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Pooling Experiments for Blood
Screening and Drug Discovery

Jacqueline M. Hughes-Oliver

Pooling experiments date as far back as 1915 and were initially used in dilution stud-
ies for estimating the density of organisms in some medium. These early uses of pool-
ing were necessitated by scientific and technical limitations. Today, pooling experiments
are driven by the potential cost savings and precision gains that can result, and they are
making a substantial impact on blood screening and drug discovery. A general review
of pooling experiments is given here, with additional details and discussion of issues
and methods for two important application areas, namely, blood testing and drug discov-
ery. The blood testing application is very old, from 1943, yet is still used today, espe-
cially for HIV antibody screening. In contrast, the drug discovery application is relatively
new, with early uses occurring in the period from the late 1980s to early 1990s. Statisti-
cal methods for this latter application are still actively being investigated and developed
through both the pharmaceutical industries and academic research. The ability of pool-
ing to investigate synergism offers exciting prospects for the discovery of combination
therapies.

1 Introduction

The use of pooling experiments began as early as 1915 and was, initially, used in
dilution studies for estimating the density of organisms in some medium. Examples
quoted by Halvorson and Ziegler (1933) include investigations of densities of
bacteria in milk and protozoa in soil. Prior to 1915, most dilution methods were
inadequate because they failed to account for chance or error in observation. In
1915, McCrady presented a method of estimation based on probability which
was then expanded by Halvorson and Ziegler (1933) to provide an estimator of
density based on pooled data. Fisher (1921) also used a similar pooling-based
estimator.

These early uses of pooling experiments were born of necessity, as explained
below for bacterial density estimation. In order to determine the absence or pres-
ence of bacteria in a fluid, cultures are made of a number of samples (small
amounts) of the fluid. Growth of a colony of bacteria within a fluid sample indicates
the presence of bacteria and no growth indicates absence of bacteria. The act of
culturing this fluid can be viewed as applying a test, the result of which is “good”
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or “bad”. This test is applied simultaneously to every molecule present in that
sample of fluid and the results for all the molecules are pooled. The combined
test results (from all samples) are then used to estimate the density of bacteria
present in the source fluid. Although it is virtually impossible to perform this test
on individual molecules, it is quite simple to ascertain whether a culture from the
pooled molecules is free of colony growth.

Today, pooling studies are not typically used from necessity. Rather, they are
used because of the economic gains, savings in time, or precision gains that can
result. A useful review of pooling experiments from the point of view of com-
posite sampling methods is offered by Lancaster and Keller-McNulty (1998).
This chapter focuses on current usage for populations in which individuals are
labeled with respect to one or more traits and where pooling experiments are op-
tional. More specifically, the discussion addresses applications in blood testing
and drug discovery. This is not meant to be an exhaustive review, but rather a
vehicle for highlighting some important aspects of pooled screening in these two
areas.

Applications in drug discovery require the identification of “hit compounds,”
which are those compounds having activity greater than some prespecified thresh-
old in one or more biological assays. Good hit compounds need to be identified
quickly to allow progression to other phases of drug discovery (see Chapter 4).
One application in blood screening requires the identification of individuals with
sero-prevalence (detectability in blood) of one or more diseases. Cost effectiveness
is important here because a balance must be struck between the cost of testing,
which can be high, and the large populations that must be screened. A second issue
that arises in blood screening is the need to estimate prevalences, possibly as a
function of covariates.

In order to address the two areas of application simultaneously, the term
individual is used to mean either a person (in the context of blood testing) or
a compound (drug discovery); the term active means either positive for one or
more diseases (blood testing) or exceeding an activity threshold (drug discovery);
and the term population means either a group of people being screened (blood
testing) or a compound library being screened (drug discovery).

Two fundamentally different problems arise from pooling experiments, namely,
estimation and classification. Estimation involves the use of pooled samples for
decreasing the cost-per-unit information when estimating the prevalence of active
individuals in a population. These estimation results may then be used as the end-
product of analysis or they may be incorporated into a classification scheme. The
estimation results serve as the end-product of analysis when the goal of the study is
to estimate the prevalence of active individuals but there is no interest expressed in
actually identifying these active individuals. In a classification scheme, the ultimate
goal is screening for the purpose of identifying active individuals. The performance
of a classification scheme is typically assessed by considering the expected number
of tests required to identify active individuals with particular attributes. Drug dis-
covery is considered to be a classification problem, but results from the estimation
problem can also be used to inform classification decisions. For blood testing, the
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application may be either a classification or an estimation problem, depending on
the context.

The most common assumptions of pooling experiments are briefly critiqued
in Section 2. In Section 3, general accomplishments and advances in pooling
experiments are reviewed, irrespective of their particular applications. Sections 4
and 5 provide details specific to blood testing and drug discovery, respectively.

