
STREAMTO: STREAMING CONTENT USING A
TAMPER-RESISTANT TOKEN

Jieyin chengl, Cheun Ngen chong', Jeroen M. ~ o u m e n ' , Sandro ~ta l le ' ,
Pieter H. art el' and Stefan ~ikolaus*
'university of Twente, P.0.Bo.x 2100, 7500 AE Enschede, The Netherlands,
Jcheng',chong,dozrmen,pieter~@cs. utwente.nl;

'WIBU-SYSTEMS AG, Rueppurver Strasse 52-54, 76137 Karlsruhe Germany,
Stefan. nikolatt.@wibu. com

Abstract: StreamTo uses a tamper resistant hardware token to generate the key stream
needed to decrypt encrypted streaming music. The combination of a hardware
token and streaming media effectively brings tried and tested Pay-TV
technology to the Internet. We present two prototype implementations with a
performance assessment, showing that the system is both effective and
efficient.

Key words: streaming; content protection; tamper-resistant hardware.

1. INTRODUCTION

To enforce usage rights and to prevent copyright violations, digital
content needs to be protected. As shown in Fig. 1, content protection has
three objectives (Judge and Ammar, 2003): (1) protected distribution, which
protects content when it is accessed online by a content renderer, e.g. a
streaming mechanism; (2) protected storage, which protects content while
being stored locally, e.g. safe disc; and (3) protected output, which protects
content after it is being rendered by a content renderer at the content output
(say a sound card), e.g. Microssft Secure Audio Path (SAP).

602 Jieyin Cheng, Chezrn Ngen Chong, Jeroen Doumen ...

Content protection is difficult on a personal computer (PC) because most
of the PC components (i.e., content renderer and content output) are open
(i.e. programmable) and thus not trustworthy. When protected content is
being used locally on a PC, an attacker might be able to retrieve the actual
content by circumventing the protection mechanism (Greene, 200 1).

However, if content is stored on a server while
being used via a streaming mechanism (SM), the
security of the content can be guaranteed to a
certain extent because the entire content is not sent

On to the user's PC directly but only piecemeal as a

protected stream of packets (Holankar and Stamp, 2004).
Storage T ~ I S stream of packets is interpreted and rendered

at the user's PC as they arrive. Therefore, SM helps
to achieve protected distribution of content,
provided that the stream cannot be captured easily.

Compared to a PC, a consumer electronic (CE)
device is relatively more trustworthy because its

Figzrre 1 Three phases components can be manufactured compliant and nOn-
of content protection. programmable (Eskicioglu and Delp, 200 1).

Therefore, it is more difficult to circumvent the
protection mechanisms applied to CE devices. A common example of such a
content protection mechanism is the Conditional Access System (CAS)
(Kravitz and Goldschlag, 1999). A Pay-TV system (Jain et al., 2002) applies
CAS to control users' access to broadcast TV. Similar to SM, CAS is able to
achieve protected distribution of the content.

In this paper, we propose StreamTo, which combines aspects of CAS and
SM to design a content protection approach, supported by a tamper-resistant
hardware token, e.g. a USB dongle. A tamper-resistant hardware token can
also provide protected storage for the content.

In addition, StreamTo has the following benefits:
It allows using content without an active Internet connection or when the
user does not have sufficient bandwidth.
It allows flexible sharing of content between users. The provider can
control access to different parts of the content by different users. This is
useful for business-to-business (B2B) and business-to-consumer (B2C),
for instance, when paying users can enjoy full content access at near CD
quality, while non-paying users can only listen to clips.
StreamTo is able to solve some of the security threats faced by CAS and

SM. This will be discussed later in section 4. Like most streaming
mechanisms, StreamTo is not easily scalable. Scalability could be achieved
by using Broadcast Encryption techniques as pioneered by Fiat and Naor

Stream to: Streaming Content Using a Tamper-Resistant Token 603

(1994). However, this is beyond the scope of the present paper. Here, we
show that StreamTo is applicable, practical and secure (within limits).

The remainder of the paper: Section 2 briefly explains CAS and SM,
which inspired StreamTo. Section 3 describes StreamTo in detail. Section 4
implements a prototype on a CM-Stick and an iButton. Section 5 assesses
the performance of the prototype. The last section concludes and presents
future work.

2. CAS AND SM

A Conditional Access System (CAS) is a smart-card-based technology
(Guillou, 1984), which is used in Pay-TV systems. The smart-card stores
subscription information and a secret key. A set-top-box (STB) is required to
interface with the smart-card and the television (TV).

