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Abstract: Particle Swarm Optimization is applied to the mixed discrete non-linear 

problems (MDNLP). PSO is mainly a method to find a global or quasi-
minimum for a non-convex optimization problem of continuous design 
variables. To handle the discrete design variables, penalty function is 
introduced. By using penalty function, it is possible to treat all design variables 
as the continuous design variables. Through typical structural optimization 
problem, the validity of proposed approach for MDNLP is examined. 
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1. INTRODUCTION 

Particle Swarm Optimization (PSO), which mimics the social behavior, is 
an optimization technique developed by Kennedy et al [1]. It has been 
reported that PSO is suitable for the non-convex function of the continuous 
design variables. Few researches of PSO have been reported, with regard to 
the discrete design variables problems [2], [3]. These researches handle the 
discrete design variables as the continuous design variables, directly. That is, 
firstly all design variables may be considered as the continuous design 
variables. After optimum is calculated, the round-off or cut-off techniques 
are used. However some problems are included into these approaches. (See 
Fig.l(a),(b)) 

Fig.l (a) shows a case by the round-off Point A and B represents the 
discrete design variables. In this case, Point B is chosen as the neighborhood 
of xj by the round-off However, the objective function at Point B makes a 
change for the worse, compared with the objective function at Point A[4]. 
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Another case shown in Fig.l (b) is well known. That is, all constraints are 
not satisfied by the round-off or the cut-off [5] 

Optimum of discrete vantables 

Optimum of continuous variables 
(b) 

Fig. 1 Optimum nature of discrete optimization 
We consider that all design variables should be handled as the continuous 

design variables when we apply PSO to the discrete design variables 
problems. That is, the discrete design variables should be transformed into 
the continuous design variable by any methods [6]. 

In this paper, penalty function approach for the discrete design variables 
is used. By using penalty function, it is possible to handle the discrete design 
variables as the continuous design variables. The validity of proposed 
approach is examined through typical benchmark problem. 

2. PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO), which is one of the meta-heuristic 
methods, is developed for the non-convex function of continuous design 
variables, and PSO does not utilize the gradient information of function like 
Genetic Algorithm (GA). In the PSO, each particle updates their position and 
velocity by a simple addition and subtraction of vector during search process, 
and finally some particles find global or quasi-optimum. Some models of 
PSO have been proposed. Among of them, most popular model may be 
called as g-best model [7]. 

The position and velocity of particle d are represented by jĉ  and v^, 
respectively, ^represents k-i\\ iteration. The position and velocity of particle 
d at k+\ iteration are calculated by the following equations. 

v'/'^wv',-^c,r,{p',-x'^) + C2r2{pi •4) 

(1) 

^, -a. (2) 

In Eq.(2), w is called as inertia term. C\ and C2 are parameters. r\ and r2 
are random number between [0,1]. cx=C2=2 are often used[7]. /7^, which is 
called as p-best, represents the best position of particle d till k-\h iteration. 
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and p^g, which is called as g-best, represents the best position in the swarm 
till /:-th iteration. The inertia term in Eq. (2) gradually decreases as follow. 

^ = >^max - (>^max " ^min ) / ^max >< ^ (3 ) 

In Eq. (3), w^^^ and w^^^ represent the maximum and minimum value of 
inertia, respectively. w^̂ ^ = 0.9 and w^^^ = 0.4 are generally 
recommended[8]. 

3. MDNLP BY PARTICLE SWARM OPTIMIZATION 

3.1 Problem definition 
In general, the Mixed Discrete Non-Linear Problem (MDNLP) is 

described as follow. [6] 
f{x) -^ min ^^^ 

^i,L-^i-^i,u i = l,2,---,m /^\ 

gk(x)<0 k^\X"'.ncon 7̂̂  

where x represents the design variables, which consist of the continuous 
and discrete design variables. y(-̂ )is the objective function to be minimized, 
and gk{x) is the behavior constraints, neon is the number of behavior 
constraints. X/ represents the continuous design variables, and m is the 
number of continuous design variables. Xi,i and Xuu denote the lower and 
upper bound of continuous design variables. On the other hand, Xj represents 
the discrete design variables, and n is the number of discrete design variables. 
D, is the set of discrete values for they-th discrete design variables, du, is the 
/-th discrete value for the /-the discrete design variables, q represents the 
number of discrete values. The lower and upper bound of the discrete design 
variables is given by dj,i and dpq, respectively. 