2 Types of Pooling and Assumptions

Pooling experiments are of two basic types, simple or orthogonal. In simple pool-
ing, each individual appears in exactly one pool; see Figure 1(a), where each circle
in the box represents an individual, and individuals in the same column are in
the same pool. An active pool response must be followed by individual testing to
determine which specific individuals in the pool are active. In orthogonal pooling

Individual
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Figure 1. (a) Simple pooling: Individuals, represented by circles, are pooled according to
their column location; each individual appears in exactly one pool. (b) Two-way orthogonal
pooling: Individuals are pooled according to both their column and row locations; each
individual appears in exactly two pools.
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using d dimensions, individuals appear in exactly d pools; see Figure 1(b) for
d = 2. The determination of active individuals from orthogonal pooling is easier
than that from simple pooling. Consider orthogonal pooling over d = 2 dimen-
sions corresponding to rows and columns. If a compound lies simultaneously in
an active row and an active column, then it is reasonable to believe that this com-
pound is active and that it should thus be assigned a favorable rank for individual
testing. Despite its benefits, orthogonal pooling adds many complexities and is,
consequently, not as popular as simple pooling. All further discussion is limited
to simple pooling.

Pooling experiments are based, historically, on several assumptions that are of-
ten blatantly unjustified. The first assumption is that individuals have equal prob-
abilities of being active. In blood testing, genetic characteristics, environmental
exposures, and demographic identities are widely accepted as sources of variabil-
ity for disease status, thus suggesting that probabilities of activity are not constant
across the population (Dorfman, 1943). In drug discovery, it is well recognized that
structure–activity relationships (SARs, see Chapter 4), where activity is related to
chemical structural features of a compound, lead to nonconstant probabilities of
activity; see McFarland and Gans (1986).

A second assumption generally used is that interactions do not occur within
a pool; that is, activity is neither enhanced nor degenerated by testing multiple
compounds using a single test on a pool. It is possible, however, that individually
inactive compounds can give an active test result when pooled together (Borisy
et al., 2003), thus providing a case of “activity enhancement” by pooling. This
phenomenon is called synergism and its detection is crucial to the development
of combination therapies in the pharmaceutical industry. The reverse situation can
also occur in that pooled testing of individually diseased samples can result in
disease-free pool results (Phatarfod and Sudbury, 1994), thus providing a case
of “activity degeneration” by pooling. This phenomenon is called antagonism or
blocking and is considered an undesirable potential effect of pooling in the blood
testing application. Blocking relationships that occur in drug discovery applica-
tions can have a positive impact on screening outcomes in that they provide further
implicit evidence of structure–activity relationships.

A third assumption concerns absence of errors in testing. Both blood testing and
drug discovery have strong potential for false negatives and false positives. Errors
in testing are inherently linked to assumptions regarding interactions within a pool.
Both concepts are, in turn, related to the sometimes arbitrarily chosen threshold
value used for categorizing a continuous assay response into only two classes of
“active” or “inactive”.

3 History of Pooling Experiments

Dorfman (1943) has been credited with the origin of pooling experiments in the
statistical literature. His ideas were popularized through the books of Feller (1957,
page 225) and Wilks (1962) and became known as “the blood testing problem”.
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Many efforts were then made to refine Dorfman’s proposal by extending the number
of stages using various retesting schemes and by relaxing assumptions. This section
provides a brief summary of some key results from these efforts; see also Chapter 9
for related work in factorial experiments.

3.1 The Dorfman Model and Assumptions

Suppose that, in a large population of f individuals, each individual has, indepen-
dently, the same probability p of being active. In this context, p represents a latent
propensity for an individual to be active; some individuals ultimately express this
latent feature and are thus labeled as actives, whereas others never express the
latent feature and thus are labeled as inactive. If individuals are pooled into groups
of size k and if pooling does not alter the behavior of individuals, then the resulting
g = f/k pools will, independently, have the same probability θ = 1 − (1 − p)k of
being active. Hence, the number of active pools, X , follows a binomial distribution
with parameters g and θ . Of course, activity of pools or individuals must be re-
vealed by some testing system and for now this system is assumed to be perfect. In
other words, sensitivity (the probability that a test will identify, by testing outcome,
an individual as active given that the individual is truly active) and specificity (the
probability that a test will identify, by testing outcome, an individual as inactive
given that the individual is truly inactive) are both assumed to be 1.0. Dorfman
himself did not believe these assumptions strictly but was able to build from the
strength of the overall approach to make worthwhile reductions in the required
number of tests over one-at-a-time testing. Aspects of sensitivity and specificity
are also discussed in Chapters 4 and 6.

