
Chapter 13 

FORENSIC PROFILING SYSTEM 

P. Kahai, M. Srinivasan, K. Namuduri and R. Pendse 

Abstract Hacking and network intrusion incidents are on the increase. However, a 
major drawback to identifying and apprehending malicious individuals 
is the lack of efficient attribution mechanisms. This paper proposes a 
forensic profiling system that accommodates real-time evidence collec­
tion as a network feature to address the difficulties involved in collecting 
evidence against attackers. 

Keywords: Forensic profile, intrusion detection, alert, probe, audit trail 

!• Introduction 
Most organizations secure their networks using encryption technolo­

gies, network monitoring tools, firewalls and intrusion detection and re­
sponse mechanisms. Despite all these security measures, compromises 
occur daily. Evidence collection, IP traceback and identification of at­
tackers are as important as effective intrusion detection when a network 
attack takes place. However, while intrusion detection systems (IDSs) 
are fairly mature, very few tools exist for IP traceback and attacker 
identification. Prosecution is hampered by the non-availability of ev­
idence in cases involving expert hackers and jurisdictional constraints 
on law enforcement. This paper proposes a forensic profiling system 
that accommodates real-time evidence collection as a network feature to 
address the difficulties involved in collecting evidence against attackers. 

2. Related Work 

Collaboration between intrusion detection and response systems has 
been the focus of recent research. MIRADOR [3] implements coopera­
tion between multiple intrusion detection systems through a cooperation 
module. The cooperation module, CRIM [4], provides the interface for 



154 ADVANCES IN DIGITAL FORENSICS 

alert clustering, alert merging and alert correlation. The Common In­
trusion Specification Language (CISL) [7] presents a language for com­
munication between intrusion detection systems in a network. 

Alert aggregation and alert correlation have been investigated by sev­
eral researchers [3-5, 10, 13]. The clustering of similar intrusion alerts 
is discussed in [3, 13], but the authors do not emphasize the underlying 
relationships between alerts. Also, most alert correlation methods are 
restricted to known attack scenarios. A formal framework for alert cor­
relation and detection of multi-stage attacks is described in [10]. Alert 
correlation is performed if the consequences of a previous alert serve as 
prerequisites for the current alert. But the alerts do not confirm the 
possible consequences. For example, the detection of a buffer overflow 
attack does not imply that the attacker was successful in acquiring root 
privileges. In order to determine if the attack was indeed successful, 
participation from other network components is essential. This paper 
proposes a mechanism for real-time forensic evidence collection, where 
each network element that detects suspicious activity provides evidence 
in the form of log entries indicative of the activity. 

3. Forensic Profiling System 
The Forensic Profiling System (FPS) engages a client-server archi­

tecture. Each node in the network, referred to as a forensic client^ is 
capable of detecting an anomaly, upon which it warns a central forensic 
server about the anomaly in the form of an alert. All the forensic clients 
participate in distributed intrusion detection and, therefore, maintain 
logs. A forensic client can be a router, signature analyzer, IDS, firewall 
or network host. The FPS logical architecture, presented in Figure 1, 
shows the interactions between the forensic server and forensic clients 
using alerts and probes. 

Upon detecting an incident, a forensic client sends an alert to the 
forensic server along with evidence (logs) indicative of the incident. The 
forensic server correlates the alerts and the responses to any probes it 
issues and builds a forensic profile. The generation of probes is depen­
dent on the forensic profile database maintained by the forensic server. 
The database contains information about known/investigated attacks in 
the form of descriptors called forensic profiles, 

3.1 Forensic Profiles 
A forensic profile is a structure that provides information about an 

attack in a succinct form. In its nascent state, a forensic profile, is based 
on knowledge about an attack; it is a collection of alerts that provides 



Kahai, et al. 155 

1 Host1 Host 2 

Forensic 
Server 

Hosts 

1 Alert 
-M 

J Probe 

1 Host 1 Host 2 

Host n 

Firewall X / ' 

Hosts Hostn 

N 
T 
E 
R 
N 
E 

1 T 

Figure 1. Forensic Profiling System (FPS) architecture. 

an indication of the attack. An attack is composed of a series of inter­
related events. A subset of these events might be common to several 
attacks. Thus, a stand-alone event does not give complete information 
about an attack. In order to ascertain that a particular attack has 
occurred, a certain minimum number of events must be detected. A 
profile is a structure/descriptor that defines an attack in terms of its 
related events; it provides relevant information about the attack in terms 
of its associated alerts. 