3.2 Penalty function 

In this paper, the following penalty function is used. [9] 

<^w-Zö 
M 2 

. 2;r{x,-0.25(J,.,.,,+3J,.^.)} ' 
sin ^̂ -̂̂  + 1 

dij^\-dij 
(8) 

where duj and di,j+\ represent the discrete design variables, x, is the 
continuous design variables between duj and di,j,\. Then the augmented 
objective function is constructed as follow, by using above penalty function. 
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neon 

Fix) = fix) + s(/>ix) + r ^ max[0, gj, (x)] 
k=i (9) 

s in Eq.(9) denotes the penalty parameter for the penalty function of the 
discrete design variables, and r also denotes the penalty parameter for the 
penalty function of the behavior constraints. By using Eq. (8), it is possible 
to handle all design variables as the continuous design variables. MDNLP is 
transformed into the following problem. 

.F(A:)->min ^^Q^ 

In the following discussion design variables are supposed to be the 
discrete design variables for the simplicity. In the case of the mixed design 
variables, we discuss section 3.8. 

3.3 Characteristics of penalty function 

The value of penalty function of Eq. (8) is small at the neighborhood of 
discrete value. On the other hand, the value of penalty function of Eq. (8) is 
large, turning from discrete value. When /;^ , which represents the best 
value of the objective function in the swarm till the A:-the iteration, satisfies 
the following equation, the discrete value resides in the neighborhood of /7^ . 

^ ( / ^ ^ ^ ^ (13) 
£ in Eq. (13) represents small positive value. As a result, we have to 

update the penalty parameter s for the discrete design variables in Eq. (9) 
until Eq. (13) is satisfied. In order to examine the effect of the penalty 
parameter s, let us consider a following simple problem. 

o 
fix)-x^ —x^ -Ix' +8x->min 

3 (14) 
x = {-l,0,l,2} (,3) 

In this simple problem, objective X-̂ ) and augmented objective function 
Fix) are shown in Fig. 3. Penalty parameter s in Fig. 3 is set as ̂ =10. 

From Fig.3, it is apparent that the augmented objective function becomes 
non-convex. As a result, to find optimum of the discrete design variables is 
transformed to finding global minimum of augmented objective function. 
Additionally, the discrete value is given by the point, at which the relative 
error becomes small between f(x) and Fix). Then we use the following 
equation as terminal criteria. 
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\F{p')-f{p')\ 
<£ 

wiPii 
(16) 

Considered that PSO does not use the gradient information of function, it 
is difficult to satisfy Eq. (13) strictly. As a result, Eq. (16) is used. 

Augmented objective function 

-2 \ \-ljf 

15 

10 

f\ 5 

- 5 

\FXX) 1 

Original function 

3 

Fig. 3 Objective and augmented objective function 

Behaviors of the augmented objective function for various penalty 
parameter s are shown in Fig. 4. 

Augmented objective function Au^ented objective function 

5 = 1 

Augmented objective functioni 

Original fiinction 
s = 2 
Augmented objective function 

Original function 
5 = 100 

Fig.4 Augmented objective function for various penalty parameters 

3.4 Initial penalty parameter s 

Penalty parameter s in Eq. (9) is determined as follows. Initial search 
point Xd of particle d is determined randomly. Then the value of penalty 
function represented by Eq. (8) is calculated to each particle. 

s^=l + ̂ (x^) d = \,2,'-', agent (17) 

file:///-ljf
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where Sd represents the penalty parameter of particle d. agent is the 
number of particles. Initial penalty parameter Siyjiuai is determined as follow. 

^initial = min {̂ ,̂ ^2, • • •, s^g^^,} (18) 

At the initial stage to search optimum, we actively transform the 
augmented objective function into non-convex function. And local minima 
are generated at the neighborhood of discrete value. 