The provider encrypts a TV program using a content key (which is the
same for all users) and broadcasts the encrypted TV program, as shown in
Fig. 2.

The key management system (KMS), which is responsible for billing,
subscriber and key management, transmits the universal content key to the
authorized subscribers. A content key is encrypted with the unique secret
key stored on a smart-card (Macq and Quisquater, 1995). The smart-card
decrypts and stores the content key received from the provider (via the STB).
The STB decrypts the encrypted TV program with the content key, and
displays the program on the TV.

The provider updates the content key used to encrypt the TV
progradchannel on a frequent basis (normally each 5 to 20 seconds). Once
the key is updated, the KMS must retransmit the updated content key to the
subscribers within seconds.

In a streaming mechanism (SM), as shown in Fig. 3, the provider
encrypts the content with different content keys for different users. The
content is encrypted and transmitted to the user.

A user has a renderer, which is a software application that establishes a
secure channel with the provider. The content key is transmitted to the
renderer when a secure streaming session is established. The renderer then
decrypts the content packet by packet with the content key and renders it, as
it is received, leaving behind no residual copy of the content at the renderer
(assuming that the renderer is not hacked).

The characteristics of the content key of CAS, SM and StreamTo differ
as shown in Table 1. We list the two most important characteristics of a
content key: (1) uniqueness (whether the key is unique for different content
and users), and (2) update (whether the key is updated on a regular basis).

604 Jieyin Cheng, Cheun Ngen Chong, Jeroen Doumen.. .

Figure 2. An abstract view of a
conditional access system (CAS).

Figure 3. An abstract view of
a streaming mechanism.

Table I . Comparison of CAS, SM and StreamTo with respect to the characteristics of the
content kev.

Uniqueness Update
CAS A content key is shared among all The content key is updated

authorized users. frequently.
SM A unique content key is assigned to The content key is not updated in

a user. a streaming session.
StreamTo A unique content key is assigned to The content key is updated

a user. frequently.

3. STREAMTO

In this section, we discuss StreamTo as outlined in Fig. 4.
We use a token, which has a

cryptographic co-processor and
tamper-resistant storage. The token is
dispatched physically by the provider
to a user in the same way as a Pay-TV
smart-card. The provider also serves
encrypted content. A user has a

Figure 4. An abstract view of StreamTo. player (a
application) that interfaces with the

token, and which can play encrypted content. The player depends on the
token for providing the key stream necessary to decrypt the content stream.

StreamTo can handle two methods of rendering the content, as shown in
Fig. 4: online and offline. For online rendering, the provider streams the
content to the player; whereas for offline rendering, the provider transmits
the entire encrypted content io the player. For both access iilethods, the

Stream to: Streaming Content Using a Tamper-Resistant Token 605

player plays the content piecemeal, waiting for each subsequent block of the
key stream from the token. We call this indirect streaming.

StreamTo has the characteristics of both the CAS and SM:
The provider generates a unique content key for a user (SM provider).
The player decrypts and plays the content piecemeal (SM renderer).
The token stores a unique secret key (CAS smart-card).
The content key is updated frequently (CAS provider).
The token transmits the updated key for decryption to the player (CAS
KMS and smart-card).
To explain the StreamTo protocols in more detail, we use the notation

listed in Table 2.

Table 2. The notation of the StreamTo protocols.
Notation Meaning
SecK A secret key shared between the token and the provider.

Ki The content key for the fhcontent frame.
s, The key stream for the ibcontent frame.

pi The ihframe of content (plaintext).

c, The corresponding ?"frame of encrypted content (ciphertext).

3.1 Keys

We use three different key types: a secret key, a content key and a key
stream.

A secret key (SecK) is a secret shared between the provider and the token.
We assume that an attacker canriot read, modify or access this key stored
on the token; it never leaves the token, and is preloaded on the token in a
secure environment of the provider.
A content key (K;) is used for generating the key stream. The first content
key KO is generated randomly by the provider and sent encrypted (with
the secret key) to the user along with the encrypted content.
A key stream (S,) is used to eddecrypt the content. The key stream is
derived from the content key and the content.
The size of the content key is short (e.g. 128 bits) so that a provider can

send it to a player efficiently. The size of the key stream is equal to the size
of the content so that stealing the key stream is inconvenient.

As a refinement, the provider could partition the content, using a
different KO for each partition. This would allow for example free use of
trailers but paid for use of the remaining content. In this paper, for simplicity,
we only use one content key to explain StreamTo in the subsequent sections.

