
THE RECONFIGURABLE UML MACHINE
PROJECT GROUP

Achim Rettberg ^ Tim Schattkowsky ^ Carsten Rust ,̂ Wolfgang Müller ^
and Franz Rammig ̂

University of Paderbom/C-LAB
University of Paderborn, Germany
-[achim, tim, car, wolfgang}@c-lab.de

University of Paderborn, Germany

franz@upb.de

Abstract: This paper describes a seminar of a project group consisting of students that re­
alizes a code generation from UML to a reconfigurable hardware platform. The
usage of high-level modeling is nowadays essential in the software and in the
hardware development. The reason for this is the complexity the industries have
to cope with. The idea to specify a hardware system at such a high abstraction
level should be realized for a given application within the project group. By deal­
ing with the application the students learn to use these new development methods
for system design, especially hardware design. Furthermore, an overview of the
structure and organization of project groups are given.

Keywords: UML, Code Generation, Reconfigurable Hardware, Teaching Project Groups,
Student Teams

1. INTRODUCTION
Common trends and common problems have emerged lately in the hardware

and software industries. In the hardware industry, the growing complexity of
hardware components (e.g., systems-on-chip), the challenge of design verifica­
tion, and the need to meet the competing objectives of performance/power/time-
to-market have made it essential to increase the level of abstraction in the hard­
ware design process.
This leads to the usage of high-level modeling, using variants of traditional
hardware description languages (SystemVerflog [15]) or general-purpose pro­
gramming languages (SystemC [13], SpecC [14], Handel-C [1]). Similar pres­
sures exist in the software industry: the increasing complexity of software sys­
tems coupled with the need for increased performance and lower cost have led

mailto:franz@upb.de

140 A. Rettberg, T. Schattkowsky, C. Rust, W. Müller and F. Rammig

important sectors of the industry, e.g., avionics companies, to adopt model-
based approaches to software development and to increase usage of modeling
languages such as UML [11]. In both software and hardware, the availabil­
ity of standard IP components has produced an urgent need for new methods
to adapt and integrate these components to build reliable, cost-effective sys­
tems. The abstract models, languages, and analysis techniques produced by
formal methods research provide a sound methodological basis for the high-
level modeling, design, and development of both hardware and software and
for adapting and integrating existing components to meet new requirements. In
the context of hardware/software systems specification, executable UML be­
came of major interest, see [12].
The objective of the project group is to convey these new trends and technolo­
gies to the students.

In this paper we describe the usage teaching of a project group in a seminar
to realize a code-generation from UML to a hardware description language
(HDL) that is synthesized to a reconfigurable hardware platform. First, we
define the idea behind a project group at our University, see section 2. The
project group of the reconfigurable UML machine consists of students that are
separated in three different sub-groups. In section 3 we give a project descrip­
tion and we describe briefly the tasks of the sub-groups. The last section 4
concludes the paper.

2. STUDENT PROJECT GROUPS
In the event form "project group" a group of 8 to 15 students works on a

topic provided of the organizer over the time period of a year (two semester).
Topics of project groups are introduced in a common event. Interested parties
can clear the prerequisites for the participation and cover a project group.

Project groups have on the one hand aims to support the personality of the
participants and on the other hand aims which orientate themselves at the fin­
ished contents. Teamwork and organization of a project are practically proven
and learned in the project group; through this, the participants are prepared
for the later industrial professional practice. The students get to know exten­
sive development processes in a self-organized team. The compulsion to report
within the group and to hold the results about work of one's own arises from
the job sharing.
The content of the project groups shall the students get close to current research
themes, which typically are from the research areas of the organizers. Project
groups in this respect are not but primarily also aids of the university research.
For the students this means that the graduates of a project group are generally

The Reconfigurable UML Machine Project Group 141

predestined to take master theses in the connection from the corresponding re­
search area.

The topic to be worked on or problem should reflect current research questions
to the motivation of the group and as a preparation on possible connection
work. On the other hand the topic should be adequate for the students. Inde­
pendently, in which field of work a project group is organized, the participants
should learn a methodical and systematic procedure adapted to the respective
field of work within the work. If the implementation of software is the pri­
mary objective of the event, the methods and techniques of the development of
the software should be used systematically as learned in the computer science
course.
It must be made sure that the participants satisfy the formal prerequisites (ad­
mittance for the diploma examination) and the prerequisites as regards content
and that they are interested in the topic. Project teams live on the motivation
of the participants.
The project group should realize the far-reaching self-organization as the high­
est organization principle. This is reached through

• a discussion at the beginning of the project team about the topic together
with the organizer;

• acquirement of the knowledge about and the choice of the systematic
procedures, methods and tools relevant for the topic - typically in one
initials seminar phase;

• consistent award of "position", i.e. distribution of responsibilities within
the group;

• finding out and promoting of special talents within in the participants,
yielded e.g. by seminar lectures or the task distribution;

• construction of a process oriented staff structure like an industrial devel­
opment team; Delegating of sub-tasks to small groups which then report;

• regular lectures for the work progress single and of small groups;

• construction of a final report that shall be strongly distributed between
the participants.

