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Abstract: This article proposes a hybrid Particle Swarm Optimization (PSO) based on 
the Nonlinear Simplex Method (NSM). At late stage of PSO running, when the 
promising regions of solutions have been located, the algorithm isolates 
particles which are very close to the extrema and applies the NSM to them to 
enhance the local exploitation. Experimental results on several benchmark 
functions demonstrate that this approach is very effective and efficient, 
especially for multimodal function optimizations. It yields better solution 
qualities and success rates compared to other methods taken from the literature. 
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1. INTRODUCTION 

From the beginning of 90's, a new research field called Swarm 
Intelligence (SI) arose [1, 2]. These new optimization techniques focus on 
analogies of swarm behavior of natural creatures, which suggest that the 
main ideas of intelligent individual's socio-cognition can be effectively 
applied to develop efficient algorithms for optimization tasks. Ant Colony 
Optimization (ACO) is the most well known SI algorithm and is mainly used 
for combinatorial optimization tasks [3]. The Particle Swarm Optimization 
algorithm is another SI technique, which is mainly used for continuous 
optimization tasks and has been originally proposed by R.C. Eberhart and J. 
Kennedy [4] based on the analogy of swarm of bird and fish school. PSO 
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exhibits good performance in solving hard optimization problems and 
engineering applications, and compares favorably to other optimization 
algorithms [5, 6]. 

Since its introduction, numerous variations of the basic PSO algorithm 
have been developed in the literature [7] to improve its overall performance. 
Hybrid PSO algorithms with determinate methods, such as the nonlinear 
simplex method, are proved to be superior to the original techniques and 
have many advantages over other techniques, because these hybrid 
procedures can perform the exploration with PSO and the exploitation with 
determinate methods [8]. Generating initial swarm by the NSM might 
improve, but is not satisfying in multimodal function optimization [9]. 
Applying the NSM as an operator to the swarm during the optimization may 
increase the computational complex considerably. 

In this paper, the Nonlinear Simplex Method is adopted at late stage of 
PSO algorithm when particles fly quite near to the extrema. Experimental 
results on several famous test functions demonstrate that this is a very 
promising way to increase the convergence speed and the success rate 
significantly. We briefly introduce some background knowledge of the PSO 
algorithm in section 2. In section 3 the proposed algorithm is described, and 
experimental design and correlative results are given. The paper closes with 
some conclusions and ideas for further work in Section 4 

2. THE PARTICLE SWARM OPTIMIZATION 
ALGORITHM 

In the original PSO formulae, particle i is denoted as Xi==(Xii,Xi2,...,XiD), 
which represents a potential solution to a problem in D-dimensional space. 
Each particle maintains a memory of its previous best position, 
Pi=(Pii,Pi2,...,PiD), and a velocity along each dimension, represented as 
Vi=(Vii,Vi2,...,ViD). At each iteration, the P vector of the particle with the best 
fitness in the local neighborhood, designated g, and the P vector of the 
current particle are combined to adjust the velocity along each dimension, 
and that velocity is then used to compute a new position for the particle. 

The evolutionary equations of the swarm are [6]: 
Vid ^ w*Vid+cl*rand()*(pid-Xid)+c2*Rand()*(pgd-Xid) (1) 
x,d = Xid+Vjd ( 2 ) 
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Constants cl and c2 determine the relative influence of the social and 
cognition components (learning rates), which often both are set to the same 
value to give each component equal weight. A constant, V âx, was used to 
limit the velocities of the particles. The parameter w, which was introduced 
as an inertia factor, can dynamically adjust the velocity over time, gradually 
focusing the PSO into a local search. 

Maurice Clerc has derived a constriction coefficient K, a modification of 
the PSO that runs without Vmax, reducing some undesirable explosive 
feedback effects [10]. The constriction factor is computed as: 

2 
K=-i I, (p = c\+C2, (p>4 

-(p-^(p -4(p 

(3) 

With the constriction factor K, the PSO formula for computing the new 
velocity is: 

VM = K*(Vid+cl *rand()*(pid-Xid)+c2*Rand()*(pgd-x,d)) (4) 

Carlisle and Doziert investigated the influence of different parameters in 
PSO, selected cl=2.8, c2=1.3, population size as 30, and proposed the 
Canonical PSO [11, 12]. 

3. THE PROPOSED ALGORITHM AND 
EXPERIMENTAL RESULTS 

The basic simplex method was presented by Spendley et al in 1962, 
which is an efficient sequential optimization method for function 
minimization tasks, and then improved by Neider and Mead, to what is 
called the Nonlinear Simplex Method (NSM) [13]. It needs only values and 
not derivatives of the objective function. In general, the NSM is considered 
as the best method if the figure of merit is "get something to work quickly". 

At late stage of PSO running, promising regions of solutions have been 
located. Applying the NSM operator for many steps to enhance exploitation 
search at this stage is capable of improving the solution quality and 
convergence rate. 

We propose a hybrid Nonlinear Simplex Method PSO (NSMPSO), which 
isolates a particle and apply the NSM to it when it reaches quite close to the 
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extrema (within the diversion radius). If the particle "lands" within a 
specified precision of a goal solution (error goal) during the NSM running, a 
PSO process is considered to be successful, otherwise it may be laid back to 
the swarm and start the next PSO iteration. 