The passive state of a network is defined as the state wherein the 
network is involved in normal activities that do not impact its security. 
In the passive state, the forensic server maintains a database of passive 
profiles of all known attacks. The passive profile is partial because it 
provides static and general information about an attack. The detection 
of an event generates an alert. A passive profile may become active 
when an alert is generated. The passive profiles, which contain a match 
for the alert generated, are considered to be active. Figure 2 shows the 
relationship between the Alert X received from a forensic client with the 
forensic profile database, which is required to shortlist all active profiles. 
Alert X is a subset of the alerts associated with Forensic Profiles 1 and 
3. Therefore, the Profile Descriptors 1 and 3 are activated. 

As an alert is a parameter of a profile, the forensic server searches for a 
match for the alert in the passive profiles and generates a stack of active 
profiles. To select a specific active profile, the forensic server queries the 
other network entities for a similar kind of event by transmitting a probe 
to all the forensic clients. If a forensic client responds with information 
pertinent to one or more active profiles, the forensic server reduces the 



156 ADVANCES IN DIGITAL FORENSICS 

Forensic Profile 
Database 

Forensic Server 
Match Alert X 

Profile Descriptor 1 

Alert A 

Alert X 

Alert B 

Profile Descriptor 2 

Alert Z 

Alert W 

Alert Y 

Profile Descriptor 3 

Alert X 

Alert W 

Figure 2. Active profile descriptors created by an alert. 

active stack accordingly. This process recurses until the entire attack is 
detected. The forensic profile is thus constructed from the detection of 
the first alert to the detection of the attack. 

3,2 Client-Server 
The forensic server coordinates the activities of forensic clients. A 

forensic client continuously searches for anomalous activity and listens 
to probes from the server through agent.alert and agent.probe, respec­
tively. The detection of a security incident involves active monitoring 
and active parsing. Active monitoring involves observing performance 
parameters such as CPU utilization and event-log intensity of the client 
and checking for discrepancies. Active parsing involves continuously 
scanning entries in the log files and history files and checking for sus­
picious entries (keywords), such as authentication failure, access denied 
and connection failure. An alert has When-Subject-Object-Action fields. 
Subject is the forensic client that triggers the alert. Action specifies the 
event, and Object is the network element on which the Action occurs. 
Events capable of triggering alerts are listed in Table 1. 

The forensic server generates two kinds of probes, Check-ProUe and 
GetLog_Probe. Check_Probe checks for suspicious activity in relation 
to an earlier alert received by the server. If the forensic client responds 
with a NULL packet to the Check_Probe then the server does not send 
a GetLog_Probe. Otherwise, the forensic server sends GetLog_Probe to 



Kahai, et al. 157 

Table 1. Suspicious events capable of triggering alerts by forensic clients 

Event 
Change in CPU Utilization 

Frequency of log entries 
Increased Memory Utilization 

N/w utilization 
Login Denied 

Invalid IP (reserved and not used) 
System File deletion 

Change of privileges for System Log 
Change of privileges for History File 

Connection Failed 

Upload File 

Unsetting History File 
Change attributes of history file 

Kill logging daemon 
Kill kernel log daemon 

Alert 
CPU.Util{SubjectIP, Up/Lo Flag, 

Percent} 
Log-Intensity{ SubjectIP, FreqLogEntries} 

Mem- Util{ SubjectIP, Percent} 
BandWidth{ SubjectIP, CurrentUtil} 
DeniedLogin{SubjectIP, Username, 

Remote/local, AttemptNo} 
InavalidIP{SubjectIP, Invalid IP} 
DeleteFile{ SubjectIP, FileName} 

Chmod{SubjectIP, Syslog} 
Chmod{SubjectIP, Hist} 

FailCon{SrcIP:SrcPort,DestIP:DestPort, 
AttemptNo} 

FileUpload{SubjectIP (Server), 
FileName} 

UnsetHist{SubjectIP} 
Chattr{SubjectIP, Hist} 
Kill{SubjectIP, LogD} 
Kill{SubjectIP, KlogD} 

receive the log entries for that particular event. Figure 3 shows the 
Probes A, B and W corresponding to the alert and the forensic profiles 
shown in Figure 2. 

