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Abstract: Genetic Algorithms (GAs) are a robust heuristic search technique capable of 
taking on a broad range of optimization problems. In most GAs, components 
and parameters are predetermined and remain static throughout its run. In this 
paper, it is hypothesized that a GA's performance and robustness can be 
enhanced through the 'online' adaptation of the operators and an operator 
based adaptive genetic algorithm (AGA) based on these concepts is designed 
and implemented. A number of permutation based problems were selected to 
evaluate the performance of AGA. 
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INTRODUCTION 

Genetic algorithms have been known to be a robust technique in finding 
optimal or near solutions to many large and complex optimization problems. 
However, its parameter settings are required to be tuned for the specific 
problem at hand in order for it to perform efficiently and effectively during 
its search for an acceptable solution in a reasonable amount of time. While 
there exist a number of methods that can and have been used to predetermine 
such settings before running it on a problem, the problem specific nature of 
some of these settings coupled with the mutual dependence of these settings 
on one another still render the tuning of a GA to be a tedious process. 
Additionally, some research has indicated that the use of more than the usual 
one crossover and one mutation operator during the run of the GA can be 
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beneficial. This however, results in more parameters being needed to be 
tuned. In this paper, an operator based adaptive genetic algorithm is 
presented with the aim of combining the benefits of having more operators 
available while decreasing the amount of parameter tuning required. 

RELATED WORK 

For a GA to be efficient, it has to be configured with settings suitable to the 
problem at hand. The most commonly used method is empirically through 
hand tuning. DeJong [2], Grefenstette [4], Davis [3] and David et al. [5] used 
this technique to find some recommended settings that were 'good' for a set 
of numerical function optimization problems, known as the DeJong test suite. 
Using a traditional algorithm with a fixed population size, they worked out 
'good' parameter values for single point crossover and bit mutation. 
Recently, Maruo et al. [15] used an approach of self-adapting parameters to 
relieve the burden of hand tuning. However, due to the number of 
components and the mutual dependence of these components on one another, 
finding the appropriate settings was still a tedious task. 

Another approach [6] adaptively varies the settings. It involves the 
utilization of information gained about the state of the GA during its run. 
This information may be about the population as a whole, individuals in the 
population or components of the GA. This knowledge is then used to vary 
'online' its settings. Based on how the adapfive mechanism is employed, the 
approaches in this category can fijrther be split into three subcategories, 
namely, the rule based approach, [9], the co-evolutionary approach 
generafions [6, 8] and the evolutionary approach. [10] 

THE ADAPTIVE GENETIC ALGORITHM 

The proposed GA consists of two genetic algorithms, an operator level 
(OL) GA and a problem level (PL) GA. The PL GA is used to search the 
problem space for good or optimal solutions to the problem at hand, while 
the OL GA synchronously selects the operators to be applied in the PL GA 
based on the status and requirements of the search. A list of 17 operators is 
selected for this purpose [11]. To evaluate the operator level populafion, the 
encoded operators in each chromosome are utilized on one generation of the 
PL GA with the same PL population. After which, feedback on the 
performance of each chromosome in the form of a resulting PL population is 
returned to the OL GA and each OL chromosome is assigned a fitness value 
based on its relative performance to the other OL chromosomes. Among the 
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resulting PL populations, the one that resulted from the OL chromosome 
with the highest fitness value is selected to be the next PL GA population for 
the next generation of the OL GA. 

Both the OL GA and PL GA use the same selection and replacement 
technique. The selection technique is used to select chromosomes or parents 
for recombination, while the replacement strategy refers to how individuals 
from the present population are selected to live on in the population used in 
the next generation. In Figures 1 and 5, they are denoted by the term Select 
and Perform_replacement respectively. After some experimentation, the 
tournament selection technique with the number of competitors set to 2 and 
the steady state with elitism strategy were selected as the selection technique 
and replacement strategy respectively. 