The self-organization finds her limits since the organizers must judge the par­
ticipation individually at the end. It is necessary to pay attention on the follow­
ing for the fairness sake:

• all participants should be consulted after possibility for works in all ap­
pearing activity profiles (e.g. programming, documentation, report con­
struction, work organization);

142 A. Rettberg, T. Schattkowsky, C. Rust, W. Müller and E Rammig

• complete covering depth of the participants with special working tasks
or avoidance of" task accumulation" by the participants;

• control of the complete job performance within the group and compen­
sation at a dissimilar distribution;

• and control of largely complete presence of all participants during the
two semesters takes.

3, PROJECT DESCRIPTION
For the development of complex embedded systems reconfigurable hard­

ware is increasingly inserted to make prototypical implementations possible.
As a development platform Field Programmable Gate Arrays (FPGAs) are ap­
plied by using hardware description languages like VHDL. This manner of the
programming presupposes a high degree of expert knowledge. Besides this, a
higher more abstract method for the hardware description is desired enriched
with methods from software development. The Unified Modelling Language
(UML) has established himself as standard for the model based development
of software. The modeling of structure and behaviors of a FPGA implementa­
tion is possible with the present language size of the UML and therefore shall
be pursued in this place.
An automatic generation of the software is also desirable besides the pure mod­
eling out of the model. As a rule, UML software generators confine themselves
to the version of the structure in the form of classes and methods. At this ap­
proach the behavior must be completed by the programmer later. As an alter­
native to it the software can be described in form of an executable model.The
run time response is specified completely and the generated software requires
only few till no customization by the programmer. Among other things be­
havior description can be made possible with condition or activity diagrams in
UML. With the reduction of the language size such an executable model can
be described. The aim of this project group is to develop UML subsets, which
make the development of executable models possible. These shall serve as a
higher description of software for reconfigurable hardware. Furthermore, the
aim is the realize an automated synthesis of the model to the hardware and
developing the missing tools.

Methods shall be developed in the project groups to be able to derive an imple­
mentation on reconfigurable hardware from the specification of an embedded
system automatically.
The specification is carried out in the form of diagrams at a high abstraction
level. Two approaches are followed up: Activity Diagrams as well as State
Diagrams. The Unified Modeling Language (UML) forms the common frame.
Though, the languages of the UML cannot be used on the full scale. It is nee-

The Reconfigurable UML Machine Project Group 143

essary to form well-defined subsets of the diagrams to enable the realization of
a given specification in UML to an implementation in HDL. The HDL-Code
is synthesized to a FPGA. A FPGA is an integrated circuit which still can be
programmed (reconfigured) after his production.
Figure 1 show the design flow used in the project group. The essential step
in the design flow is the translation of the specification into HDL. The follow­
ing steps of the HDL for the implementation are already supported by existing
tools. As HDL we use the C-based language Handel-C, see [1]. Handel-C
extends the programming language C by constructs which are needed for the
description of hardware or reconfigurable hardware. The expansions make for
example the description of parallel processes or temporal aspects possible.

K2:
D r

m m w m JB Î js g m. ^m m ^ s'^ j , ^ B J K eK̂ Ĵg »_ .^ii.iMi.n mm in in

S^

Figure 1. Design Flow

144 A. Rettberg, T. Schattkowsky, C. Rust, W. Müller and E Rammig

Figure 3. Khepera FPGA Module

The stepwise implementation of a specification in a FPGA implementation
is carried out in the project group at a concrete example, i.e. a demonstrator.
The target platform is the Khepera mini-robot ([2], [3] and [4]), see Figure 2,
with the FPGA extension module depicted in Figure 3. The FPGA module is
developed at University of Paderborn in the group of Prof. Rückert, see [8].
As demonstrator an application scenario in which several Kheperas can com­

municate over radio [5] solve a task together are realized. A possible appli­
cation scenario is the represented intersection management with Kheperas at
which several robots shall collision freely cross an intersection from different
directions, see Figure 5.

In our research group we developed a tool to specify High-Level Petri-nets [7].
The tool enable the generation of SystemC and Handel-C code for a given
Petri-net, see [6]. To use this tool one task of the project group is to de­
velop transformation rules from High-Level Petri-nets to Activity Diagrams.
As UML modeling tool we use Enterprise Architect (EA) from SparxSystems,

The Reconfigurable UML Machine Project Group 145

see [9]. EA offers XMI as a internal representation of a UML diagram. The
project group is separated into four sub-groups, see Figure 4.

Group A:
State Diagrams

Group B:
Activity Diagrams

(Petri-nets)

Group C:
Demonstrator

Figure 4. Sub-groups within the Seminar

The tasks to be done for the sub-groups are:

• Group A (State Diagrams): Specify the demonstrator with State Dia­
grams and implement a Handel-C code generation from XMI descrip­
tion.

• Group B (Activity Diagrams): Specify the demonstrator with Activ­
ity Diagrams and transform the diagram by transformation rules into
a High-Level Petri-net and use the existing Petri-net tool to generate
Handel-C code.