The mechanism discussed in Section 3.1 is appHcable to unknown 
attacks. An unknown attack does not have a passive profile. However, 
since attacks have common events that trigger them, the alerts generated 
would be used to save the log entries in the forensic server that can be 
later used to trace the attacker and corroborate evidence. Intrusion 
detection systems, which are based on attack signatures, are unable to 
track illicit activity caused by a new or unknown attack. The forensic 
profihng system deals with this problem by creating an unstructured 
profile. If an unsolicited event does not match any of the known profiles, 
an unstructured profile is constructed with all the alerts generated in 
the same region and time span. This ensures that even if the attack was 
not stopped, evidence related to the activity is collected and saved. 

3.3 Active Event Monitoring 
Active monitoring is a process that continuously checks for varia­

tions in the intensity of events. Exponentially weighted moving average 
(EWMA), a statistical process control technique, is used to detect drift 



158 ADVANCES IN DIGITAL FORENSICS 

Forensic Server 

X f < 
O 1 o 

< Xm 

QQ 
0) 
JQ 
O 

Q. 

^ 
^ 
y 

^1 t °-t 
Forensic Client 

Figure 3. Sample forensic server/client communications. 

in a parameter being monitored [15]. The decision regarding the state of 
control of a process at any time instant depends on the EWMA statis­
tic, which is an exponentially weighted average of all the prior data 
and depth of memory. The EWMA control technique takes the statistic 
(CPU utilization, traffic intensity, log event intensity, memory utiliza­
tion) that is to be monitored as argument in real time and recursively 
checks if the current value lies within the control limits. The control lim­
its are determined by training data composed of usual or normal events. 
The testing data are interspersed with intrusive events. The events in 
an information system are closely related to each other. Therefore, the 
EWMA technique that makes use of auto-correlated data has been ap­
plied. The EWMA statistic for \-th observation z(i)^ is given as: 

z{i) - A • x{i) + {l-X)'z{i-l) i = l..n (1) 

where z(0) is the mean of the training data, x(i) is i-th observation, n is 
the number of observations to be monitored and 0 < A < 1 is the depth 
of memory. The depth of memory determines the rate at which the past 
observations enter into the calculation of EWMA statistic. Convention­
ally, A = 1 imphes the most recent observation influences EWMA. Thus, 
larger values of A give more weight to recent data. The depth of memory 
depends on the parameter being monitored, i.e., greater depth into the 
history of events is required for event log intensity than for CPU utiliza­
tion. For our calculations, A lies between 0.2 and 0.3 for log intensity 
measurement and 0.8 for CPU utilization. An anomaly is detected if z(i) 
falls outside the control limits and an alert is generated by the forensic 
client to the forensic server. 

3.4 Active Parsing Enabling Mechanisms 
Most alerts generated by the forensic clients are based on parsing 

log files. Thus, the efficacy of FPS depends on maximizing the logging 
mechanisms of forensic clients. 



Kahai, et al. 159 

Continually parsing a history file helps identify the execution of sus­
picious commands like chattr, chmod for critical files such as log files 
and the history file itself. User activity logging can be configured on a 
Linux machine by making use of the process accounting package. All 
the commands used at the console are logged into a binary file. This 
provides more information about command execution than the history 
file in terms of the user who executed a command, CPU time, connection 
times for each user, etc. Network monitoring tools must be deployed for 
logging network activities. Firewalls must be configured to log connec­
tion failures, and servers must be configured to log actions specific to 
the services provided by the server. 