In the next two subsections, the main components of the operator level 
GA and the problem level GA are described in detail. 

3.1 Operator Level Genetic Algorithm 

OLGA (endcondition) 
BEGIN 

Generate population 
Generate plPopulation 
PLEvaiuate plPopulation 
/* evaluate operator level GA's population returns 
best resulting PL population */ 
plPopulation = Evaluate {population, plPopulation) 
WHILE endcondition has not been reached 

best chromosome - Get_fittest_chromosome {population) 
Initialise children of size num children required 
num children required = crossover rate * population size 
numj)arents required = Get_num_parents_required {crossover operator) 
num children jyroduced = Get_num_chiidren_produced {crossover operator) 
num children = 0 
WHILE num children < num children required 

parent chromosomes = Select {population, numjyarents required) 
child chromosomes = 

Performcrossoveroperation {parent chromosomes) 
/* ensure that children does not go out of bounds during Append */ 

Append child chromosomes to children 
Increment num children by num children j>roduced 

END WHILE 

newjjopulation = Performreplacement {population, children) 
num mutations required = mutation rate * population size 
num mutations = 0 
WHILE num mutations < num mutations required 

Randomlyselect chromosome from new population 
Performmutationoperation {chromosome) 
Increment num mutations 

ENDWHILE 

Replace last chromosome in new population with best chromosome 
plPopulation = Evaluate {population, plPopulation) 
Evaluate_population {population) 
population = new population 

ENDWHILE 

END 

Fig. 1. Pseudo Code of the Operator Level GA 
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3.1.1 Chromosomal Representation 

The OL GA employs a permutation based encoding for its chromosomes. 
Based on this encoding, each chromosome is comprised of all the available 
operators in the search space and it is the positions of the genes in the 
chromosome that determine which operators are passed down to the PL GA. 
A typical operator level chromosome is shown below: 

8 3 14 5 15 16 6 1 9 17 7 2 12 11 13 4 10 

Fig. 2. Example of an Operator Level Chromosome 

The value of each gene denotes the operator being represented by it. The 
first n genes denote the operators that are to be passed to the PL GA, where n 
is a predetermined variable set before the run. Should n = 5, for example, the 
operators represented by values 8, 3, 14, 5 and 15 are passed to the PL GA to 
be utilized during its search. 

3.1.2 Operators 

Following classic style genetic algorithms, the operator level GA of AGA 
uses a standard set of one crossover operator and one mutation operator. 
Noting that only the first n encoded operators in the OL chromosome will be 
utilized during the evaluation of the OL chromosome, perhaps positional 
information can be said to be the primary information that needs to be 
captured. With this observation, it was decided that the Coin Toss operator 
[11] would play the role of the crossover operator, and Random Create Coin 
Toss operator would play the role of the mutation operator, where the use of 
this mutation operator ensures that each gene in each locus of the 
chromosome has a chance of being mutated. After some arbitrary testing, the 
rates are set to be 0.8 and 0.2 for the crossover and mutation respectively. 

3.1.3 Evaluation Function 

In AGA, the adaptation mechanism is the OL GA and the object to be 
adapted is the configuration of the PL GA. The OL GA evaluates the 
performances of the various configurations of the PL GA through the 
evaluation of the OL chromosomes. Thus, in AGA, communications 
between the OL GA and the PL GA occur in the operator level evaluation 
function, known as Evaluate in Fig 1. Because it is the settings of the PL 
GA that guide the search through the PL search space, and it is the 
evaluation function of the OL GA that guides the forming of the sets of 
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operators used in the PL GA through the assignment of fitness values to 
these sets of operators, it can be said that the OL GA's evaluation function is 
one of the main components whose performance is vital to the overall 
performance of the AGA. The interaction between the two levels of AGA is 
illustrated mFig. 3. 

Feedback on 

Performance 

Operator Level GA 

PL Population Operators 

Problem Level GA 

Fig. 3 Interaction between the Operator Level and Problem Level of the AGA 

The pseudo code of the Evaluate function is given in Fig. 4 and a detailed 
discussion of this function can be found in [11]. 