606 Jieyin Cheng, Cheun Ngen Chong, Jeroen Dournen.. .

3.2 Encryption Process

Streaming content, e.g. an MPEG audiohide0 has a special structure: it is
composed of multiple frames, each of which has a descriptive header. This
header contains the particular information for the corresponding frame, e.g.
bit-rate, sample-rate, etc. StreamTo exploits this special feature of streaming
content as follows:

The encryption process, as shown in Fig. 5 is performed by the provider.
The provider generates a first content key KO randomly. The generate
function (Eq. 1) takes the content key K, and the secret key to produce a
block of key stream for the current frame (P,). The encrypted frame (C,) is
then XORed with the block of kt

Figurej. Encryption of streaming
content, frame by frame, at the
provider with a key stream that is
generated from an initial content
kev.

1 stream, as shown in Eq. 3. Finally, the
Plaver

Figure 6. Decryption of encrypted
streaming content, frame by frame,
with the regenerated key stream
using the regenerated content key.

Streamto: Streaming Content Using a Tamper-Resistant Token 607

next content key is calculated by the transform function. If the output of the
generate function is shorter than the frame size, it is repeated to form the
required length.

The encrypted frames (CO, ..., C,) are written to a new content file,
preceded by a header. The header contains the first content key (KO)
(encrypted with the secret key SecK of the token), padding, and information
about the generate and transform functions.

3.3 Decryption Process

The player receives an encrypted content file from the provider. When
the player renders the encrypted content, the decryption process is executed
as shown in Fig. 6.

The player interprets the header information of the encrypted content to
retrieve the encrypted first content key KO and other information. The player
then asks for a valid token. Authentication can be achieved between the
player and the token with standard methods (Kelsey and Schneier, 1999);
this falls outside the scope of this paper. The player then feeds the token with
the encrypted first content key (KO), so that the token can decrypt it.

The token uses the generate function (Eq. 1) to re-generate the key
stream, and sends it to the player. The player retrieves a frame C, from the
encrypted content, and decrypts it (by XOR-ing) with key stream S,
generated by the token, as shown in Eq. (4).

The player then updates the content key using the transform function (Eq.
2), sends it to the token to generate the next block of the key stream, and the
next frame is decrypted with this key stream block. At the same time, the
player plays the previously decrypted frame The decrypted frames will
be overwritten by newly decrypted frames after they are played (again,
assuming the player has not been hacked). Ideally, the token would perform
the transform function itself, but our hardware (the CM-stick) is not capable
of doing this.

4. PROTOTYPES

In this section, we discuss the implementation of our prototype. We use
streaming audio (MP3) in our prototype because it is less demanding on
resources than video. If StreamTo can be applied practically to protect

608 Jieyin Cheng, Cheun Ngen Chong, Jeroen Doumen.. .

streaming audio, we can investigate if StreamTo can support other streaming
content as well.

The architectural overview of our prototype is given in Fig. 7. The
Provider and the Player are the two applications we have created by using
Windows Media Format SDK, iB-IDE, CM-Stick SDK (WIBU, 2003), and
JavaZoom JLayer SDK.

The Provider executes the
generates

enciypted content

key stream encrypted aud~o piecemeal

Fig~lre 7. Architectural Overview of the prototype

encryption process discussed
in section 3.2. It takes as input
an MP3 audio file and
produces an encrypted audio
file as output. The Player
performs the decryption
process discussed in section
3.3. It asks the token (i.e., CM-
Stick or iButton) continuously
for blocks of key stream to
decrypt the audio.

The hardware token we use in our prototype are a CodeMeter Stick (CM-
Stick) and an iButton (as shown in Table 3).

Table 3. Comparison of the iButton and the CM-Stick.
CM-Stick iButton

Manufacturer WiBu-Systems AG, Gem~any Dallas Semiconductor,America
Processor Speed 24 MHz 10-20 MHz (Kingpin, 2002)
Non-volatile memory 128 kBytes 134 kBytes
Cryptographic AES, Triple-DES (for DES, Triple-DES, RSA
algorithms communication), ECC. and SHA-1

SHA-256
Interface USB connection SeriallParallel and USB connection

We use the standard Counter-mode (CTK-mode) syinrnetric encryption
(Lipmaa and Rogaway, 2000) to implement StreamTo by virtue of the
simplicity, efficiency and proven security of CTR-mode encryption.

The content key (K,) is the counter of CTR-mode encryption, which is
initialized to a random n-bit string. The implementation of the transform
function of the content key (Eq. 2) is simple:

The generation of the key stream (S,,) (Eq. 1) is the encryption of the
ssunter in CTR-mode encryptioin. We m e AES eccryption, which is the only

Stream to: Streaming Content Using a Tamper-Resistant Token 609

symmetric encryption supported by the CM-Stick; and DES encryption on
the iButton as the generate function (Eq. 1).