3.1.1 Classification

Dorfman’s application was the need to identify World War II Selective Service in-
ductees whose blood contained syphilitic antigens. In other words, his was a classi-
fication problem and he wanted to minimize the number of tests required to classify
all inductees. All individuals in inactive pools were declared to be inactive, without
further testing. All individuals in active pools were subjected to one-at-a-time test-
ing, thus leading to a random total number of tests T = f/k + Xk (where f, k, and
X are defined above). Dorfman then needed to determine a pool size to minimize
the expected total number of tests. Pooling would only be advantageous if, on aver-
age, the total number of tests is less than f, which is the number of tests required by
one-at-a-time testing. Dorfman minimized the expected relative cost, for given p,

E(T )

f
= 1

k
+ 1 − (1 − p)k, for k > 1,

with respect to k, to determine the best possible improvements offered by pooling
experiments over one-at-a-time testing. For example, by pooling, he obtained an
80% cost savings in tests over one-at-a-time testing when p = .01 and k = 11.
The savings decrease as p increases but are still appreciable even for larger p
with, for example, 28% savings when p = .15 and k = 3. In fact, pooling, based
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on Dorfman retesting for classification, is better than one-at-a-time testing when
1/k < (1 − p)k . The approximation (1 − p)k ≈ e−pk is sometimes used to claim
that pooling is better than one-at-a-time testing when p < (ln k)/k. When p and k
are both large, many active pools are observed and, consequently, more individual
retests are required and this reduces the desirability of pooling.

Despite its simplicity, Dorfman’s retesting strategy is still very widely used
today, especially in blood testing and drug discovery applications. His rough guide-
lines for choosing k such that p < (ln k)/k, coupled with recommendations by
Thompson (1962), Kerr (1971), Loyer (1983), and Swallow (1987) to use an a
priori upper bound on p, is also commonly used today. Indeed, the attraction of
the Dorfman strategy is its simplicity. Improved methods for classification, some
of which are discussed in this article, add various levels of complications that users
may not yet be ready to accept.

3.1.2 Estimation

Dorfman (1943) did not really address the problem of estimating the prevalence
p but, using his assumptions, others did. Gibbs and Gower (1960) and Thompson
(1962) investigated the maximum likelihood estimator of p:

p̂ = 1 −
(

1 − X

g

)1/k

,

where g = f/k is the number of pools and X the number of active pools.
This is a positively biased, but consistent, estimator for p. Based on the asymp-

totic variance of p̂, Peto (1953) and Kerr (1971) determined that the optimum group
size k satisfies (1 − p)k = .203. Based on asymptotic considerations, Thompson
(1962) suggested that the group size should be approximately k = (1.5936/p) − 1.
He also argued, however, that the asymptotic results can be very misleading and
offered small-sample exact bias and variance formulae. Gibbs and Gower (1960),
Griffiths (1972), Loyer (1983), and Swallow (1985, 1987) also gave small-sample
results.

When c is the nontesting cost associated with obtaining an individual sample
(for example, personnel time for drawing blood from an individual) divided by the
cost of a test, Sobel and Elashoff (1975) showed that pooling is advantageous when

p < 1 − 1 + 2c

3 + 2c
.

For extremely costly tests, pooling can be beneficial for p as large as 2/3.

3.2 Some Alternative Models

Extensions of Dorfman’s procedure follow four main branches:

(i) Development of different retesting schemes;
(ii) Strategies when p is unknown, as is usually the case;

(iii) Departures from binomial assumptions; and
(iv) Errors in testing.
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The literature is quite extensive (see Hughes-Oliver, 1991), so only key papers are
referenced here. For brevity, no attempt has been made to separate extensions for
the goal of classification from extensions for the goal of estimation.

3.2.1 Retesting Schemes

Many different retesting schemes have been suggested in the literature, some of
which require infinite testability of the units. For example, Sterrett (1957) pro-
posed retesting individuals in an active pool only until an active individual is
found. The remaining untested individuals are then retested as a single pool and
the process is repeated. Sobel and Groll (1959) proposed a retesting scheme based
on nested halving procedures. Active pools are subdivided into two pools of size
approximately k/2, each of which is tested. Individuals in an inactive subpool
are declared inactive but an active subpool is again halved. Halving terminates
when pool size becomes one, that is, at individual testing. Sobel and Elashoff
(1975) proposed a general nested retesting scheme for estimation, of which nested
halving is a special case. They found that a certain class of nested halving pro-
cedures is highly efficient and the savings over one-at-a-time procedures is even
greater for the estimation problem than for the classification problem. They also
found that, when the cost of obtaining individuals relative to the cost of a test
is negligible, the optimal testing scheme does not include retesting. Chen and
Swallow (1990) confirmed the finding that retesting is not advantageous for es-
timation when testing costs far exceed costs of obtaining individuals, but they
showed that data from retesting can provide useful information for testing model
assumptions.