4. Case Study 
This section presents a case study involving a WU-FTP attack [2] on a 

network, interjected by the alerts and probes generated by FPS if it were 
part of the network. To exploit the Globbing vulnerability associated 
with Version 2.6.1 or earlier of a WU-FTP server, the attacker should 
have authenticated or anonymous access to the FTP server. Next, the 
attacker should be able to create a buffer overflow and then execute a 
process that installs a backdoor/Trojan/rootkit. The following subsec­
tions describe the victim network and the trail of events associated with 
the attack. 

4.1 Victim Network 
The internal network of the company and its DMZ setup is well-

designed from a security perspective. The DMZ consists of the standard 
set of network servers (web, email, DNS servers and a dedicated FTP 
server for distributing hardware drivers for the company inventory). Two 
firewalls are used, one separating the DMZ from the Internet and the 
other separating the DMZ from the internal network (LAN). Two net­
work IDSs are part of the DMZ setup. Individual firewalls are installed 
in each of the DMZ machines. No connections are allowed from the DMZ 
to either the Internet or to the LAN. Also, no connections are allowed 
between the DMZ machines themselves. An outside machine may only 
connect to a single port of each DMZ host. Each DMZ machine runs a 
host-based firewall. 

The forensic server is an integral part of FPS as it maintains the 
forensic profile database. Since the focus is on the WU-FTP attack, its 
forensic profile descriptor is shown in Figure 4. 



160 ADVANCES IN DIGITAL FORENSICS 

WU-FTP Profile 

Anonymous FTP Login 

Buffer Overflow 

Process Initiation by Root 

Installation of Files(Rootkit) 
by Root 

Figure 4- Forensic profile for the WU-FTP attack. 

All the network components are configured as forensic clients by in­
stalling agents. Unauthorized network connections are detected by fire­
walls, which issue alerts in the following format: 

FailCon{SourceIP:Port,DestinationIP:Port,AttemptNo} 

4.2 Attack Progression 
The forensic team was notified after a customer was unable to connect 

to the company's FTP server. It was subsequently discovered that the 
server's operating system had been deleted. Live forensic analysis of 
the machine could not be performed as the server had crashed while 
it was unattended. The log files of the FTP server also could not be 
recovered as the syslog was not configured for remote logging. Therefore, 
it was only possible to analyze the hard drive of the FTP server and logs 
retrieved from the IDS and firewalls. Analyzing the 20GB hard drive for 
forensic evidence was deemed to be too time consuming. 

The forensic investigation revealed that the IDS detected the WU-
FTP attack on Apr 1 02:29:45. The FPS response mechanism prompted 
the IDS to send the following alert to the forensic server. 

• Alert generated by IDS to the forensic server: 

When 
Apr 1 02:29:45 

Subject 
IP Addr IDS 

Object 
IP addr FTP server 

Action 
WU FTPD attack 

The forensic server reacted to the alert by issuing probes. Alerts can 
be generated by two or more forensic clients simultaneously depending 
on the type of event detected by the clients. Suspicious activity detected 
by a forensic client will not, on its own, determine the progression of an 
attack. But an IDS can detect an attack as a whole. Thus, the imple­
mentation of the forensic profiling system differs in the steps followed in 
tracking the attack depending on the client that triggers the alert. (The 



Kahai, et al. 161 

alerts to the server may be sent in a random fashion.) We examine the 
flow of events when the attack was detected by the IDS. 

Check probes were generated simultaneously because, although they 
are related from the point of view of the attack and occur in a chronolog­
ical order, they are independent of each other. The probes generated by 
the forensic server corresponded to the alerts contained in the descriptor 
for the WU-FTP attack. Therefore, the Check_Probes sent were: 
(i) Check_Probe sent to the FTP server: 

Dest Addr 
IP Addr FTPserver 

CheckFlag 
FTPLogin 

Time 
Apr 1 02:29:45 

If the FTP server had sent a NULL packet, this would have indicated 
that no one was logged into the FTP server at the time. Otherwise, the 
FTP server would have responded by providing the IP addresses that 
were logged in at the time. The server went over the logs it captured 
through the forensic cHents and scanned for a match for the IP addresses 
sent by the FTP server. A matched IP address is suspicious because the 
forensic server has logs only for suspicious activities. The forensic server 
then sent GetLog_Probe to the FTP server which specified the suspicious 
IP address as the keyword. The following alert showed that 192.1.2.3 is 
a suspicious IP address. 

