purpose. In 
this paper, we have presented the Nidaros framework to be used to 
implement location-aware applications. Our framework provides support for 
the development phase, the operation phase and the analysis phase. In the 
development phase the creator tool is used to add needed information into 
the database to be used by the final application. Further, the client templates 
can used for faster development of mobile clients with some basic 
fiinctionality. In the operation phase, the runtime system manages all 
interaction between clients and the server including communication of 
multimedia files and determination of clients' positions using a location 
server. For the analysis phase a statistic tool can be used to analyse the usage 
of the location-aware application, detect possible bottlenecks of the system, 
and see what objects that are most popular. 

References 

Abowd, G. D., Atkeson, C. G., Hong, J., Long, S., Kooper, R., and Pinkerton, M. (1997). Cy-
berguide: A Mobile Context-Aware Tour Guide. Wireless Networks, 3(5):421-433. 

Cheverst, K., Davies, N., Mitchell, K., and Friday, A. (2000). Experiences of developing and 
deploying a context-aware tourist guide: the GUIDE project. In Sixth Annual International 
Conference on Mobile Computing and Networking, pages 20-31, Boston, Massachusetts, 
United States. ACM Pi ess. 

Coulouris, G., Naguib, H., and Samugalingam, K. (2004). Flame: An open framework for 
location-aware systems, http://wwwlce.eng.cam.ac.ulc/qosdrearii/ Publications/flame.pdf. 
Submitted for publication. 

Dey, A. K. and Abowd, G. D. (2001). A Conceptual Framework and a Toolkit for Supporting 
the Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction 
(HCI) Journal. Special Issue: Context-Aware Computing, 16(2-4):97-166. 

Garzotto, F., Cinotti, T. S., and Pigozzi, M. (2003). Designing multi-channel web frameworks 
for cultural tourism applications: the MUSE case study. In Museums and the Web 2003, 
Charlotte, North Carolina, USA. 

Satyanarayanan, M. (1996). Fundamental Challenges in Mobile Computing. In Fifteenth An­
nual ACM Symposium on Principles of Distributed Computing, pages 1-7, Philadelphia, 
Pennsylvania, United States. ACM Press. 

S0rensen, C.-F., Wang, A. I., and Hoftun, 0. (2003). Experience Paper: Migration of a Web-
based System to a Mobile Work Environment. In lASTED International Conference on 
Applied Informatics (Ar2003), pages 1033-1038, Innsbruck, Austria. 

Volz, S. and Sester, M. (2000). Positioning and Data Management Concepts for Location 
Aware Applications. In 2nd International Symposium on Telegeoprocessing, pages 171-
184, Nice-Sophia-Antipolis, France. 

http://wwwlce.eng.cam.ac.ulc/qosdrearii/