In contrast to the work of Sobel and Elashoff (1975) and Chen and Swallow
(1990), where the stated goal was to reduce cost per unit information for estimation
in the presence of perfect testing, retesting has been shown to be useful for classi-
fication, especially when test results may be inaccurate. Litvak et al. (1994) argued
that, even when testing is correctly executed, it can lead to incorrect conclusions
and, in these cases, retesting provides significant improvements over no-retesting
for reducing error rates associated with labeling samples when screening low-risk
HIV populations.

Based on nested halving, Litvak et al. (1994) also proposed a new retesting
scheme where inactive pools are subjected to a repeat test; if they again test inactive
then all individuals in those pools are declared inactive, otherwise the pool is halved
and subjected to additional testing. Gastwirth and Johnson (1994), who were also
concerned with error rates for labeling individuals assuming imperfect testing,
proposed a “back-end” retesting stage where pooled testing is used to rescreen a
subset of individuals who were declared inactive from “first-stage” pooled testing.

3.2.2 Choosing the Pool Size

The success of a pooling experiment depends heavily on the choice of a good value
for the pool size k. Unfortunately, optimal pool size depends on the value of p. In
the absence of a priori information on p, Le (1981) and a number of other authors
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recommended that different pool sizes be used and the resulting data on the number
of active pools for each pool size be combined to yield an estimator. Thompson
(1962) argued that an a priori upper bound on p should be used to determine a
single pool size, and Hughes-Oliver and Swallow (1994) and Hughes-Oliver and
Rosenberger (2000) proposed two-stage adaptation to allow a single update of the
pool size. These last authors also addressed the issue of pool size when there are
multivariate responses from pools, motivated by the need to monitor prevalence
rates for several diseases simultaneously.

3.2.3 Departures from Binomial Assumptions

On the issue of departures from binomial assumptions, Finucan (1964) considered
a case where stratification occurs and results in different probabilities of activ-
ity for different individuals. A good early reference for various approaches to
dealing with such situations is that of Hwang (1984). Chen and Swallow (1990)
noted that model assumptions can be tested if data on unequal pool sizes are
available. Many recent articles also consider the situation where probability of
activity is dependent on covariates. For small numbers of covariates, Hung and
Swallow (2000), Vansteelandt et al. (2000), Xie (2001), and Tebbs and Swallow
(2003a,b) obtained estimates of prevalences in the different strata. For large num-
bers of covariates, Xie et al. (2001), Zhu et al. (2001), and Yi (2002) obtained
estimates of prevalences in the different strata then ranked the estimated preva-
lences to define a testing order for the classification problem. Thus, the estima-
tion problem was an intermediate step, not the ultimate goal, of the drug dis-
covery applications of these authors. On a related note, Remlinger et al. (2005)
considered the design problem of assigning individuals to pools based on their
covariates; the goal was classification in the presence of covariate-dependent
prevalences.

3.2.4 Errors in Testing

The problem of errors in testing has been examined by a host of investigators.
References to investigators from a clinical/laboratory science viewpoint are given
in Section 4.2. From a statistician’s viewpoint, Gastwirth and Hammick (1989)
and Hammick and Gastwirth (1994) used trinomial models in which either a
confirmatory pool test or an independent pool test was used to reduce the num-
ber of false positives. They also incorporated sensitivities and specificities (Sec-
tion 3.1) of the testing scheme into their estimator while maintaining individual
anonymity. Tu et al. (1994, 1995) also incorporated sensitivities and specificities
of the testing scheme and showed that this leads to improved estimation accuracy.
Vansteelandt et al. (2000) took the same approach but with the added complication
of covariate-adjusted estimation of prevalence. Hung and Swallow (1999) investi-
gated robustness properties of the pooling estimator with respect to dilution effects
and serial correlation models. Wein and Zenios (1996) also investigated dilution
effects. In the area of drug discovery, Langfeldt et al. (1997), Xie et al. (2001),
Zhu et al. (2001), Yi (2002), and Remlinger et al. (2005) all investigated
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procedures that model possible interactions occurring within pools; such inter-
actions may be mislabeled as errors in testing.

4 Pooling for Blood Screening

4.1 Background

Pooling is now considered to be a routine option in blood screening, especially for
the human immunodeficiency virus (HIV). There are many reports espousing the
benefits of pooled testing in countries across the world, using a variety of assay
techniques.

There are actually three blood screening applications for which pooling has
been beneficial. The two most common applications are the context of classifi-
cation, where the goal of blood screening is to identify individuals with sero-
prevalence of one or more diseases. One classification application arises from the
need to screen donated blood and blood products and the other from the need
to screen for individual diagnoses. Cost effectiveness, as measured by the reduc-
tion in the expected total number of tests, is the most commonly used assess-
ment of pooling methods. The third application is the need to monitor changes in
sero-prevalence over time for (possibly) different sets of individuals, where de-
marcation of individuals may occur along demographic lines or spatial/regional
clusters.