• Group C (Demonstrator): Implement small test models on the target
platform and a communication library for the FPGA and the sensor and
actuators of the Khepera mini-robot.

UML state and activity diagrams describe executable models in separate ap­
proaches. The complete language size of the two diagram types isn't supported
in this place. Redundant and complex language constructs are limited or not
used. For a detailed description of the permitted elements a subset for state and
activity diagrams was defined, see [10].

The Khepera is started at a certain position in the intersection, see figure 5. By
this way the initial position of the robot is set. After starting the Khepera rec­
ognizes and counts the gaps in the wall. The robot knows by the recognition of
the gaps that he shall turn to avoid a collision with the wall. If no gap is recog­
nized and the front sensors show an obstacle the Khepera assumes that another

146 A. Rettberg, T. Schattkowsky, C. Rust, W. Müller and R Rammig

Figure 5. Test Track

robot stands in front of him and stops also until the obstacle is gone. After
three turns the Khepera runs into the intersection. A message is also send to
the communication module. The Khepera is in the so-called search zone now.
The Khepera recognizes the entry to the action zone if the left sensor shows an
obstacle. Markings corresponding to the intersection are integrated represent­
ing an obstacle on the left side. The Khepera can drive to the left, to the right
or straight ahead now. In the dependence of the direction the internal Khep­
era controller is converted correspondingly. The controller has two conditions
for the inner and the exterior wall. If the robot drives inside, no gaps can be
counted. So the robot can detect if he shall turn again three times when e.g. he
turns right to the left or to the right or no-one, if he drives straight ahead and
reaches an inner wall.
The intersection is divided up into three areas: the search zone, the planning
zone and the driving zone. To increase the efficiency of the algorithm at the
right of way regulation the driving zone still is divided up in four areas (of
sectors) so that four Khepera are able to come into the intersection at the same
time.

4. CONCLUSIONS
The aim of the project team was to make an automated development of

the executable model possible for the hardware description. Operational ap­
plication scenarios should demonstrate the individual steps when translating

The Reconfigurable UML Machine Project Group 147

automatically and make a presentation of the results possible. The goal was
accomplished in large portions by the project team. The use of UML activity
and state diagrams was planned. It was achieved that models can successfully
be translated from the formed subsets of activity and state diagrams into the
target language HandelC.
The above approach targets at generating complete hardware implementations
from Handel-C programs. With the developed methods a synthesis semantics
for state and activity diagrams are given. Especially control-oriented behavior
and parallelism map nicely to Handel-C. However, there are several critical is­
sues when mapping the given UML subset to hardware.
The project group solved the problem under their own responsibility. The divi­
sion of the project groups made sense and supported the team thought. By the
application example, the participants were very motivated and received excel­
lent knowledge in the research area. Many of them have already started with
their master degree in research area.

REFERENCES
[1] Celoxica Ltd.: Handel-C Language Reference Manual, Document Number: RM-1003-4.2,

2003.

[2] http://www.k-team.com/, 2002.

[3] K-Team S.A. Khepera 2: User manual. K Team S.A. Ch. de Vuasset, CPl l l 1028 Prev-
erenges Switzerland, 2002.

[4] K-Team S.A. Khepera: BIOS manual. K Team S.A. Ch. de Vuasset, CPl l l 1028 Prev-
erenges Switzerland, 1999.

[5] K-Team S.A: Radio Base User Manual. K Team S.A. Ch. de Vuasset, CPl l l 1028 Prev-
erenges Switzerland, 1999.

[6] Rust, Carsten; Rettberg, Achim; Gossens, Kai: From High-Level Petri Nets to SystemC.
In: IEEE International Conference on Systems, Man & Cybernetics. Hyatt Regency, Wash­
ington, D.C., USA, 5 - 8 October 2003.

[7] Rust, Carsten; Rammig, Franz Josef: A Petri Net Based Approach for the Design of Dy­
namically Modifiable Embedded Systems. In: Kleinjohann, Bernd (Hrsg.): Design Meth­
ods and Applications for Distributed Embedded Systems IFIP WG 10.5, Kluwer Academic
Publishers, 23 - 26 August 2004 Proc. IFIP TC 10 Conference DIPES 2004.

[8] Grünewald, Matthias; Rust, Carsten; Witkowski, Ulf: Using mini robots for prototyping
intersectionmanagement of vehicles. In: Proceedings of the 3rd International Symposium
on Autonomous Minirobots for Research and Edutainment (AMiRE 2005). Awara-Spa,
Fukui, JAPAN, 20 - 22 September 2005

[9] http://www.sparxsystems.com

[10] Bühler, A.; Gerst, D.; Giefers, H.; Oette C; Krivih, A.; Riemer, A.; Schilke, H.; Schilke,
E.: Projektgruppe REUMA: Abschlussbericht. Internal Report, University of Paderborn,
2005.

[11] The Object Management Group: Unified Modeling Language: Superstructure. OMG
ad/2003-04-01,2003.

http://www.k-team.com/
http://www.sparxsystems.com