In our prototypes, each time a new frame is decrypted a click is audible.
This allows us to point out during demonstrations when decryption happens.

5. PERFORMANCE ASSESSMENT

To justify the practicality of StreamTo, we assess the performance of our
prototype. Our prototype is built on a platform with an Intel Pentium 4, 1.4
GHz, 512 MBytes RAM, 20 GBytes hard disk space, running Windows XP.
We use a 1 -minute 192 kbps MP3 audio as the sample for our performance
assessment. The sample has 2300 frames, each of which contains 623 bytes.

In our prototype, we use a CM-Stick, which is attached with a USB
interface; and an iButton, with two different interfaces to the platform,
namely a serial port connection (with the adapter DS9097U) and USB
connection (with the USB iButton holder DS9490B).

5.1 Content Key Size

The key stream is generated on the tokens by using the firmware
symmetric encryption algorithm. Therefore, to determine if the content key
size influences the performance of our prototype, we assess the performance
of symmetric encryption on the iButton and the CM-Stick.

From our previous experience, we know that the cryptographic
operations on the iButton are relatively slow (Chong et al., 2003). DES
encryption of 128 bytes on the iButton takes roughly 200 ins (Chong et al.,
2004).

We also need to measure the time required by the CM-Stick to perform
AES encryption, which we use to generate the key stream. We use an LSQ-
fit equation to summarize the result of 10 measurements as follows:

Here, t is the time required in milliseconds and d is the data size in bytes.
Thus, it takes approximately 100 * 25 ms to encrypt 128-byte of data on the
CM-Stick, making the CM-Stick about twice as fast as the iButton. This is
consistent with the cryptographic co-processor speed (Table 3).

If we use 128 bytes of content key, i.e., 1024 bits, the iButton requires
approximately 2300 A 0.2 = 460 seconds to generate the key stream, whereas
the CM-Stick needs roughly 230 seconds. For a 1-minute MP3 this is too
long, hence, we must sacrifice security for performance by (1) using a

610 Jieyin Cheng, Cheun Ngen Chong, Jeroen Doumen. ..

smaller content key size; and (2) enldecrypting every n-th frame of the audio
sample only.

In our prototypes, we choose a content key of size 8 bytes (64 bits) for
the iButton and 32 bytes (256 bits) for the CM-Stick. On the CM-Stick, it
takes approximately 40 It 26 ms to generate a block of key stream. However,
for the iButton, it takes approximately 70 ms due to the slower co-processor.
Therefore, we also use the second tradeoff on the iButton prototype, as will
be discussed in next section.

Figure 8. The time required to decrypt the encrypted audio sample frame by frame
with the iButton and the CM-Stick.

5.2 Sample Bit Rate

The MP3 sample bit rate refers to the transfer bit rate for which an audio
file is encoded. The sampling frequency refers to the number of samples of
an audio taken per unit time, i.e., the rate at which audio signals are sampled
into digital form.

The frame size depends on the sample bit rate and sampling frequency
according to the MPEG-3 standard. We use 6 different sample bit rates (with
the same sampling frequency of 44.1 KHz) of our experiment, which include
64 kbps, 128 kbps, 160 kbps, 192 kbps, 224 kbps and 256 kbps. Each frame
has standard constant time length of 26 ms. A 1-minute MP3 has
approximately 2300 frames.

It takes roughly 80 ms to generate a block of key stream. Therefore, for
decrypting the audio sample 192 kbps of 2300 frames (1 minute of play time)

Streamto: Streaming Content Using a Tamper-Resistant Token 61 1

by using a content key of 64 bits, theoretically the iButton needs
approximately 2300 x (0.08 + 0.2 x 2) = 1104 seconds in total to generate
and transmit the key stream to the player. We have rerun the test using the
USB iButton holder. However, there is no obvious improvement of the speed
due to the slow cryptographic operations on the iButton.

To overcome this problem, we choose appropriate values of n,
eddecrypting every n-th frame of the audio sample. Fig. 8 shows the
measurement for n = 25, 50 and 100. We report the average of 10
measurements. The decryption time measured includes the time required to
upload the updated content key; to generate and transmit a block of the key
stream; and XOR-ing of the encrypted frame. The actual play time of the
audio sample is 60 seconds (i.e., y- 60).

As can be seen in Fig. 8, the graphs of the iButton are slightly slant,
indicating that the time required to decrypt the audio frames increases with
faster sample bit rate. This is caused by the preprocessing of the encrypted
audio file, i.e. reading the audio frames from an encrypted audio file.