4.1.1 Classification

Motivated by a more than 90% transmission rate of HIV by transfusion of blood
and blood products, the World Health Organization (WHO) argued for 100%
screening of donated blood. Recognizing that developing countries can ill-afford
the cost of 100% one-at-a-time screening, WHO issued recommendations for
testing for HIV antibody on serum pools (WHO, 1991) in areas where sero-
prevalence is less than 2%. In fact, this figure of 2% sero-prevalence is much
too restrictive. Many investigators have achieved success with much higher preva-
lences. For example, Soroka et al. (2003) described the successful use of pool-
ing where prevalence was 9%. It is important to note that, for screening blood
supplies, complete identification of sero-positive individuals is not necessary.
All that is needed is a method for tracking the complete donated sample, with-
out personal identifiers. This makes pooled screening very attractive for screen-
ing blood supplies because donors can be assured that their anonymity will be
maintained.

Another classification problem occurs when individual diagnosis is the required
outcome of a screening campaign. In such a campaign, personal identifiers must
be maintained for the purpose of reporting back to individuals about their sero-
prevalence. Moreover, diagnostic testing requires that sero-positive pools be sub-
jected to confirmatory gold-standard tests.
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4.1.2 Estimation

Gastwirth and Hammick (1989) and Hammick and Gastwirth (1994) approached
the blood testing problem with a keen eye towards preserving individual privacy
rights. They proposed screening strategies designed for estimating prevalences.
Rather than focus on the cost-saving advantages of pooling, these authors selected
pooling because of the anonymity it provides to individuals being screened. They
also reduced false predictive values by employing confirmatory tests to verify
sero-prevalence.

4.2 HIV Testing

The standard practice in developed countries for determining HIV sero-prevalence
is first to apply the cost-effective, but suboptimal, enzyme-linked immunosorbent
assay (ELISA) test. For those individuals who are identified as sero-positive by the
ELISA test, follow-up testing is then performed using the gold standard Western
blot test. Unfortunately, the Western blot is very expensive, difficult to standardize
and often results in no clear diagnosis for some individuals (Tamashiro et al., 1993).
To relieve the cost burden, the WHO recommends a series of repeat testing that
uses cheaper tests, namely ELISA or simple or rapid tests, to avoid the Western
blot while still maintaining testing accuracy. In general, the Western blot best is
up to six times as expensive as rapid or simple tests and 18 times as expensive as
ELISA; see, for example, WHO (1992). Rapid and simple tests provide results in
less than one hour (less than 30 minutes for rapid tests) and may be performed
by personnel having little or no laboratory training. ELISA must be performed
in a laboratory (so results are not immediately available) by extensively trained
laboratory professionals.

The WHO (1992) recommendations are shown in Figure 2 and supporting text
is given in Table 1. Strategy I is recommended for screening contributions to a
blood supply. It says that a contribution should only be accepted if it is sero-
negative according to either the ELISA test, or the rapid test, or the simple test.
Sero-positive samples are not considered further. Strategy I is also recommended
when prevalence is high and the goal is HIV surveillance.

WHO’s Strategy III is recommended for diagnosing symptom-free individuals
living in areas of low prevalence. It is the strategy that allows the greatest number
of retests. If the first test is sero-positive, it is followed up with a second test that is
not simply a repeat measurement of the first test. Specifically, the assay procedure
should differ from the first assay procedure in some substantial way; for example,
different antigen preparation, different test principle (such as indirect versus com-
petitive) or both. The first test should be very sensitive but the other two tests should
have higher specificity than the first. If this second test is again sero-positive, a
third and last test is applied. Strategy II is similar but with only two stages.

Effective clinical pooling studies for HIV classification and surveillance have
been reported by a large number of investigators. Emmanuel et al. (1988),
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Figure 2. The World Health Organization 1992 recommendations on how to screen for
HIV without using the Western blot test. ∗ denotes that subsequent assays should differ
from previous assays.

Cahoon-Young et al. (1989), Kline et al. (1989), Behets et al. (1990), Archbold
et al. (1991), Ko et al. (1992), Babu et al. (1993), and Perriens et al. (1993) have
all reported successes for several different countries, including countries in Africa
and Asia. “Success” here is defined as the appropriate management of the logistics
of pooling and the reduction of the amount of testing required. Moreover, suc-
cesses have been achieved based on several different testing protocols, including
ELISA, Western blot, and rapid testing techniques; see also Davey et al. (1991),
Seymour et al. (1992), Raboud et al. (1993), McMahon et al. (1995), Verstraeten et
al. (1998), and Soroka et al. (2003). These studies reported up to 80% reductions
in cost for pooling experiments compared with one-at-a-time testing.