Population Evaluate {population: Population, plPopu/atiotr. Population) 
BEGIN 

Initialise the array temp plPopulations to be of size population size 
FOR each chromosome in population 

operators = Decodeoperators {chromosome, num operators) 
P L G A s e t o p e r a t o r s {operators) 
pop = plPopulation 
/* num generations in AGA is set to one */ 
FOR {num = 0; num < num generations; num+i) 
pop = PL_GA_Evolve {pop) 

E N D F O R 

Append pop to tempj?lPopulations 
E N D F O R 

/* Ca lcu la teandass ignf i tnesses returns best problem level population 
index based on the fitness values assigned by the fitness function */ 
bestj)lPopulation index = 

Calcu la t eandass ignf i tnesses {population, temp _plPopulations) 
best j)lPopulation = tempjylPopulations[bestjjlPopulation] 
I* Updates the number of children produced by each of the operators in 

the problem level GA for during the evolution of best plPopulation */ 
U p d a t e P L o p e r a t o r c h i l d r e n p r o d u c e d {best plPopulation index) 
RETURN best plPopulation 

END 

Fig. 4. Pseudo Code of Evaluate in OL GA 

Seven fitness functions for the OL GA were formulated to properly 
gauge and capture the desired properties of the performances of the various 
configurations on the PL GA, or in other words, the fitness values of the 
chromosomes in the population of the OL GA. The candidate fitness 
functions are shown below: 

Fitness_Function_\OL -^ifh) (1) 

Fitness _ Function _ 2^^ = R(BC) (2) 
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Fitness Function ^^^ =RiBC).Weisht,,,. KU^Weight^, 3̂̂  
+ R{f„,)^ Weight,,, 

Fitness Function 4^, = < (4) 
1 R(f,^,) + R{fJ. f,<prev.f, 

Fitness _ Function _ 5̂ ^ 
R{BC) f, > prev.f, 

Fitness _ Function 6 OL = \ ^(fh) fb> P^^'^-fh 
\ Rif,,) + RiBC) f,<prev.f, 

Fitness Function 1 r,r 
^ R{BC) f, > prev.f, 

R(f,,) + R(BC) f,<prev.f, 

' OL 

where R(x) returns the rank of x associated with the chromosomes in the 
OL population,. A rank of 1 is the lowest rank and the rank value equal 
to the population_size is the highest rank, ft is the fitness of the best 
candidate solution found in the associated PL GA's population; BC 
stands for Better Children, and is used to denote the number of child 
chromosomes that have been produced during a particular configuration 
that have better fitness values than the parents involved in creating them; 
fsd is the standard deviation of the fitness values of the chromosomes in 
the associated PL population; fm is the mean of the fitness values of the 
chromosomes in the associated PL population; Weightßc, Weighty and 
Weightsd are the weights assigned to BC, fm and/^d respectively, where 
they are set to Weightßc "=" 1-0, Weight.^ = 0.8 and Weighty = 0.8; and 
prev.fb refers to the fitness of the best PL chromosome found during the 
previous OL generation. For a detailed description of the 7 fitness 
functions the reader is referred to [11]. 

3.2 Problem Level Genetic Algorithm 

The primary purpose of the problem level genetic algorithm is to find 
good solutions to the problem at hand. At the same time, it is also used to 
evaluate the OL GA chromosomes and return feedback about the 
performances of the settings encoded in these chromosomes for the current 
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state of the PL search. In order to serve these purposes, during each 
generation of the OL GA, each OL chromosome is decoded and the PL GA 
is configured with these decoded operators that are then used in its search of 
the current search space in the form of a PL population. How this search is 
conducted is illustrated in the pseudo code of the PL_GA_Evolve function of 
the PL GA shown below in Fig 5. The operators to be used for the current 
search, known as operators in Fig 4, are set just before this PL_GA_Evolve 
function is called in the Evaluate function of the OL GA. 