3.5 Update of penalty parameter 

Suppose that s^ denotes penalty parameter s at ^-th iteration. Following 
equation is used to update penalty parameter s. 

/ ^ ^ = / x e x p ( l + ̂ (/7^)) (19) 

The behavior of the augmented objective function by updating penalty 
parameter s is shown in Fig.5. In Fig.5, solid line shows the augmented 
objective function at A:-th iteration, and dot line shows the augmented 
objective function at Ä:+l-th iteration. 

Augmented objective function at Ä;+l-th iteration 

s^sx exp(l + (p{p^)) 

I' 
Search direction of p. 

Augmented objective function at k-ih iteration 

Fig. 5 Update of penalty parameter 

As shown in Fig.5, an augmented objective function at A:+l-th iteration 
becomes hard non-convex function, compared with an augmented objective 
function at k-i\\ iteration. For example, A in Fig.5 corresponds to the point 
/7̂ , at k-ih iteration. By updating penalty parameter s, /7̂  corresponds to the 
point A' on the dot line, which represents the augmented objective function 
at A:+l-th iteration. As a result, it is expected that pi moves to the direction 
in Fig. 5. Finally, it is also expected that p^ will satisfy Eq. (16). 

3.6 Initialization of penalty parameter 

When Eq. (16) is satisfied, the discrete value around the neighborhood of 
/?̂ ^ resides. Then in order to find another discrete value, initial penalty 
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parameter obtained by Eq. (18) is utilized. This is because the augmented 
objective function becomes hard non-convex function, by updating penalty 
parameter s. As a result, it is considered that /7^ fail to escape from local 
minimum. For such occasions, we relax the augmented objective function by 
initializing penalty parameter when /7^ which satisfies Eq. (16) can be 
obtained. As a result, it is expected that /7^ can escape from local minimum. 

3.7 Difference between traditional and proposed metliod 

In this paper, the penalty function for the discrete design variables is the 
same as Shin et. al.[9]. However, its approach is very different. Shin et. al. 
searched optimum by handling all design variables as the continuous design 
variables at the initial search stage. In this stage, penalty parameter s in Eq. 
(9) is set as zero. Then the penalty function for the discrete design variables 
was introduced after optimum was obtained. This is because the augmented 
objective function becomes non-convex when penalty parameter s is 
introduced at the initial search stage. 

On the other hand, we actively introduce the penalty parameter s at the 
initial search stage. Obviously the augmented objective function becomes 
non-convex function. However, this is not serious problem because PSO is 
applied to this non-convex augmented objective function. We also 
introduced the new update scheme of penalty parameter s, which was 
expressed by Eq. (19). In the past researches [5], [9], the constant positive 
number is used to update the penalty parameter. This means the update 
scheme of penalty parameter depends on the problem. However, the penalty 
parameter s always changes in our approach. This is because the value of the 
penalty function ^(p^) is utilized. Finally, we newly introduced the 
initialization of the penalty parameter s. By initializing the penalty parameter 
s, it is possible to relax the augmented objective function. As a result, it is 
expected that /7^ can escape from local minimum. 

3.8 In the ease of mixed design variables 

In case of mixed design variables, component of p^ can be expressed as 
follow. 

k / cont discrt\T /on^ 

Pg={x ,x ) (20) 
where jĉ "̂̂  represents the components of the continuous design 

variables, and x'^^^^^^ also represents the components of the discrete design 
variables. Then, the components of the continuous design variables x^^^^ in 
/7̂  are neglected when we consider the terminal criteria given by Eq. (16). 
That is, only the components of the discrete design variables x^'^'^''^ in 
p^ are considered when we consider the terminal criteria by Eq. (16). 
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4. ALGORITHM 