Table 1. WHO recommendations for the use of the
strategies shown in Figure 2
Strategy Limits on p Objective

I None Blood supply
I p > 0.1 HIV surveillance
II p ≤ 0.1 HIV surveillance
II None Diagnosis, HIV symptoms
II p > 0.1 Diagnosis, no symptoms
III p ≤ 0.1 Diagnosis, no symptoms
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Since the late 1980s, statistical contributions to pooling for blood testing have fo-
cused on the following aspects: assessing changes in sensitivity and specificity due
to pooling, designing pooling strategies to accommodate both cheap initial screens
and gold-standard confirmatory screens, and estimation of covariate-dependent
prevalences.

Let us first consider approaches to assessing changes in sensitivity and speci-
ficity due to pooling. As defined in Section 3.1, sensitivity is the probability that a
test correctly detects antibodies in a serum sample, and specificity is the probability
that a test correctly identifies an antibody-free serum sample. These probabilities
have been a major area of concern in pooling studies for blood testing (WHO,
1991). The over-arching issue when screening a blood supply is whether dilution
effects will cause a single sero-positive individual to be missed when combined
in a pool with several (perhaps as many as 14) sero-negative individuals. This
issue relates to the false negative predictive value as follows. A predictive value
is the probability of truth given an individual’s testing outcome; a false negative
predictive value is the probability that the individual is truly active but is labeled
as inactive from testing; a false-positive predictive value is the probability that the
individual is truly inactive but is labeled as active from testing. When screening
for diagnostic purposes, the major concern is that sero-negative individuals will be
labeled sero-positive; this relates to the false positive predictive value. Repeatedly,
however, studies have indicated that, under their worst performance, these possible
pooling effects are negligible. In fact, Cahoon-Young et al. (1989), Behets et al.
(1990), Archbold et al. (1991), Sanchez et al. (1991) all reported reductions in the
number of misclassified sero-negative individuals; for example, Cahoon-Young
et al. (1989) found that there were seven misclassified sero-negative individ-
uals out of 5000 tested, but no misclassified sero-negative pools out of 500
tested.

For understanding sensitivity, specificity, false negative predictive value, and
false positive predictive value, consider the four cells and two column margins
of Table 2, where individuals are cross-classified with respect to their true sero-
status versus observed sero-status. Sensitivity is represented by Se = P(testing
outcome + | truth is +) and specificity is Sp = P(testing outcome − | truth is −).
With these definitions and with p denoting the probability of an individual having

Table 2. Cross-classification of individuals
for “true” versus “observed” sero-status
(+,−) in terms of sensitivity Se, specificity
Sp , and probability p of positive sero-status

True
+ −

Observed + pSe (1 − p)(1 − Sp)

− p(1 − Se) (1 − p)Sp
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positive sero-status, the false negative predictive value is

FNPV = P( truth is + | testing outcome −) = p(1 − Se)

p(1 − Se) + (1 − p)Sp

and the false positive predictive value is

FPPV = P( truth is − | testing outcome +) = (1 − p)(1 − Sp)

(1 − p)(1 − Sp) + pSe
.

Large false negative predictive values are particularly troubling when screening a
blood supply because they allow sero-positive samples to enter the blood supply
system, thus leading to possible transmission of deadly diseases. Minimizing the
false negative predictive value is probably more important than increasing cost
efficiency of pooling for this application. Of course, large false negative predictive
values can arise even when screening is accomplished using one-at-a-time test-
ing. False positive predictive values are of greater concern in diagnostic testing
because they can cause undue stress for the falsely identified individuals and in-
crease testing costs. Notice that if Se = Sp = 1, then FNPV = FPPV = 0 and no
misclassifications will occur.

Litvak et al. (1994) compared three pooling strategies and one-at-a-time testing
with respect to their abilities to reduce FNPV, FPPV, the expected numbers of
tests required, and the expected numbers of tests performed for each individual.
The first pooling study considered was Dorfman retesting with pool size k = 15;
that is, all individuals in sero-positive pools were tested one-at-a-time but no
retesting was applied to individuals in sero-negative pools. The pool size of 15 was
selected because, at the time, it was the largest acceptable size from a laboratory
perspective for maintaining high sensitivity and specificity after pooling. Litvak
et al. (1994) called this screening protocol T0. Their second pooling protocol, T2,
was essentially the retesting method proposed by Sobel and Groll (1959) whereby
sero-positive pools are recursively halved and testing of the subpools continues
until no further splits are possible. In this strategy with k = 15, a serum sample
must be positive four or five times before being declared sero-positive. Their
third pooling protocol, T +

2 , is similar to T2 except that each sero-negative pool is
subjected to one confirmatory pool test before all its individuals are labeled as sero-
negative. It was found that T2 and T +

2 were comparable and that both provided huge
reductions in FPPV compared with one-at-a-time testing but smaller reductions
compared with T0. For FNPV, T +

2 was the best protocol. In short, pooling reduced
both false negative and false positive predictive values.