The diversion radius is computed as: 

S--i 
] 

DKadius = t 

11 GO * ErrorGoal 

.rrorCjQc 2l+d 

if ErrorGoal<=\0' 

[ Qm"" ErrorGoal otherwise 

-4 

Table 1. The rate of success, mean function evaluations for each test function 

Test Functions 

Rastrigin2 

Levy No.32 

Schaffer2 

Rosenbrock2 

Griewank2 

Levy No.83 

Freudenstein2 

GoIdstern2 

Sphere 10 

Rosenbrockio 

Rastriginjo 

Griewankio 

Sphercso 

Rosenbrockso 

Rastrigin3o 

Griewankso 

Rate of success 

NSMPSO NS-PSO 

1 

1 

0.74 

1 

0.805 

1 

0.98 

1 

1 

0.855 

0.965 

0.885 

1 

0.805 

0.99 

1 

0.84 

0.83 

0.57 

0.845 

0.685 

0.995 

0.52 

0.94 

1 

0.945 

0.83 

0.8 

1 

0.94 

1 

1 

CPSO 

1 

1 

0.645 

0.97 

0.735 

1 

0.975 

1 

1 

0.84 

0.96 

0.845 

1 

0.795 

1 

0.995 

(5) 

(6) 

Mean function evaluations 

NSMPSO 

2851.1 

2532 

7872.6 

7372.5 

8353.7 

2644 

5342.5 

2714.1 

8138.3 

5480.9 

5379.8 

8969.5 

78671 

16783 

9100.4 

19388 

*Note: 
The subscript of each test function denotes its dimension. 
NSMPSO: the proposed algorithm. 
NS-PSO: another NSM hybrid PSO proposed by Parsopoulos and 

NS-PSO 

5573.3 

4827 

9906.8 

9421.8 

9397.6 

2045 

9321.1 

3601.2 

5723.4 

3552 

5929.5 

7084.1 

13789 

10697 

3475.5 

8999.1 

Vrahatis[9]. 

CPSO 

3181.8 

2853.3 

9119.7 

8450.3 

8985.9 

2327.6 

4349.6 

2955.4 

6306.8 

5461.6 

5094.3 

7332.3 

15448 

16576 

8511.3 

10801 

CPSO: the Canonical PSO, Carlisle A [12]. 
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In a NSM process, an initial simplex is consists of the isolated particle i 
and other D vertices randomly generated with the mean of Xj and standard 
deviation of 0.02 times X âx-

The benchmark functions [14] on which the proposed algorithm has been 
tested and compared to other methods in the literature, as well as the 
equation of each one and the corresponding parameters are listed in Table 1. 
For all test functions 200 experiments have been done and the maximum 
number of PSO iterations is set to be 500, swarm size is 60 for 30-dimension 
functions and 30 for others. Parameters used in the NSM are: a =1.0, ;K=2.0, 

ß^ = ß~=0.5. An each time when the NSM operator is applied, it searches 
50 steps. Programming environment is: Matlab 7.0, PentiumlV 2.8GHz CPU, 
512M RAM, Windows2000 Professional OS. 

Table 2. The average optima 

Test Functions 

Rastrigin2 

Levy No.32 

Schaffer2 

Rosenbrock2 

Griewank2 

Levy No.83 

Freudenstein2 

Goldstern2 

Sphere] 0 

Rosenbrockjo 

Rastriginjo 

Griewankio 

Sphere3o 

Rosenbrockso 

Rastriginso 

Griewankso 

NSMPSO 

4.8541e-9 

-176.54 

-0.99755 

4.9915e-9 

L0012 

6.4267e-9 

0.97969 

3 

8.8273e-9 

3L146 

9.6321 

9.0987 

9.2039e-5 

2009.3 

97.418 

29.098 

and total CPU time for each test function 

Average optima 

NS-PSO 

0.42783 

-163.17 

-0.99334 

0.76162 

1.003 

5.8974e-9 

80.237 

2240.1 

8.2146e-9 

461.95 

10.14 

9.1038 

9.3474e-5 

100.63 

95.818 

29.094 

CPSO 

4.9856e-9 

-176.54 

-0.99664 

0.002373 

1.0016 

6.0348e-9 

1.2246 

3 

8.2073e-9 

20.688 

9.7158 

9.1003 

9.2407e-5 

2856.7 

97.752 

29.094 

Total CPU time 

NSMPSO 

14.266 

12.578 

29.188 

30.578 

44.016 

14.656 

16.078 

9.8906 

38.828 

22.922 

29.547 

55.156 

494.11 

81.484 

65.109 

156.08 

NS-PSO 

27.156 

22.688 

35.484 

36.422 

49.141 

10.891 

31.875 

12.859 

23.125 

15.266 

32.625 

42.25 

67.594 

56.281 

27.574 

71.609 

CPSO 

14.906 

12.813 

31.047 

31.781 

44.813 

11.188 

14.516 

9.8125 

24.656 

22.547 

27.641 

43.156 

68.609 

80.047 

60.75 

81.547 
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In table 1 and 2, the rate of success, mean function evaluations, average 
optima and total CPU time for each test function are given. From the table 
we can see that the overall performance of NSMPSO algorithm is superior to 
other published algorithms in terms of success rate, solution quality and 
convergence speed, especially on multimodal functions such as Levy No.3, 
Schaffer, Rosenbrock and Griewank. As to high dimension function 
optimizing, NSMPSO operates appreciably inferior to NS-PSO due to its 
computational expense, but is still equal to the Canonical PSO algorithm. 

4. CONCLUSIONS AND FUTURE WORK 

A new hybrid Particle Swarm Optimization algorithm is proposed in this 
paper, which applies the Nonlinear Simplex Method at late stage of PSO 
running when the most promising regions of solutions are fixed. We 
implement wide variety of experiments on well-known benchmark functions 
to test the proposed algorithm. The results compared to other 3 published 
methods indicate that this method is reliable and efficient, especially for 
continuous multimodal function optimizations. 

Future work may focus on accelerating the convergence for high 
dimension problems, developing practical applications of this hybrid 
approach in neuro-fuzzy network optimization, and extending the approach 
to constrained multi-objective optimization. 
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