Dest Addr 
IP addr FTP Server 

GetLogFlag 
Set 

Keyword 
192.1.2.3 

Time 
Apr 1 02:29:45 

The log fragments that corroborated the alert recovered from the FTP 
server are presented below. 

FTP System Logs: 

Apr 1 00:08:25 ftp ftpd[27651]: 

192.1.2.3 [192.1.2.3], mozilla@ 

Apr 1 00:17:19 ftp ftpd[27649]: 

Apr 1 00:17:19 ftp ftpd[27649]: 

Apr 1 02:21:57 ftp ftpd[27703]: 

192.1.2.3 [192.1.2.3], mozilla@ 

Apr 1 02:26:13 ftp ftpd[27722]: 

192.1.2.3 [192.1.2.3], mozilla@ 

Apr 1 02:29:45 ftp ftpd[27731]: 

192.1.2.3 [192.1.2.3], x@ 

ANONYMOUS FTP LOGIN FROM 

lost connection to 192.1.2.3 [192.1.2.3] 

FTP session closed 

ANONYMOUS FTP LOGIN FROM 

ANONYMOUS FTP LOGIN FROM 

ANONYMOUS FTP LOGIN FROM, 

(ii) Check_Probe sent to the IDS: 

Dest Addr 
IP Addr IDS 

CheckFlag 
Buffer Overflow 

Time 
Apr 1 02:29:45 



162 ADVANCES IN DIGITAL FORENSICS 

If the response sent by the IDS to the server contained a NULL packet, 
a buffer overflow condition would have been negated. Otherwise the 
forensic server would have sent the GetLog.Probe. 

(iii) Check-Probe sent to the FTP server: 

Dest Addr 
IP Addr IDS 

CheckFlag 
Process Execution + Root Access 

Time 
Apr 1 02:29:45 

If the response sent by the FTP server to the forensic server con­
tained a NULL packet, this would have implied that no script was run­
ning on the server. Otherwise, the forensic server would have sent the 
GetLog-Probe. The forensic server would have continuously sent Get-
Log-Probes to the FTP server. If the FTP server had crashed as a result 
of the attack, it would have stopped serving the GetLog request initiated 
by the forensic server. 

After gaining access to the FTP server, the attacker tried to connect 
to his machine (192.L2.3), which was not allowed. Also, the attacker 
attempted to connect to the mail server. This is implied by the following 
FTP connection logs. 

FTP Connection Logs: 

Apr 1 02:30:04 ftp ftpd[27731]: Can't connect to a mailserver. 

Apr 1 02:30:07 ftp ftpd[27731]: FTP session closed 

The corresponding alert indicated that an unauthorized network con­
nection attempt was generated by the FTP server. 

• Alert generated by FTP server to the forensic server for connection 
failure to mail server: 

When 
Apr 1 02:30:04 

Subject 
IP Addr FTP Server 

Object 
IP Addr Mail server 

Action 
FailCon 

A similar alert was generated by the firewall. 
The attacker was able to gain root access, upload a file and later ex­

ecute a script. This can be inferred from the FTP transfer logs. 

FTP Transfer Logs: 

Mon Apr 1 02:30:04 2002 2 192.1.2.3 262924 /ftpdata/incoming 

/mount.tar.gz b _ i a x@ ftp 0 * c 



Kahai, et al. 163 

The alert generated by the FTP server to the forensic server, indica­
tive of uploading a file with root privileges, is shown below. 

• Alert generated by the FTP server to the forensic server indicating 
file upload: 

When 
Mon Apr 1 02:30:04 2002 

Subject 
IP Addr FTP Server 

Object 
mount, tar.gz 

Action 
FileUpload 

The attacker was able to upload files on the FTP server as the FTP 
server was world writable. This file is the suspected rootkit. The at­
tacker later deleted the operating system causing the FTP server to 
crash. 