When n = 100, the iButton is able to handle the key stream generation
and audio frames decryption comfortably in real time. When n = 50, the
decryption time is marginally parallel with the play time of the audio sample.
This means that real time playback is possible but only when every n-th
frame is encrypted and n 2 50.

On the other hand, the CM-Stick, due to its faster cryptographic co-
processor, has better performance than the iButton, as shown in Fig. 8. In
conclusions, the CM-Stick is able to provide real time playback at n = 1.

6. CONCLUSIONS AND FUTURE WORK

We propose a streaming content protection approach, namely StreamTo,
which combines the technology of the Internet streaming mechanism (SM),
Pay-TV Conditional Access System (CAS) and a tamper-resistant hardware
token.

We implement StreamTo on two commercial tokens, namely the iButton
and the CM-Stick, by using the CTR-mode of symmetric encryption. Thus,
we show the applicability of StreamTo. We also evaluate the performance of
the implementation to justify the practicality of StreamTo. The CM-Stick has
a better performance than the iButton due to its faster cryptographic
coprocessor.

612 Jieyin Cheng, Cheun Ngen Chong, Jeroen Dournen.. .

REFEKESCE

Buchheit, M. and Kgler, R. (2004). Secure music content standard - content protection with
codemeter. In 4th Open Workshop of Interactive Music Network Multimedia
MUSICNETWORK, page Paper 10.

Chong, C. N., Peng, Z., and Hartel, P. H. (2003). Secure audit logging with tamper-resistant
hardware. In Gritzalis, D., di Vimercati, S. D. C., Samarati, P., and Katsikas, S. K., editors,
18th IFIP International Information Security Conference (IFIPSEC), volume 250 of IFIP
Conference Proceedings, pages 73-84. Kluwer Academic Publishers.

Chong, C. N., Ren, B., Doumen, J., Etalle, S., Hartel, P. H., and Corin, R. (2004). License
protection with a tamper-resistant token. In Lim, C. H. and Yung, M., editors, 5"'
Worhhop on Information Security Applications (W S A 2004), volume 3325 of LhrCS,
pages 224-238. Springer-Verlag.

Eskicioglu, A. M. and Delp, E. J. (2001). An overview of multimedia content protection in
consumer electronics devices. Signal Processing: Image Conmunication, 16:681-699.

Fiat, A. and Naor, M. (1994). Broadcast encryption. In Advances in Cryptology (CRYPT0'03
Proceedings, volume 773 of LNCS, pages 480491. Springer-Verlag.

Greene, T. C. (2001). MS digital rights management scheme cracked. TheRegister.co.uk.
Guillou, L. C. (1984). Sn~art cards and conditional access. In Advances in Cryptology

EUROCRYPT 84), volume 209 of LNCS, pages 480485. Springer-Verlag.
Holankar, D. and Stamp, M. (2004). Secure streaming media and digital rights management.

In Proceedings of the 2004 Hawaii International Conference on Computer Science, pages
85-96. ACM Press.

Jain, P. C., Joshi, S., and Mitra, V. (2002). Conditional access in digital television. In The 8"'
National Cotzference Communications (K C) 2002, Technical Session paper 30.

Judge, P. and Ammar, M. (2003). The benefits and challenges of providing content protection
in peer-to-peer systems. In Int. Workshop for Technolorn Economy, Social and Legal
spects of Virtual Goods, paper 12, Ilmenau. Germany.

Kelsey, J . and Schneier, B. (1999). Authenticating secure tokens using slow memory access
(eutended abstract). In USEA'IXW'orkshop on Smart Card Technology, pages 101-106.
USENIX Press.

Kingpin (2002). A practical introduction to the dallas semiconductor ibutton. Technical
report,@Stake, Inc.

Kravitz, D. W. and Goldschlag, D. M. (1999). Conditional access concepts and principles. In
Proceedings of the 3rd International Conference on Financial Cryptography, volume
1648 of LNCS, pages 158-1 72. Springer-Verlag.

Lipmaa. H. and Rogaway, P. (2000). Comments to NIST concerning AES-modes of
operations: CTR-mode encryption. In Symmetric Key Block Cipher Modes of Operation
Worhhop, Electronic Proceedings.

Macq, B. M. and Quisquater, J.-J (1995). Cryptology for digital tv broadcasting. Proceedings
ofIEEE, 83(6):944-957.

WIBU (2003). CodeMeter Developer's Guide. WLBU-SYSTMES AG, Rueppurrer Str.5-3-54
76 13 7 Karlsruhe, Germany, 1 .0 edition.