Population PL_GA_Evolve {plPopulation) 
BEGIN 

Initialise children of size num children required 
FOR each operator in operators 

numjyarents required =" Get_num_parents_needed (operator) 
num children jyroduced = Get_num_children_produced (operator) 
number = Get_num_children_to_be_produced_by operator (operator) 
num = 0 
WHILE (num < number) 

parents = Select (plPopulation, num parents required) 
child- PerformOperation (operator, parents) 
PLEvaluate (child) 
Append child to children 
Increment num by num children produced 

ENDWHILE 
ENDFOR 

new population = Performreplacement (plPopulation, children) 
evaluate_population (new j)opulation) 
RETURN new population 

END 

Fig. 5. Pseudo Code of (PL)_GA Evolve 

Get_num_children_to_bejproduced_by_operator is a function used to 
calculate the allotted number of children that are to be produced by the 
specified operator. This is calculated by getting the number of children 
needed to be produced in total per PL generation and evenly dividing them 
among the operators, operators, to be used in that generation. Should there 
be leftover children from the division, these are then distributed to the first 
occurring operators from the OL chromosome. As for the number of children 
to be produced in each generation, this is defined by a predetermined rate 
expressed as a fraction of the PL population size and is set before the start of 
the application of the AGA. In the implementations of the AGAs, this 
parameter is arbitrarily set to a value of 0.9. 

3.2.1 Operator Settings 

As mentioned in section 3.1.1, the operators to be used in the PL GA are 
determined by chromosomes in the OL GA population, with the number of 
operators to be deciphered from each chromosome to be used, predetermined 
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before the run of the GA. With this parameter set, the rate for each operator 
is also indirectly determined, since each operator is assigned an equal 
number of children for it to produce from the number of children to be 
produced each generation. Hence, when compared to a classic GA that 
requires the crossover and mutation operators and rates to be retuned for 
different problems in the same domain, the proposed AGA, which only 
requires the number of operators to be used retuned, can be said to be more 
easily applied on different problems in the same domain. 

3.2.2 Reproduction Strategy 

In classic GAs, the crossover operator creates child chromosomes, while 
the mutation operator modify the existing chromosomes present in the new 
generation's population that may or may not have been produced by a 
crossover operator. However, because of the inability of distinguishing 
between crossover and mutation operators in a relatively problem 
independent GA such as this as well as for simplicity's sake, it was decided 
to have all operators produce children, such that a modified chromosome is 
also considered a child chromosome. 

EVALUATION OF THE PERFORMANCE OF AGA 

Seven AGAs with fitness functions corresponding to those described in 
3.1.3 are implemented. Henceforth, the AGA that utilizes 
Fitness_Function_10L will be referred to as (1), the AGA that utilises Fit-
ness_Function_20L will be referred to as (2) and so on. For all variations of 
the AGA, the OL population size is set to 20 and the PL population size is 
set to 50. 

To provide benchmarks against which the proposed variations of the AGA 
may be tested against, a classic GA (RGA), and a variation of the AGA to 
act as a control (Control) are designed and implemented. To allow for fairer 
testing, RGA uses most of the same components as the problem level GA of 
the AGA, while Control uses the same components as the AGAs except that 
no evolutionary procedures and evaluations are performed in the OL GA. 
Hence, RGA provides a benchmark against classic GAs and Control 
provides a benchmark to gauge the effectiveness of the role of the OL GA. 