5. Conclusions 

This paper proposes a forensic profiling system (FPS) for real-time 
forensic evidence collection. A dedicated forensic server maintains an 
audit trail embedded in a forensic profile. Because FPS keeps track of 
anomalous activities in a network, the time spent on filtering system 
log files during a forensic investigation is drastically reduced. FPS also 
makes it easier to retrieve the logs of crashed hosts as the hosts can send 
log entries associated with alerts to the forensic server. Since all attacks 
have a general commonality, unknown attacks can be tracked by the 
forensic sever on the basis of the alerts generated by forensic clients. A 
detailed investigation of attacks is required to construct forensic profiles. 
Also, it is necessary to evaluate the overhead involved in active parsing 
and monitoring. 

References 

[1] J. Barrus and N. Rowe, A distributed autonomous agent network in­
trusion detection and response system. Proceedings of the Command 
and Control Research Technology Symposium^ pp. 577-586, 1998. 

[2] A. Chuvakin, FTP Attack Case Study, Part I: The Analy­
sis (www.hnuxsecurity.com/feature_stories/ftp-analysis-partl.html) 
2002. 

[3] F. Cuppens, Managing alerts in a multi intrusion detection envi­
ronment, Proceedings of the Seventeenth Annual Computer Security 
Applications Conference, 2001. 

[4] F. Cuppens and A. Miege, Alert correlation in a cooperative intru­
sion detection framework. Proceedings of the IEEE Symposium on 
Security and Privacy, 2002. 

http://www.hnuxsecurity.com/feature_stories/ftp-analysis-partl.html


164 ADVANCES IN DIGITAL FORENSICS 

[5] H. Debar and A. Wespi, Aggregation and correlation of intrusion 
detection alerts, Proceedings of the Fourth International Workshop 
on Recent Advances in Intrusion Detection^ pp. 85-103, 2001. 

[6] M. Huang, R. Jasper and T. Wicks, A large-scale distributed intru­
sion detection framework based on attack strategy analysis. Proceed­
ings of First International Workshop on Recent Advances in Intru­
sion Detection^ 1998. 

[7] C. Kahn, D. Bolinger and D. Schnackenberg, Common Intrusion De­
tection Framework (www.isi.edu/gost/cidf/), 1998. 

[8] P. Ning, Y. Cui and D. Reeves, Constructing attack scenarios 
through correlation of intrusion alerts. Proceedings of the Ninth ACM 
Conference on Computer Security^ 2002. 

[9] P. Ning, X. Wang and S. Jajodia, A query facility for the common 
intrusion detection framework. Proceedings of the Twenty-Third Na­
tional Information Systems Security Conference, pp. 317-328, 2000. 

[10] P. Ning, X. Wang and S. Jajodia, Abstraction-based intrusion detec­
tion in distributed environments, ACM Transactions on Information 
and System Security, vol. 4(4), pp. 407-452, 2001. 

[11] P. Porras and P. Neumann, EMERALD: Event monitoring enabhng 
responses to anomalous Hve disturbances. Proceedings of the Twenti­
eth National Information Systems Security Conference, pp. 353-365, 
1997. 

[12] K. Shanmugasundaram, N. Memon, A. Savant and H. Bronnimann, 
ForNet: A distributed forensics network. Proceedings of the Second 
International Workshop on Mathematical Methodsj Models and Ar­
chitectures for Computer Network Security, 2003. 

[13] A. Valdes and K. Skinner, Probabilistic alert correlation. Proceed­
ings of the Fourth International Workshop on the Recent Advances 
in Intrusion Detection, 2001. 

[14] J. Yang, P. Ning and X. Wang, CARDS: A distributed system for 
detecting coordinated attacks. Proceedings of the IFIP TCll Six­
teenth Annual Working Conference on Information Security, 2000. 

[15] N. Ye, S. Vilbert and Q. Chen, Computer intrusion detection 
through EWMA for autocorrelated and uncorrelated data, IEEE 
Transactions on Reliability, vol. 52(1), pp. 75-81, 2003. 

http://www.isi.edu/gost/cidf/