The result from estimating sero-prevalence of HIV in the presence of errors
in testing is really quite startling. Tu et al. (1994, 1995) found that pooling actu-
ally increases estimator efficiency by reducing the effect of measurement errors.
Vansteelandt et al. (2000) extended the procedure to account for covariate ad-
justments. These results, along with the large number of empirical findings from
investigators such as Emmanuel et al. (1988), clear the way for heavy reliance on
pooling strategies to eliminate the backlog and reduce the cost of screening large
populations. This is of particular importance to developing countries that are often



3. Pooling Experiments for Blood Screening and Drug Discovery 61

cash-strapped but might benefit the most from 100% screening. Even developed
countries might want to rethink their screening strategies to take advantage of
fewer but more informative pooled test results.

5 Pooling for Screening in Drug Discovery

5.1 Background

Twenty percent of sales from the pharmaceutical industry for the year 2000 were
reinvested into research and development activities. This percentage is higher than
in most other industries, including the electronics industry. At the same time, it is
getting increasingly difficult to introduce (that is, discover, demonstrate efficacy
and safety, and receive approval for marketing of) new drugs in order to recoup in-
vestment costs. On average, one new drug requires investment of $880 million and
15 years development (Giersiefen et al., 2003, pages 1–2). The days of profitability
of “runner-up” or “me-too” drugs have long passed and the simple current reality
is that survival and financial security of a pharmaceutical company demands that
they find the best drugs as fast as possible. This means that the five major phases of
drug discovery, as illustrated in Figure 3, need to be traversed aggressively. Details
on the phases of drug discovery can be found in Chapter 4. Here, attention is di-
rected to the third phase, Lead Identification, which is where pooling experiments
for screening in drug discovery usually occur.

Preclinical
and clinical
development

Lead
optimization

Pharmacodynamic

Pharmacokinetic
Essential phase

Lead
identification

Assay

validation

Disease relevance
Assay quality

Target

identification

Disease selection
Molecular targets

500 of 10,000 used

Assay development

High-Throughput

Screening

Leads

Patentable hits
that have other
desirable properties.

Need 100 leads.

Dilution
screen

Secondary
screen
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Compounds active

in an assay

Primary
screen

∼

Figure 3. Phases of drug discovery.
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Given a large collection of compounds, say f = 500,000, the goal of lead iden-
tification is to find about 100 compounds that are

(i) Active for the assay—this allows them to be called “hits”;
(ii) Patentable; that is, their structures are novel and not already under patent;

(iii) Have good chemical properties such as stability, can be synthesized, are not
toxic, and so on;

(iv) Something is understood about what makes them active; that is, their structure–
activity relationships have been, at least partially, identified;

(v) Each compound is fairly different from the other ninety-nine.

Compounds that satisfy all these requirements are called leads or lead compounds.
The need for properties (i)–(iii) is clear, but additional comments are warranted
for the other properties.

Knowledge of structure–activity relationships allows chemists to focus on the
essential substructures of the compound without wasting time with the portions
that do not affect activity. The drug discovery phase that follows lead identifi-
cation is lead optimization. In this phase, chemists expend enormous energies
“tweaking” the leads to increase the chances of compounds making it through the
grueling stages of preclinical and clinical development. It is imperative that the
lead optimization phase produces very strong lead compounds to be investigated
during preclinical and clinical development. Once a compound reaches the pre-
clinical and clinical development phase, extensive additional financial and time
investments are made, so that heavy losses would be incurred if the compound
had to be abandoned further down the drug discovery channel because it possesses
undesirable features (see also Chapter 4).

5.2 Differences and Similarities Between Blood Screening
and Screening for Drug Discovery

The goals of drug discovery, as stated above, seem to be very similar to those of
the blood screening for classification problem, but this is not at all the case. As
mentioned, in earlier sections of this chapter, approaches to solving the blood test-
ing for classification problem do not routinely incorporate covariate information.
For the HIV blood testing problem, relevant covariate information for an individ-
ual may include the following: number of blood transfusions received, number
of sexual partners, number of sexual partners who are HIV-infected, syringe use,
drug use, sexual preference, and HIV status of parents. Recent investigations have
allowed the estimation of prevalence in different covariate-defined strata, but the
number of strata is never large and is quite typically less than 10. In screening for
drug discovery, on the other hand, the number of covariates is quite often at least
twice the number of pooled responses available. Indeed, the significant challenges
that arise from the high-dimensional-with-low-sample-size data sets that usually
result from “high-throughput screening” in drug discovery present major obstacles
to analysis, even for one-at-a-time testing results. These difficulties are magnified
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in the presence of pooled responses. More information is given by Langfeldt et al.
(1997), Xie et al. (2001), Zhu et al. (2001), Yi (2002), and Remlinger et al. (2005).