The tuning process for the AGAs and Control consists of predetermining 
the number of operators to be used in the PL GA in the range of 1 to 9, while 
for RGA, this consists of finding the optimal crossover and mutation rates in 
the range of 0.5 to LO and 0.0 to 0.5, in steps of 0.1, respectively. 
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4.1 Experimental Results 

A number of experiments were conducted on a variety of problem sets 
[11]. The results of two problem sets are presented in this paper. The 
following describes the details of the tables; in the first column "RGA" 
refers to the regular GA, "Control" refers to the control adaptive genetic 
algorithm and (1), (2), (3), (4), (5), (6) and (7) represent the proposed 
adaptive genetic algorithms; the second column Opt shows the number of 
times the corresponding algorithm found optimal solutions; B.B.Fitness is 
an acronym for best best fitness and is the fitness of the overall best solution 
found among the set of tests; Mean.B.Fitness refers to mean best fitness and 
is the mean of the fitness values of the best solufions found for the set of 
tests ofthat particular problem; SD.B.Fitness is the standard deviation of the 
fitness values of the best solutions found during the set of tests for that 
problem; M.Time refers to the average amount of time taken to run the set of 
tests, where each algorithm is run on a particular instance of a problem until 
it finds the optimal or until it reaches the fime limit; and under the column 
rank, states the rank of the algorithms according to their performance 
evaluafion and in relation to one another, where a rank of 1 signifies the best 
performing algorithm and 9, the worst. 

Table 1. Summary of the 
Performances of the GAs 
on the KnblSO Problem 

Algo 

RGA 

Control 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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RGA 

Control 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

that W 

Opt 

0 

0 

0 

7 

10 

1 

1 

0 

7 

Opt 

0 

0 

1 

0 

0 

2 

0 

1 

0 

leAC 

B.B.Fitness 

0.070819 

0.070893 

0.070825 

0.070818 

0.070818 

0.070818 

0.070818 

0.070818 

0.070818 

B.B.Fitness 
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426 

427 

427 

426 

427 

426 

427 

JAS outpe 

M.B.Fitness 

0.070825 

0.070946 

0.070838 

0.070818 

0.070818 

0.070818 

0.070819 

0.070819 

0.070818 

M.B.Fitness 

453.5 

436.4 

435.2 

433.7 

435.4 

434 

433.7 

435.3 

435.8 

jrform bot 

SD.B.Fitness 

3.43E-06 

2.64E-05 

8.97E-06 

1.19E-07 

0 

1.97E-07 

3.88E-07 

4.22E-07 

2.98E-08 

SD.B.Fitness 

12.4036285 

6.696267617 

4.643274706 

5.020956084 

4.923413450 

4.582575695 

5.866003750 

5.984145720 

3.841874542 

h the RGA 

M.Time 

120.00 

120.04 

120.06 

107.73 

95.541 

119.94 

119.75 

120.05 

111.28 

M.Time 

90.0037 

90.0193 

82.5172 

90.0123 

90.0167 

82.7868 

90.0129 

82.0365 

90.0166 

andCc 

Rank 

7 

9 

8 

3 

1 

4 

5 

6 

2 

Rank 

9 

8 

2 

4 

6 

1 

5 

3 

7 

)ntrol 

Table 2. Summary of the 
Performances of the GAs 
on the Eil51 Problem 

Tables 1 and 2 
shows the results of 
the experiments on 
the Knbl50 problem 
set [12] and a 51 
city travelling 
salesman problem 
(Eil51), [13].From 
these tables we see 
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problem, out of the 7 AG As, 3 of them (AGA 1, 4 and 6) managed to find 
optimal solutions, whereas the RGA and control AGA failed to do so. 
Furthermore, the other 4 AGAs (2,3,5 and 7) performed better in terms of 
the consistency of the solutions found (lower standard deviations) 

5. CONCLUSION 

The results of the experiments showed that AGA is an effective approach 
in enhancing the performance of a GA. It consistently outperformed a 
regular GA throughout the various test problems, demonstrating the 
versatility of the adaptation mechanisms. Further, based on the different 
performances of the various AGAs in relation to one another on the different 
test problems, it was found that different adaptation mechanisms are better 
suited to different problems. The results also showed that the previously 
feared high overhead of such an approach was unfounded, since the 
proposed AGAs were able to find better solutions in a shorter time. 
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