The algorithm of PSO for MDNLP is described. 
(STEPl) Number of particles, and maximum search iteration k^^^ are 
determined. Set Ä:=l. {k represents iteration) Set initial position and velocity 
of each particle, randomly. 
(STEP2) Calculate the value of penalty function by Eq. (8) for each particle. 
(STEPS) Calculate the penalty parameter s for each particle, using Eq. (17). 
(STEP4) Initial penalty parameter s^^^^^^l is determined by using Eq. (18). 
(STEPS) Calculate the augmented objective function for each particle. 
(STEP6) Calculate g-best and p-best. 
(STEP7) Check the terminal criteria by Eq. (16). If Eq. (16) is satisfied, the 
penalty parameter s is initialized. Otherwise the penalty parameter s is 
updated by Eq. (19). 
(STEP8) The inertia term is updated by Eq. (3). 
(STEP9) The velocity and position is updated by using Eq.(l) and Eq.(2). 
(STEP 10) Iteration is increased as Ä:= Ä:+1. 
(STEPl 1) Check the iteration. If k<k^^^, go to STEP 2. Otherwise, the 
algorithm will terminate by considering /7^ as optimum. 

5. OPTIMUM DESIGN OF PRESSURE VESSEL 

Let us consider the optimum design of pressure vessel as shown in Fig.6. 
This problem is one of the most famous MDNLP, and many researches have 
been done [10-15]. Several results are shown in Table 1. From Table 1, it is 
considered that it is very difficult to find optimum solution though this 
problem consists of only 4 design variables. 

Fig.6 Optimum design of pressure vessel 

Design variables are 1) Radii R (continuous design variables), 2) Length 
L (continuous design variables), 3) Thickness Ts (discrete design variables), 
and 4) Thickness 77? (discrete design variables). Objective function is to 
minimize the cost, and is given as follow. 

/(jc) = 0.6224x1X2X3 +1.7781x1̂ X4 +3.I66IX2X3 +19.84X|X3 -^ min (21) 
On the other hand, behavior and side constraints are given as follows. 
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25<X| <150 

25 < X2 < 240 

0.0625 <X3,X4< 1.25 

g,(A:) = 0.0193xi/x3-l<0 

g2(^) = 0.00954x,/X4-1<0 

g3(x) = X2/240-l<0 

g4W = 1296000--;rx, 
3 ' 

'TVX^XJ - 1 < 0 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

JC3 and JC4 are discrete design variables, and are integer multiples of 
0.00625 inch. Behavior constraints from Eq. (25) to Eq. (28) are handled as 
penalty function as shown in Eq. (9). r = 1.0 x 10̂  is used. 

The number of particle is set as 100, and the number of maximum search 
iteration is set as 5000. 10 trials are performed with different random seed. 
The best result during 10 trials is shown in Table 1. 

Table 1 Comparison of results 

R[inch] 

L[inch] 

Ts[inch] 

Th[inch] 

gl 

g2 

g3 

g4 

Objective[$] 

Sandgren^"^ 

47.000 

117.701 

1.125 

0.625 

-0.194 

-0.283 

-0.510 

0.054 

8129.800 

Qian '̂̂ ^ 

58.312 

44,522 

1.125 

0.625 

0.000 

-0.110 

-0.814 

-0.021 

7238.830 

Kannan '̂̂ ^ 

58.291 

43.690 

1.125 

0.625 

0.000 

-0.110 

-0.818 

-1.109 

7198.200 

Hsu^'^) 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

7021.670 

Lewis ̂ "̂  

38.760 

223.299 

0.750 

0.375 

-0.003 

-0.014 

-0.070 

-1.519 

5980.950 

Kitayama 

38.684 

224.096 

0.750 

0.375 

-0.004 

-0.016 

-0.066 

0.000 

5875.254 

Arakawa '̂̂ -* 

38.858 

221.402 

0.750 

0.375 

0.000 

-0.011 

-0.078 

0.000 

5850.770 

CONCLUSIONS 

In this paper PSO is applied to MDNLP. Penalty function has been 
introduced, in order to handle the discrete design variables. To utilize 
penalty function, it is possible to handle all design variables as the 
continuous design variables. The augmented objective function becomes 
non-convex function, by introducing penalty function. Considering that PSO 
is naturally suitable for the non-convex function of the continuous design 
variables, the penalty function approach may be valid. Additionally, we 
proposed how to determine the penalty parameter for the penalty function of 
the discrete design variables. Through typical benchmark problem, the 
vaHdity has been examined. 
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