Arguably, the biggest difference between the two application areas discussed
in this chapter is the potential for synergistic relationships between compounds in
pools for drug discovery, whereas no such concept has arisen for blood testing.
Synergism has recently become the major supporting argument for pursuing pool-
ing experiments in drug discovery (Xie et al., 2001; Yi, 2002; Remlinger et al.,
2005). Synergistic relationships can only be discovered through pooling studies
where compounds are forced together, and it is these synergistic relationships that
form the basis of combination therapies. These therapies involve deliberate mixing
of drugs and they are now the standard of care for life-threatening diseases such
as cancer and HIV. Current combination therapies were discovered by combining
individually active compounds after they had been approved by the Food and Drug
Administration. By investigating synergistic relationships in vitro, it is expected
that one could find a combination where, individually, the compounds are inactive
but, when pooled, their activities exceed all other combinations. Borisy et al. (2003)
demonstrated this quite nicely using several real experiments. For example, chlor-
promazine and pentamidin were more effective than paclitaxel (a clinically used
anticancer drug), even though individually neither drug was effective at tolerable
doses. Similar ideas were discussed by Tan et al. (2003).

So, are cost considerations no longer important for drug discovery? The answer
is “not really,” or at least not as much as they used to be. Before the advent of
high-throughput screening (HTS, see Chapter 4) and ultrahigh-throughput screen-
ing (uHTS), pooling was necessary for processing the large compound libraries
typically encountered. In those days, a large screening campaign might screen a
total of 50,000 compounds, and it would take months to complete. Today, uHTS
can screen 100,000 compounds in a single day; see Banks (2000) and Niles and
Coassin (2002). HTS and uHTS systems are centralized, highly automated, and
are under robotic control so they can work almost around the clock with very small
percentages of down-time.

The two applications of drug discovery and blood testing are similar in how
they process screening outcomes. Comparing Strategy III of Figure 2 with the
extended view of Lead Identification in Figure 3, it can be seen that both methods
use three tests in labeling the final selected individuals. The selected individuals are
the gems for drug discovery applications but, for the blood testing problem, they
actually cause concern because they are blood samples that have been confirmed
to be diseased.

5.3 Design and Analysis Techniques

A commonly used technique for analyzing drug discovery screening data from
individuals is recursive partitioning (RP), more commonly known as “trees” (see,
for example, Blower et al., 2002). In very recent times, efforts based on multiple
trees (Svetnik et al., 2003) have become the method of choice, despite the additional
difficulties associated with them, because of their good predictive abilities.
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The number of researchers working to develop methodology appropriate for
pooled drug screening data and who are allowed to discuss these issues outside
the big pharmaceutical companies is very small. Papers from these researchers
have been reviewed earlier in this chapter, but a few additional comments are
warranted. The bulk of the work has been divided into two major paths. One path
concerns the search for the efficient placement of individuals within pools; that
is, the design of pooling studies. Because of the very large number of covariates,
this is a difficult problem that requires computer-intensive techniques. Remlinger
et al. (2005) obtained structure-based pooling designs to assign pool placement
in response to covariate-adjusted prevalences. Zhu (2000) developed model-based
designs for the same problem.

The second major path concerns analysis methods, including nonparametric,
semi-parametric, fully parametric, and Bayesian approaches. Nonparameteric re-
sults are based on recursive partitioning on pooled data and require the formation of
pooled summaries and decisions of whether and how to include the retested data in
the analysis without violating independence assumptions. For the semi-parametric
work, Yi (2002) modeled data from pooling experiments as missing data scenarios
where missingness occurs at random. This was a novel use of the semi-parametric
methodology to an area that had never before been considered. Another interest-
ing finding is that random retesting of both active and inactive pools can lead to
improved estimators. Litvak et al. (1994) and Gastwirth and Johnson (1994) were
able to improve their estimators in the blood testing problem by retesting inactive
pools.

Zhu et al. (2001) described a trinomial modeling approach that incorporates
the phenomenon of blocking and used this model to develop criteria for creating
pooling designs. These fully parametric models were also extended by Yi (2002)
who considered pairwise blocking probabilities. Xie et al. (2001) used a Bayesian
approach for modeling blockers and synergism. Finally, Remlinger et al. (2005)
also considered design pooling strategies, but from a completely structure-based
approach.

When it comes to designing and analyzing pooling studies for drug discovery,
many open questions remain. Single-dose pooling studies, which is an area still
in its infancy, have been the focus of this chapter. Multiple-dose pooling studies,
which constitute a more mature area of research and application, can bring yet
another level of interesting questions and evidence of the utility of pooling; see,
for example, Berenbaum (1989).

6 Discussion

Many modern developments and applications point to a bright future for pooling
experiments. First, blood testing is ready to support heavy-duty use of pooling
studies all across the world. The evidence of success is overwhelming whereas the
costs are minimal. Secondly, the drug discovery application still has a long way
to go before it is fully developed, but researchers are making great strides. The
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ability to uncover synergistic relationships for discovering combination therapies
is very exciting and offers many new challenges and possibilities.
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